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Abstract

In this paper we consider three-dimensional random tessellations that are stable under
iteration (STIT tessellations). STIT tessellations arise as a result of subsequent cell
division, which implies that their cells are not face-to-face. The edges of the cell-dividing
polygons are the so-called I-segments of the tessellation. The main result is an explicit
formula for the distribution of the number of vertices in the relative interior of the typical
I-segment. In preparation for its proof, we obtain other distributional identities for the
typical I-segment and the length-weighted typical I-segment, which provide new insight
into the spatiotemporal construction process.
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1. Introduction

In recent years, random tessellation theory has been an active field of research. Whereas in
the past mainly mean values and their relations were considered, current research focuses on
second-order parameters, limit theorems, and distributional results; see [4], [5], and [6], among
others. Besides the classical Poisson hyperplane and Poisson–Voronoi tessellations, random
tessellations constructed by subsequent cell division have attracted particular interest in recent
times in stochastic geometry and spatial statistics (see [1], [2], [14], and especially [3], and
the references cited therein). Among these models, the so-called STIT tessellations (which are
stable under iteration—see below) introduced in [9] and [12] are of particular interest, because
of the number of analytically available results [7], [10], [13], [16]–[18], [20]–[23]; see Figure 1
for illustrations. The model shows the potential to become a new reference model for crack or
fissure structures.

After detailed analyses of planar STIT tessellations in [10], [16], and [20], in this paper we
consider the three-dimensional case. We study so-called I-segments in homogeneous three-
dimensional STIT tessellations, which form the one-dimensional building blocks of a STIT
tessellation. They appear in the course of the sequential cell splitting procedure when cells are
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Figure 1: Realisations of an isotropic STIT tessellation (left) and a STIT tessellation whose directional
distribution R is concentrated with equal weight on three orthogonal directions (right).

Figure 2: An I-segment (thick lines) together with its carrying I-polygon (dark-grey regions) at the time
of its birth (left) and after further subdivision (right).

divided by new planes. In fact, all sides (1-faces) of a dividing two-dimensional polygon—
which will be referred to as an I-polygon—are called I-segments. In principle, the distribution
of the number of vertices in the relative interior of the typical I-segment is the focus of this
paper. Regarding the spatiotemporal construction, it becomes evident that this number depends
on the birth time, the direction, and the length of the I-segment. But, it also depends on the
birth time of that I-polygon, in whose interior the I-segment under consideration arises at a
later time. This polygon is called the carrying I-polygon of the I-segment. At its birth time,
this I-polygon is a facet of two adjacent mosaic cells, which, during the cell division process,
undergo further subdivision (dashed polygon in Figure 2) and in this way new vertices and
edges within the carrying I-polygon can appear; see Figure 2. For this reason, we consider the
edges in the carrying I-polygon (dark-grey regions in Figure 2) and observe that an I-segment
can have intersections with already existing edges (dotted lines in the dark-grey polygons
in Figure 2) at the moment of its birth. This is in sharp contrast to the planar case studied by
Mecke et al. [10] and Thäle [20]. In three dimensions the analysis is considerably more involved.
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Furthermore, vertices can arise after the birth of the typical I-segment as an effect of the ongoing
cell division procedure. To derive an explicit formula for the probability that a fixed number
of vertices is located in the relative interior of the typical I-segment, we first need to study the
marked process of I-segments with the following marks: the length, direction and birth time
of the I-segment, and the birth time of the carrying I-polygon. We will describe the joint and
all marginal distributions of the marks associated to the typical and length-weighted typical
I-segments of a homogeneous spatial STIT tessellation. Moreover, by noting that such a spatial
tessellation has exactly two different types of vertices (see Figure 3 in Section 3) we can refine
our result and obtain the joint distribution of the number of vertices of each type in the relative
interior of the typical I-segment.

Note that it would also be interesting to calculate the distribution of the number of vertices
within the typical two-dimensional building block, i.e. the typical I-polygon. However, this
quantity is currently not accessible, because the area distribution of a typical Poisson polygon is
needed. Determining this distribution is a long-standing open problem in stochastic geometry.

As already mentioned, related problems in the planar case have been studied in [10] and
[20]. The results obtained there have led to a deeper understanding of planar STIT tessellations
and have been used to obtain new results about their structure. In a companion paper [22] we
also used the results of the present work to explore in more detail the combinatorial structure
of spatial STIT tessellations, a study initiated in [21] and [23].

The paper is organized as follows. In Section 2 we introduce some notation, recall the basic
construction of STIT tessellations, and rephrase some of their most important properties, which
are needed for our later arguments. The conceptual framework as well as our main results are
contained in Section 3. The proofs are the content of Section 4.

2. STIT tessellations in RRRd

In this section we explain our basic notation, the construction, and the main properties of
STIT tessellations that are needed for our arguments below. Although our results are established
for the three-dimensional case, we focus in this section on general space dimensions, because
we apply some of the properties to lower-dimensional tessellations in our proofs.

2.1. Notation

A tessellation of Rd with d ≥ 1 can be described in two ways: as a locally finite collection
of nonoverlapping and space-filling compact convex polytopes (called cells in the sequel), as
well as a closed subset of Rd , which is formed by the union of all cell boundaries. We switch
between both perspectives arbitrarily.

In this paper we will deal with random tessellations of Rd , which can be regarded as random
variables taking values in the measurable space of tessellations of Rd ; see [15] and [19] for a
detailed definition and in particular for measurability issues. Our attention will be restricted
to homogeneous (spatially stationary) random tessellations, i.e. random tessellations whose
distributions are invariant under spatial translations.

We denote by H the set of all hyperplanes in Rd . A hyperplane h ∈ H will be parametrized
by its normal direction u ∈ Sd−1+ (the upper unit half-sphere in Rd ) and its signed distance
p ∈ R to the origin, where the distance is defined as positive if and only if the projection
of the origin o onto h is located in the upper half-space. Such a hyperplane is denoted by
h = h(p, u) ∈ H . For B ⊂ Rd , define

[B] = {(p, u) ∈ R × Sd−1+ : h(p, u) ∩ B �= ∅}
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as the set of parameter values (p, u) of hyperplanes h(p, u) hitting the set B. Consider a
measure � on R × Sd−1+ (equipped with the Borel product σ -field), which is the image under
the described parametrization of a (nonzero) locally finite, translation invariant measure on H .
Invariance under translations implies that � factorizes, i.e. there is a constant λ > 0 and a
probability measure R on Sd−1+ with

� = λµ ⊗ R, (1)

where µ is the Lebesgue measure on R. If R is the uniform distribution on Sd−1+ and λ = 1, then
� corresponds to the isometry-invariant hyperplane measure �iso; cf. [15]. From now on we
assume that λ = 1 in factorization (1). Moreover, to avoid degenerate cases, we assume that R
is not concentrated on a great half-subsphere of Sd−1+ , i.e. we require span(support(R)) = Rd .

2.2. Construction

A formal and detailed description of STIT tessellations in bounded windows is given in [12].
Here we explain the construction in an intuitive way only. Let � be a hyperplane measure as
above, and let W ⊂ Rd be a bounded convex polytope. We assign to W a random lifetime and
on expiry of this lifetime we choose a random hyperplane, which splits W into two polyhedral
subcells W+ and W−. The construction continues independently and recursively in both of
the subcells W+ and W−, which is to say that W+ and W− are provided with independent
random lifetimes and that they are divided by random hyperplanes when they die. Note that
the hyperplanes are always chopped off by the boundary of their respective mother cells. This
repeated cell division is continued until a fixed deterministic time threshold t > 0 is reached.
The random tessellation constructed until time t within W is denoted by Y (t, W).

In order to ensure the temporal Markov property of the described cell splitting process,
we assume that the lifetimes of the cells are conditionally (given the cells at a certain time)
independent and exponentially distributed. Moreover, we assume that the parameter of this
exponential lifetime distribution of a cell c is given by �([c]) (and, thus, the parameters of the
exponential distributions of different cells are not independent). In the special case � = �iso,
�iso([c]) is proportional to the integral-geometric mean width of c. Note that this choice ensures
that smaller cells live stochastically longer. Furthermore, we will assume that the hyperplane
splitting a cell c is chosen according to the law �([c])−1�(· ∩ [c]).
2.3. Important properties

In this subsection we summarize the properties of STIT tessellations that are needed in our
arguments below. For further background on STIT tessellations, we refer the reader to [9]
and [12], and to [15] and [19], for a general introduction to stochastic geometry.

If we insert independent copies Yc(s) of the tessellation Y (s) into the cells c of Y (t)

(generating Yc(s) ∩ c), the resulting iterated or nested tessellation is denoted by

Y (t) � Y (s) = Y (t) ∪
⋃

c a cell of Y (t)

(Yc(s) ∩ c).

Considered as a random closed set, Y (t, W) satisfies the following property.

(P1) (Spatial consistency) The random tessellation Y (t, W) is spatially consistent in that, for
any convex V ⊂ W with W as in Subsection 2.1, we have Y (t, W) ∩ V

d= Y (t, V ) (where
‘

d=’ stands for equality in distribution). Thus, Kolmogorov’s extension theorem ensures
that there exists a homogeneous random tessellation Y (t) in the whole Rd satisfying
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Y (t) ∩ W
d= Y (t, W). For the particular choice � = �iso, Y (t) is also isotropic, i.e. its

distribution is rotation invariant.

In [9] a global construction of Y (t) is provided, where the spatiotemporal random process
(Y (t))t>0 is defined. Its important properties are now summarized.

(P2) (Scaling) The distributions of the rescaled tessellations are identical, i.e. tY (t)
d= sY (s)

for all s, t > 0.

(P3) (Iteration stability) We have

Y (t)
d= Y (s) � Y (t − s), 0 < s < t, (2)

where Y (s) and Y (t − s) are independent. Consequently, owing to (P2),

Y (t)
d= nY (nt)

d= n(Y (t) � · · · � Y (t)︸ ︷︷ ︸
n times

)

for t > 0 and n ∈ N. The latter relation is usually referred to as stability under iterations.
For this reason, the random tessellations Y (t) are called STIT tessellations.

(P4) (Poisson typical cell) The distribution of the interior of the typical cell of Y (t) coin-
cides with that of the interior of the typical cell of a homogeneous Poisson hyperplane
tessellation with intensity measure t� (cf. [15] and [19]).

(P5) (Interpretation of t and R) The surface density SV of Y (t), that is, the mean total (d −1)-
volume of cell boundaries of Y (t) per unit d-volume, is equal to the construction time
t > 0, i.e. SV = t . The probability measure R, see (1), is the distribution of the
normal direction in the typical boundary point of Y (t), called the directional distribution
of the tessellation (that is, the surface-area-weighted directional distribution of the cell
boundaries).

(P6) (Linear sections) The intersection of Y (t) with a line L induces a homogeneous Poisson
point process on L with intensity �([e(L)])t , where e(L) is a segment of unit length on L.

(P7) (Temporal Markov property) The random process (Y (t))t>0 with values in the space of
tessellations satisfies the Markov property in time.

3. Framework and results

In this section we present our main results, Theorem 1, Theorem 2, and Theorem 3, and their
corollaries. Before we can state them, we have to introduce further notation and the framework
of our work.

3.1. The marked process of I-segments in spatial STIT tessellations

The notion of I-segments is due to R. Miles and characterizes one of the types of line segment
associated with a random planar tessellation that is not face-to-face; cf. [11] and the references
cited therein. An I-segment can be defined as a maximal union of collinear and connected
line segments that appear in the edge skeleton of a tessellation. Obviously, this definition does
not depend on the dimension of the ambient space and will henceforth also be used for the
spatial case, d = 3. Generalizing Miles’ concept, an I-polygon is a maximal union of coplanar
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and convex planar polygons (subsets of a plane in R3). Here, ‘maximal’ is understood in the
sense that there is no extension to a larger collinear (coplanar) and convex set in the tessellation
(considered as the closed set of cell boundaries).

In terms of the spatiotemporal construction of STIT tessellations Y (t), the I-segments and
I-polygons in spatial STIT tessellations can be characterized as follows. Any I-polygon of Y (t)

is a cell-dividing planar polygon introduced until time t , and any I-segment is a side (1-face)
of an I-polygon. When a cell c is divided by a plane h ∈ [c], exactly one I-polygon c ∩ h is
born, whereas at least three I-segments are born simultaneously. Any of these I-segments is the
intersection of the I-polygon c∩h with a facet (2-face) of the cell c. This facet itself is embedded
in a (possibly larger) previously born I-polygon, which is called the carrying I-polygon of the
I-segment.

For our purposes, it will be appropriate to describe the joint distribution of the following
marks associated to an I-segment in Y (t):

(�, ϕ, β, βcarr) ∈ (0, ∞) × S2+ × (0, t) × (0, t). (3)

Here �, ϕ, and β are the length, direction, and the birth time of the I-segment, respectively,
and βcarr is the birth time of the carrying I-polygon. Note that the direction of a segment is the
unique unit vector in S2+ parallel to the segment.

Consider for fixed time t > 0 and measure � the homogeneous STIT tessellation Y (t). Then
the process of the marked I-segments of Y (t) with marks as in (3) is a homogeneous marked
segment process. Thus, Palm calculus for marked point processes can be applied and allows us
to define the distribution of the typical I-segment and its mark distribution; see [15], [19], and
also Section 4 below. In intuitive terms, the typical I-segment and its mark distribution can be
regarded as a randomly (equally likely) chosen I-segment of Y (t, W) together with its random
marks when W is a ‘large’ observation window.

In the following we use the indicator function notation 1{·}, which is 1 if the statement in
brackets is fulfilled and 0 otherwise. Let us also define the two constants

ζ2 :=
∫

S2+

∫
S2+

[u, v]R(du)R(dv), (4)

ζ3 :=
∫

S2+

∫
S2+

∫
S2+

[u, v, w]R(du)R(dv)R(dw),

where [u, v] is the area of the parallelogram spanned by u, v ∈ S2+ and [u, v, w] stands for
the volume of the parallelepiped spanned by u, v, w ∈ S2+ (interpreted as unit vectors in R3

having one endpoint at the origin). Note that in the isotropic case these constants are given by
ζ2 = π/4 and ζ3 = π/8. We further introduce the following probability distributions on S2+:

R̃(U) := 1

ζ2

∫
S2+

∫
S2+

1{u⊥ ∩ v⊥ ∩ S2+ ∈ U}[u, v]R(du)R(dv), (5)

Rtyp(U) := ζ2

ζ3

∫
S2+

1{u ∈ U}�([u])R̃(du). (6)

Here U ⊂ S2+ is a Borel set, �([u]) stands for the �-measure of the set of all planes hitting
the unit line segment connecting u ∈ S2+ ⊂ R3 with the origin o, and u⊥ denotes the orthog-
onal complement of u ∈ S2+. For a Poisson plane tessellation with intensity measure �, the
distributions R̃ and Rtyp are the length-weighted distribution of the direction of edges and the
directional distribution of the typical edge, respectively; see [6]. In the particular isotropic case
we have �([u]) = 1

2 for any u ∈ S2+, and, thus, R̃ and Rtyp are the uniform distributions on S2+.
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3.2. Statement of results

We are now in a position to present the main results of this paper. We start with a description
of the distribution of marks, see (3), associated with the typical I-segment.

Theorem 1. Let Y (t) be a homogeneous random STIT tessellation in R3 with measure � as
in (1).

(i) The distribution of the direction of the typical I-segment of Y (t) equals Rtyp as defined
in (6).

(ii) The joint birth time density of (β, βcarr) of the typical I-segment of Y (t) equals

pβ,βcarr (s, r) = 3s

t3 1{0 < r < s < t}.

(iii) The conditional length density of the typical I-segment of the STIT tessellation Y (t), given
(ϕ, β, βcarr) = (u, s, r) ∈ S2+ × (0, t)2 with 0 < r < s < t , is

p�|ϕ=u, β=s, βcarr=r (x) = �([u])se−�([u])sx1{x > 0}.
It is interesting to note that the conditional length density in Theorem 1(iii) does not depend

on r and that the joint distribution of the birth time vector (β, βcarr) in part (ii) is independent
of � (and also of R).

Now we derive some consequences of Theorem 1. First, we calculate some marginal and
conditional birth time densities.

Corollary 1. For the homogeneous random STIT tessellation Y (t), we have

pβcarr (r) = 3

2

t2 − r2

t3 1{0 < r < t},

pβ(s) = 3s2

t3 1{0 < s < t}. (7)

Moreover,

pβ|βcarr=r (s) = 2s

t2 − r2 1{0 < r < s < t}, pβcarr |β=s(r) = 1

s
1{0 < r < s},

i.e. the conditional birth time distribution of the carrying I-polygon, given that the I-segment
is born at time 0 < s < t , is the uniform distribution on (0, s).

Using Theorem 1(ii) and (iii), we obtain the following result.

Corollary 2. The direction ϕ and the birth time pair (β, βcarr) of the typical I-segment of Y (t)

are independent. Moreover, the joint conditional density of the length and birth times, given its
segment direction u ∈ S2+, is

p�,β,βcarr |ϕ=u(x, s, r) = 3�([u])s2

t3 e−�([u])sx1{x > 0}1{0 < r < s < t}.

Integration now yields the marginal density for the length of the typical I-segment of the
STIT tessellation Y (t). This density is already known from [18]; see also Lemma 5 below.
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Corollary 3. The length density of the typical I-segment of Y (t) equals

p�(x) =
∫

S2+

3

�([u])3t3x4 (6 − (6 + 6�([u])tx + 3�([u])2t2x2

+ �([u])3t3x3)e−�([u])tx)Rtyp(du), x > 0.

In the isotropic case this reduces to

p�(x) = 3

t3x4 (48 − (48 + 24tx + 6x2t2 + t3x3)e−tx/2, x > 0.

Now we turn to the distribution of the number of vertices in the relative interior of the typical
I-segment. In fact, with Theorem 1 we obtain the following result.

Theorem 2. The probability pn that the typical I-segment of Y (t) has exactly n ∈ N vertices
in its relative interior is given by

pn = 3
∫ 1

0

∫ 1

0
(1 − a)3 (3 − (1 − a)(3 − b))n

(3 − (1 − a)(2 − b))n+1 db da. (8)

It is interesting to note that the distribution in Theorem 2 does not depend on the measure �

(or, equivalently, the directional distribution R) and the time parameter t . But, this is evident,
because the number of vertices in the relative interior of the typical I-segment does not change
when the tessellation is scaled in space. However, the latter is, owing to (P2), equivalent to a
rescaling of time. Some particular values for pn are summarized in Table 1.

From (8), we conclude the following result.

Corollary 4. The mean number of vertices in the relative interior of the typical I-segment is
equal to 2. Moreover, the variance equals 59

3 and all higher moments of that random variable
are infinite.

Note that the mean value is in accordance with the result in [21]. Furthermore, the non-
existence of higher moments is not surprising, because moments of order greater than or equal
to 3 of the length of the typical I-segment of Y (t) are also infinite.

As a last result, we would like to point out that Theorem 2 admits a refinement, which
is needed in [22]. We first note that a spatial STIT tessellation has exactly two different
types of vertices, T-vertices and X-vertices; see [21]–[23]. Illustrations of these two types of
vertices are shown in Figure 3. Given a carrying I-polygon (dark-grey regions in Figure 3), a
T-vertex is generated if two further I-polygons intersect in the same half-space determined by
the carrying I-polygon. An X-vertex is generated by an intersection of two further polygons in
the two different half-spaces specified by the carrying I-polygon.

For the typical I-segment, we denote by pm,n, m, n ∈ N, the probability that it has exactly
m vertices of type T and n vertices of type X in its relative interior.

Table 1.

n pn (exact value) pn (numerical value)

0 189
8 ln 3 − 26 ln 2 − 15

2 0.43289

1 1593
16 ln 3 − 107 ln 2 − 35 0.21384

2 5319
16 ln 3 − 350 ln 2 − 245

2 0.11841

3 31617
32 ln 3 − 1025 ln 2 − 4499

12 0.07075
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Figure 3: A T-vertex (left) and an X-vertex (right) in a spatial STIT tessellation.

Theorem 3. For a homogeneous spatial STIT tessellation and m, n ∈ N, we have

pm,n = 3 · 2m

(
m + n

m

) ∫ 1

0

∫ 1

0
(1 − a)3am (1 − (1 − a)(1 − b))n

(3 − (1 − a)(2 − b))m+n+1 db da.

From this formula, the following can be concluded.

Corollary 5. The mean numbers of T-vertices and X-vertices in the relative interior of the
typical I-segment equal 1. Furthermore, the variance of the number of T-type vertices is 8
and the variance of the number of X-type vertices is 11

3 (all higher moments are infinite). In
addition, the covariance of the number of T- and X-vertices equals 4.

In [21] and [23] it was shown that the proportion of the intensities of T- and X-vertices in
a spatial STIT tessellation is 2 : 1. Whereas any T-vertex is located in the relative interior of
exactly one I-segment, an X-vertex is in the relative interior of two I-segments. This confirms
the first statement of Corollary 5.

4. Proofs

Before proving our results for the typical I-segment, we first consider the mark distribution
in a typical edge point, i.e. the length-weighted mark distribution. The corresponding results
are derived in Subsection 4.2. The proofs of Theorems 1–3 and their corollaries are the content
of Subsection 4.3. Some preparatorial material is collected in Subsection 4.1.

4.1. Some preparations

We denote by L the measurable space of line segments in R3, and equip it with the Borel
σ -field induced by the Hausdorff distance; cf. [15]. The distribution on L of the typical
I-segment of a STIT tessellation Y (t) for fixed t > 0 and fixed measure � is denoted by DY (t),
and, similarly, the distribution of the typical edge of a Poisson plane tessellation with intensity
measure s� is denoted by DP(s).

In Theorem 3 of [18] the following is shown.

Lemma 1. For any nonnegative measurable function f : L → R, we have∫
f (L)DY (t)(dL) =

∫ t

0

∫
3s2

t3 f (L)DP(s)(dL) ds.
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In order to apply this lemma, we will need the length distribution of the edges in Poisson
plane tessellations. We consider the survival function of the conditional length distribution of
the typical edge of P(s), given its direction u ∈ S2+, i.e.

H
P(s)
�|ϕ=u(x) =

∫
1{length(L) > x}DP(s)

ϕ(L)=u(dL),

where D
P(s)
ϕ(L)=u(dL) denotes the respective conditional distribution of the typical edge. The

length-weighted case H̃
P (s)
�|ϕ=u is defined analogously. In the following we will always use a

tilde to indicate that we refer to a length-weighted distribution.

Lemma 2. The survival function of the conditional length distribution of the typical edge in
the Poisson plane tessellation P(s) is given by

H
P(s)
�|ϕ=u(x) = e−�([u])sx for x > 0,

and the survival function of the conditional length distribution of the length-weighted typical
edge in the Poisson plane tessellation P(s) is given by

H̃
P (s)
�|ϕ=u(x) = (1 + �([u])sx)e−�([u])sx for x > 0.

Proof. The intersection of the homogeneous Poisson plane process P(s) with a fixed plane
parallel to u ∈ S2+ is a Poisson line process. The intersection of this line process with a fixed
line parallel to u is a Poisson point process with intensity �([u])s; see, e.g. [15, Theorem 4.4.6]
or, more specifically, Equation (4.31) ibidem. Thus, it follows from a twofold application
of Slivnyak’s theorem for Poisson processes that the typical edge point of a Poisson plane
tessellation is almost surely located on a length-weighted segment that is generated by a linear
homogeneous Poisson point process, and, under the condition that the direction is u, its intensity
is �([u])s. Hence, the length of the typical edge, under the condition ϕ = u, is exponentially
distributed with parameter �([u])s, and the respective length-weighted distribution is the
gamma distribution with parameters (2, �([u])s). This completes the proof.

As a corollary, we obtain the mean length of the typical edge in a Poisson plane tessellation.

Lemma 3. The mean length of the typical edge in the Poisson plane tessellation P(s) is

�̄P (s) = 1

s

ζ2

ζ3
.

Proof. Using Theorem 1 of [6], which says that Rtyp is the directional distribution of the
typical edge in a Poisson plane tessellation, and (6), we obtain

�̄P (s) =
∫ ∞

0
H

P(s)
� (x) dx

=
∫ ∞

0

∫
S2+

H
P(s)
�|ϕ=u(x)Rtyp(du) dx

= ζ2

ζ3

∫
S2+

∫ ∞

0
e−�([u])sx�([u]) dxR̃(du)

= 1

s

ζ2

ζ3
,

which proves our claim.
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We now derive from Lemma 1 a similar representation for the distribution D̃Y (t) of the length-
weighted typical I-segment of Y (t) in terms of D̃P(s), the distribution of the length-weighted
typical edge of a Poisson plane tessellation.

Lemma 4. For any nonnegative measurable function f : L → R, we have∫
f (L)D̃Y (t)(dL) =

∫ t

0

∫
2s

t2 f (L)D̃P(s)(dL) ds.

Proof. Denoting the mean length of the typical I-segment of Y (t) by �̄t and that of the typical
edge of a Poisson plane tessellation P(s) by �̄P (s), we have∫

f (L)D̃Y (t)(dL) = 1

�̄t

∫
f (L)length(L)DY (t)(dL)

= 1

�̄t

∫ t

0

∫
3s2

t3 f (L)length(L)DP(s)(dL) ds

= 1

�̄t

∫ t

0

3s2

t3 �̄P (s)

(∫
f (L)D̃P(s)(dL)

)
ds

by Lemma 1. Setting

�̄t = 3

2t

ζ2

ζ3

as in [21] and using Lemma 3, we conclude the assertion.

Now we consider the survival function of the conditional length distribution of the typical
I-segment of Y (t), given its direction u ∈ S2+, i.e.

Ht
�|ϕ=u(x) =

∫
1{length(L) > x}DY (t)

ϕ(L)=u(dL),

where D
Y (t)
ϕ(L)=u(dL) denotes the respective conditional distribution of the typical I-segment.

The length-weighted case H̃ t
�|ϕ=u is defined analogously. The two distributional identities in

Lemma 1 and Lemma 4 together with Lemma 2 imply the following result.

Lemma 5. The length distribution of the typical I-segment of Y (t), given its direction u ∈ S2+,
has survival function

Ht
�|ϕ=u(x) =

∫ t

0

3s2

t3 e−�([u])sx ds,

and the length distribution of the length-weighted typical I-segment of Y (t), given its direction
u ∈ S2+, has survival function

H̃ t
�|ϕ=u(x) =

∫ t

0

2s

t2 (1 + �([u])sx)e−�([u])sx ds.

4.2. Length-weighted mark distributions

For construction times 0 < r < s, we consider the states Y (r) and Y (s), and introduce three
different random sets of unions of I-segments of Y (s):

• the union of all I-segments of Y (s),

• the union of all I-segments of Y (s) with birth times in (r, s] that appear in the interior of
the cells of Y (r),
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• the union of I-segments of Y (s) with birth times in (r, s] that appear on the facets of the
cells of Y (r).

For these random sets, the corresponding length measures, the length intensities, and the
directional distributions in the typical edge point (the length-weighted case) are respectively
denoted by

• µ(s, ·), LV (s) = E µ(s, [0, 1]3), and Q̃s
ϕ ,

• µ∗(s − r, ·), L∗
V (s − r) = E µ∗(s − r, [0, 1]3), and Q̃∗,s−r

ϕ ,

• µ(r, s, ·), LV (r, s) = E µ(r, s, [0, 1]3), and Q̃r,s
ϕ .

For a Borel set B ⊂ R3, the value µ∗(s − r, B) for example is the total length of edges of Y (s)

with birth times in (r, s], which are located in the interior of the cells of Y (r) and in B. It is
evident that, for 0 < r < s, we have

µ(s, ·) = µ(r, ·) + µ(r, s, ·) + µ∗(s − r, ·) (9)

for the length measures. From the STIT property, the following relations can be deduced.

Lemma 6. We have L∗
V (s − r) = LV (s − r) and LV (s) = ζ2s

2 with ζ2 given by (4). Further-
more, Q̃∗,s−r

ϕ = Q̃s−r
ϕ = Q̃s

ϕ = R̃ with R̃ defined via (5).

Proof. Resorting to (2), we find that

L∗
V (s − r) = LV (s − r) and Q̃∗,s−r

ϕ = Q̃s−r
ϕ .

The relation LV (s) = ζ2s
2 is Equation (8) of [13] and the fact that Q̃s

ϕ does not depend on s

follows from [13, Equation (14)]. The remaining equality Q̃s
ϕ = R̃ is a consequence of [13,

Equation (11)]. This completes the proof.

In a next step, for the STIT tessellation Y (t) with t > 0, we consider the joint length-weighted
distribution Q̃t

ϕ,β,βcarr
of direction ϕ ∈ S2+ and birth times β, βcarr ∈ (0, t].

Lemma 7. For any Borel set U ⊂ S2+ and 0 < r < s < t , we have

Q̃t
ϕ,β,βcarr

(U × (r, s] × (0, r]) = 2(rs − r2)

t2 R̃(U).

The corresponding joint density of (β, βcarr) with respect to the Lebesgue measure on (0, t)2 is

p̃β,βcarr (s, r) = 2

t2 1{0 < r < s < t},

i.e. ϕ and (β, βcarr) are independent and (β, βcarr) is uniformly distributed on the triangle
{(s, r) ∈ R2 : 0 < r < s < t}.

Proof. We use (9) to conclude that

LV (s) = LV (r) + L∗
V (s − r) + LV (r, s) (10)

for the length intensities defined above. In view of Lemma 6 we obtain, from (10),

LV (r, s) = 2ζ2(rs − r2). (11)
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From the definition of the length-weighted directional distribution, it follows that the mean
total length per unit volume of I-segments of Y (t) with direction in a Borel set U ⊂ S2+ is
LV (t)R̃(U). Combining this with (10) and (11) yields

LV (r, s)R̃(U) = 2ζ2(rs − r2)R̃(U).

Thus, for the mark distribution in a typical edge point, we find that

Q̃t
ϕ,β,βcarr

(U × (r, s] × (0, r]) = LV (r, s)R̃(U)

LV (t)
= 2(rs − r2)

t2 R̃(U),

and, hence, ϕ and (β, βcarr) are independent. Since βcarr < β with probability 1, we have, for
the joint distribution function F̃β,βcarr (s, r) of β and βcarr with 0 < r < s < t ,

Q̃t
β,βcarr

((r, s] × (0, r]) = F̃β,βcarr (s, r) − Q̃t
β,βcarr

((0, r] × (0, r]), (12)

where
Q̃t

β,βcarr
((r, s] × (0, r]) = Q̃t

ϕ,β,βcarr
(S2+ × (r, s] × (0, r])

stands for the joint distribution of (β, βcarr) in a typical edge point of Y (t). Partial differentiation
with respect to r and then with respect to s yields p̃β,βcarr (s, r) (note that the Q̃-term on the
right-hand side of (12) does not depend on s and, thus, vanishes after differentiation with respect
to s), completing the proof.

We now turn to the joint length-weighted distribution Q̃t
�,ϕ,β,βcarr

of the length, direction,
and birth times of the I-segment, i.e. of the I-segment through a typical edge point of Y (t). The
key is the conditional length distribution of the I-segment, given its direction u ∈ S2+. For any
point z in the edge skeleton of Y (t), denote by �(z), ϕ(z), β(z), and βcarr(z) the almost surely
uniquely determined mark of the I-segment through z. According to the definition of the mark
distribution (see [15, p. 84]) we have, for any Borel set U ⊂ S2+, using the Campbell theorem
and (9),

Q̃t
�,ϕ,β,βcarr

((x, ∞) × U × (r, s] × (0, r])
= 1

LV (t)
E

∫
1{�(z) > x, ϕ(z) ∈ U}µ(r, s, dz)

= 1

LV (t)
E

[∫
1{�(z) > x, ϕ(z) ∈ U}µ(s, dz) −

∫
1{�(z) > x, ϕ(z) ∈ U}µ(r, dz)

−
∫

1{�(z) > x, ϕ(z) ∈ U}µ∗(s − r, dz)

]

= 1

LV (t)
[LV (s)Q̃s

�,ϕ((x, ∞) × U) − LV (r)Q̃r
�,ϕ((x, ∞) × U)

− LV (s − r)Q̃
∗,s−r
�,ϕ ((x, ∞) × U)], (13)

where Q̃
∗,s−r
�,ϕ is the (�, ϕ)-marginal distribution of Q̃

∗,s−r
�,ϕ,β,βcarr

. Write Q̃s
�|ϕ=u for the length-

weighted conditional distribution of the length under the condition ϕ = u. Then

Q̃s
�,ϕ((x, ∞) × U) =

∫
1{l > x, u ∈ U}Q̃s

�,ϕ(d(l, u))

=
∫∫

1{l > x}Q̃s
�|ϕ=u(dl)1{u ∈ U}R̃(du), (14)
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where we have used Lemma 6. In view of (13) and (14) we now determine certain conditional
length distributions.

Lemma 8. For 0 < r < s, 0 < x, and a Borel set U ⊂ S2+, we have

LV (s)Q̃s
�,ϕ((x, ∞) × U) − LV (r)Q̃r

�,ϕ((x, ∞) × U)

= ζ2

∫
U

2

�([u])2x2 ([3 + �([u])rx(3 + �([u])rx)]e−�([u])rx

− [3 + �([u])sx(3 + �([u])sx)]e−�([u])sx)R̃(du).

Proof. We start by recalling from Lemma 6 that LV (s) = ζ2s
2 and LV (r) = ζ2r

2. Using
(14) and the integral representation for the conditional survival function provided in Lemma 5,
we obtain

LV (s)Q̃s
�,ϕ((x, ∞) × U) − LV (r)Q̃r

�,ϕ((x, ∞) × U)

= ζ2s
2
∫

U

H̃ s
�|ϕ=u(x)R̃(du) − ζ2r

2
∫

U

H̃ r
�|ϕ=u(x)R̃(du)

= 2ζ2

∫
U

∫ s

r

v(1 + �([u])vx)e−�([u])vx dvR̃(du);

integration yields the claim.

It remains to determine the last item Q̃
∗,s−r
�,ϕ ((x, ∞) × U) in (13), which in view of Lemma 6

may be written in the form

Q̃
∗,s−r
�,ϕ ((x, ∞) × U) =

∫∫
1{l > x}Q̃∗,s−r

�|ϕ=u(dl)1{u ∈ U}R̃(du). (15)

Lemma 9. For 0 < r < s, 0 < x, and a Borel set U ⊂ S2+, we have

LV (s − r)Q̃
∗,s−r
�,ϕ ((x, ∞) × U)

= ζ2

∫
U

2

�([u])2x2 (3(e−�([u])rx − e−�([u])sx)

+ �([u])2sx2(re−�([u])rx − se−�([u])sx))R̃(du).

Proof. To derive the result, we make use of a method developed for the planar case in [8] and
consider the conditional survival function G̃

∗,s−r
�|ϕ=u of the length of the remaining I-segment, that

is, the part of the I-segment that lies above a random point of the edge skeleton, which is selected
according to µ∗(s − r, ·). (In this proof, the letter G will always refer to a remaining I-segment
while H refers to the whole I-segment.) Regarding (2), the distribution of the remaining length
is the distribution of the minimum of the remaining length in Y (s − r) and the distance (in
direction u) to the ‘frame’ tessellation Y (r), where the I-segment is cut. Owing to (P6), the
latter has conditional survival function e−�([u])rx . Making use of the independence of Y (r)

and Y (s − r), we obtain

G̃
∗,s−r
�|ϕ=u(x) = G̃s−r

�|ϕ=u(x)e−�([u])rx, (16)

where G̃s−r
�|ϕ=u is the corresponding conditional survival function for the remaining I-segment of

the tessellation Y (s − r). It follows from the Palm theory (compare with Equation (14) of [8])
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that the survival function of the length of the remaining I-segment as considered above and the
conditional survival function Hs−r

�|ϕ=u of the length of the (whole) typical I-segment are related
by

G̃s−r
�|ϕ=u(x) = 1

�̄s−r
ϕ=u

∫ ∞

x

Hs−r
�|ϕ=u(a) da, (17)

where �̄s−r
ϕ=u is the conditional mean length of the typical I-segment in Y (s−r). Using Lemma 5,

we obtain �̄s−r
ϕ=u = 3/2�([u])(s − r). Combining (16) with (17) and again using Lemma 5, we

find that

G̃
∗,s−r
�|ϕ=u(x) = 2�([u])

(s − r)2 e−�([u])rx
∫ ∞

x

∫ s−r

0
v2e−�([u])va dv da. (18)

Once more we use the Palm theory developed in [8] (see, in particular, Equation (16) therein)
to conclude that the survival function H

∗,s−r
�|ϕ=u of the conditional length distribution of the

corresponding typical I-segment equals

H
∗,s−r
�|ϕ=u(x) =

(
lim
x↓0

∂G̃
∗,s−r
�|ϕ=u(x)

∂x

)−1 ∂G̃
∗,s−r
�|ϕ=u(x)

∂x
,

and, thus, we find that

H
∗,s−r
�|ϕ=u(x) = 6

�([u])3(s − r)2(2s + r)x3

× ((2 + �([u])rx)e−�([u])rx

− (2 + (2s − r)�([u])x + �([u])2s(s − r)x2)e−�([u])sx)

from (18) by integration. Using this formula, we calculate the corresponding mean I-segment
length �̄

∗,s−r
ϕ=u as

�̄∗,s−r
ϕ=u =

∫ ∞

0
H

∗,s−r
�|ϕ=u(x) dx = 3

�([u])(2s + r)
,

and, again by length weighting, we obtain the corresponding survival function

H̃
∗,s−r
�|ϕ=u(x) = Q̃

∗,s−r
�|ϕ=u((x, ∞)) =

∫ ∞

x

z

�̄
∗,s−r
ϕ=u

∂H
∗,s−r
�|ϕ=u(z)

∂z
dz,

which is given by

H̃
∗,s−r
�|ϕ=u(x) = 2

�([u])2(s − r)2x2

× (3(e−�([u])rx − e−�([u])sx) + �([u])2sx2(re−�([u])rx − se−�([u])sx)).

Taking into account the factor LV (s − r) = ζ2(s − r)2, we complete the proof by using (15).

Combining (13) with Lemma 8, Lemma 9, and the fact that LV (t) = ζ2t
2 from Lemma 6,

we arrive at

Q̃t
�,ϕ,β,βcarr

((x, ∞) × U × (r, s] × (0, r])
=

∫
U

2r

�([u])xt2 ((2 + �([u])rx)e−�([u])rx − (2 + �([u])sx)e−�([u])sx)R̃(du).
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A relation similar to (12) for Q̃t
�,ϕ,β,βcarr

and the respective distribution function yields, after
differentiation with respect to r , s, and x, the following assertion.

Lemma 10. The conditional joint density of length � and the birth time vector (β, βcarr) of the
length-weighted typical I-segment in Y (t), given its direction ϕ = u ∈ S2+, equals

p̃t
�,β,βcarr |ϕ=u(x, s, r) = 2�([u])2s2

t2 xe−�([u])sx1{x > 0}1{0 < r < s < t}.

We now turn to the proofs of our main results. In fact, Lemma 10 is key for the proof of
Theorem 1, which forms the basis for deriving Theorems 2 and 3.

4.3. Proofs of the main results

Proof of Theorem 1. (i) Apply Lemma 1 with f (L) = 1{ϕ(L) ∈ U} for a measurable
U ⊂ S2+, where ϕ(L) is the direction of L. Since, for homogeneous Poisson plane tessellations
with intensity measure s�, s > 0, the directional distribution of the typical edge is invariant
with respect to the scaling factor s, the distribution of the direction of the typical I-segment of
Y (t) is the same as the directional distribution of the typical edge in a Poisson plane tessellation
with intensity measure t�. Thus, we can apply Theorem 1 of [6], which immediately yields
assertion (i).

(ii) The key is the relation

p�,β,βcarr |ϕ=u(x, s, r) = �̄t
ϕ=u

x
p̃�,β,βcarr |ϕ=u(x, s, r),

where �̄t
ϕ=u is the conditional mean length of the typical I-segment in Y (t), given ϕ = u. With

Lemma 5 we calculate �̄t
ϕ=u = 3/2t�([u]), and Lemma 10 implies that

p�,β,βcarr |ϕ=u(x, s, r) = 3

2�([u])tx
2�([u])2s2

t2 xe−�([u])x1{x > 0}

= 3s

t3 �([u])se−�([u])sx1{x > 0}. (19)

Integration with respect to x yields

pβ,βcarr |ϕ=u(s, r) = 3s

t3

∫ ∞

0
�([u])se−�([u])sx dx = 3s

t3 , 0 < r < s < t. (20)

Since it does not depend on u, we have pβ,βcarr = pβ,βcarr |ϕ=u and this completes the proof
of (ii).

(iii) Similarly to the proof of part (ii), we use the following relation for the conditional
densities:

p�|ϕ=u, β=s, βcarr=r (x) = �̄t
ϕ=u, β=s, βcarr=r

x
p̃�|ϕ=u, β=s, βcarr=r (x).

Here �̄t
ϕ=u, β=s, βcarr=r is the conditional mean length of the typical I-segment in Y (t), given ϕ,

β, and βcarr. Combining (19) and (20) we obtain

p�|ϕ=u, β=s, βcarr=r (x) = p�,β,βcarr |ϕ=u(x, s, r)

pβ,βcarr |ϕ=u(s, r)
= �([u])se−�([u])sx1{x > 0},
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which implies that

�̄t
ϕ=u, β=s, βcarr=r = 1

�([u])s .

This completes the proof.

Proofs of Corollaries 1–3. The formulae in Corollary 1 follow by straightforward integra-
tion from Theorem 1(ii).

To prove Corollary 2, we first note that in the proof of Theorem 1(ii) we showed that

p�,β,βcarr |ϕ=u(x, s, r) = 3s

t3 �([u])se−�([u])sx,

which proves the formula. Integration with respect to x yields the conditional joint density of
the birth time vector, namely,

pβ,βcarr |ϕ=u(s, r) = 3s

t3 .

This shows the independence of ϕ and the birth times (β, βcarr), completing the proof of
Corollary 2.

The statement of Corollary 3 follows by integration of (19).

Proof of Theorem 2. The first step is to verify the following expression for pn:

pn =
∫ t

0

∫ s

0

∫
S2+

∫ ∞

0

3�([u])s2

t3 e−s�([u])x (�([u])x(3t − 2s − r))n

n!
× e−�([u])x(3t−2s−r) dxRtyp(du) dr ds. (21)

We start by noting that an I-segment arises as the intersection of two I-polygons, which are
born at different time instants, the maximum of which is the birth time of the I-segment and
has a density pβ(s) given by (7). However, in contrast to the planar case, I-segments in a
spatial STIT tessellation can have vertices in their relative interior at their time of birth. These
vertices are generated by extant I-segments ‘on the backside’ of the carrying polygon; see the
left diagram of Figure 2. Given its length � = x ∈ (0, ∞), its direction ϕ = u ∈ S2+, its
time of birth β = s ∈ (0, t), and the birth time βcarr = r ∈ (0, s) of the carrying I-polygon,
the number Nbirth of vertices in the relative interior of the typical I-segment at birth time s

has, by (2) and (P6), a Poisson distribution with parameter �([u])x(s − r). Moreover, in the
time interval (s, t], on both sides of the I-polygon with birth time s and ‘behind’ the carrying
I-polygon a Poisson-distributed number of vertices appear in the relative interior of the segment,
whose parameter is, again by (2) and (P6), �([u])x(t − s); see the right diagram of Figure 2.
Thus, the sum of these independent numbers is again Poisson distributed, but with parameter
3�([u])x(t − s). Adding the independent number Nbirth leads to a Poisson distribution with
parameter �([u])x(3t − 2s − r).

Recall that in Corollary 2 we calculated the conditional joint density of the length and birth
time vector, and, thus, mixing the Poisson-distributed number of points with respect to this
density and the directional distribution Rtyp, we arrive at (21).

We now show that (21) is equivalent to (8). First, using∫ ∞

0
(�([u])x)ne−�([u])sxe−�([u])x(3t−2s−r) dx = n!

�([u])(3t − s − r)n+1 ,
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we see that (21) can be transformed into

pn =
∫ t

0

∫ s

0

∫
S2+

3s2

t3

(3t − 2s − r)n

(3t − s − r)n+1 Rtyp(du) dr ds =
∫ t

0

∫ s

0

3s2

t3

(3t − 2s − r)n

(3t − s − r)n+1 dr ds.

Applying the substitution b = 1 − r/s to the inner integral yields

pn =
∫ t

0

∫ 1

0

3s3

t3

(3t − s(3 − b))n

(3t − s(2 − b))n+1 db ds,

and applying the similar substitution a = 1 − s/t , leads to (8). This completes the proof.

Proof of Corollary 4. The numbers shown in Corollary 4 can immediately be calculated
from the explicit formula in Theorem 2. To see this, write

∞∑
n=0

npn = 3
∫ 1

0

∫ 1

0
(1 − a)3

∞∑
n=0

n
(3 − (1 − a)(3 − b))n

(3 − (1 − a)(2 − b))n+1 db da

= 3
∫ 1

0

∫ 1

0
(1 − a)(a(3 − b) + b) db da

= 2,

and, similarly,

∞∑
n=0

n2pn = 3
∫ 1

0

∫ 1

0
(1 − a)3

∞∑
n=0

n2 (3 − (1 − a)(3 − b))n

(3 − (1 − a)(2 − b))n+1 db da

= 3
∫ 1

0

∫ 1

0
a2(2b2 − 11b + 15) − a(4b2 − 10b − 3) + b(1 + 2b) da db

= 71
3 ,

which yields the variance value 71
3 − 22 = 59

3 .

Proof of Theorem 3. Let the birth time β = s < t of the typical I-segment and the birth time
βcarr = r < s of the carrying I-polygon be given. At time s, the typical I-segment can have
only X-type vertices in its relative interior (this is the number Nbirth in the proof of Theorem 2)
and further vertices of this type can only be created from ‘behind’ the segment until time t . At
time s the I-segment is an edge (1-facet) of two cells. Vertices of type T in the interior of the
I-segment can appear in the time interval (s, t) only by further division of these two adjacent
cells. The proof now readily follows the lines of the proof of Theorem 2 and for this reason the
details are omitted.

Proof of Corollary 5. Corollary 5 follows from Theorem 3 by direct calculation. For
example, the mean number of T-type vertices in the relative interior of the typical I-segment
can be calculated as follows:

∞∑
m=0

m

∞∑
n=0

pm,n = 3
∞∑

m=0

m

∫ 1

0

∫ 1

0

(1 − a)3

1 + a

(
2a

1 + a

)m

db da

= 6
∫ 1

0
a(1 − a) da

∫ 1

0
db

= 1.
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For the second moment, we find that

∞∑
m=0

m2
∞∑

n=0

pm,n = 3
∞∑

m=0

m2
∫ 1

0

∫ 1

0

(1 − a)3

1 + a

(
2a

1 + a

)m

db da

= 6
∫ 1

0
a(1 + 3a) da

∫ 1

0
db

= 9,

so that the variance equals 9 − 12 = 8. Similar calculations yield mean 1 and in particular
variance 11

3 for the number of X-vertices in the relative interior of the typical I-segment.
Analogously, the joint mean number of T- and X-vertices is

∞∑
m=0

m

∞∑
n=0

npm,n = 12
∫ 1

0

∫ 1

0
a(a + b − ab) db da = 5.

Consequently, the covariance equals 4, which completes the proof.
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