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IMAGE AREA AND THE WEIGHTED SUBSPACES OF 
HARDY SPACES 

BY 

E. G. KWON 

ABSTRACT. Let Hp^ be the subspace of Hardy space Hp consisting of 
those/ G Hp(Bn) satisfying supz </>(|z|)|/(z)| < oo, where <f> is a positive 
decreasing differentiable function on [0, 1) with <f>(l—) = 0. Concerning 
image area growth, criteria for / to be of Hp^ are considered extending 
known results for Hp. 

1. Introduction. U will denote the open unit disc of the complex plane C and 
B = Bn will denote the unit open ball of C". For / holomorphic in B and for Q a 
subdomain of B, we let 

n 

7=1 

and let 

A ( « , / ) = [ \Vf(z)\2 dm(z), 
Jo. 

where Dj denotes d/dzj, e-} denotes the unit vector in Cn whose y-th component is 
1 and m — ni2n denotes ordinary Lebesgue measure on Cn which is topologically 
identified with the Euclidean space R2n. We simply denote A(Q, / ) by A{pJ ) in case 
a = PB = {z e cn : \z\ < p}, o < p ̂  i. 

Denote by U the group of all unitary operators on Cn. For a subdomain Q. of B, 
we say, by definition, that a function / defined in B satisfies "Lusin property with 
respect to Q" if 

f A(£/Q, f)dU <oo, 
Ju 

where U£l = {Uz : z G £1} and dU denote the Haar measure on 11. See [6] and [8] 
for Lusin property. 

It is known that if / G HP(U) [2] for some p : 0 < p S 2 then A(p, / ) = 
o{\ — p)~2lp, p —> 1, and the result breaks down when p > 2 [3], [9]. Also known 
is that iff E HP(U) then/ satisfies the Lusin property with respect to triangular 
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subdomains of U, and conversely [6]. Main concern of this note is to extend these 
one variable results under the following setting. 

Let (j)(r) be a positive decreasing differentiable function defined on [0, 1) with 
(j)(0) — l, (f){\— ) — 0 and extended to B via <j>(z) = </>(|zl)- Let S denote the boundary 
of B and let (XQ)# denote the radialization of the characteristic function \n [3. p. 49], 
i.e. 

(Xnf(z)= [ Xci(Uz)dU,zGB. 
Ju 

Let D((j)) be the family of all subdomains Q of B such that 
(1.1) the boundary 3Q of £1 satisfies that d£l H S = e\ = (1 ,0 , . . . , 0), and 
(1.2) there exists r0 such that for r, r0 < r < 1, 

l 

( X Q ) V I ) ^ / <Kp)dp, 

where and hereafter a(z) » b(z) means that there are positive constants A and B 
independent of z of the given domain such that Aa(z) < b(z) < Ba(z). It is not 
difficult to see that if/ satisfies the Lusin property with respect to some Q G D(^) 
then it also satisfies the property with respect to the other Q, G £>(</>) [See (3.5)1. We 
denote/ G LP((j)) if/ satisfies the Lusin property with respect to some Q G D{(f>). 

For 0 < p < oo, HP^(B) and AP^(B) are defined to be the spaces of those 
holomorphic functions / in B respectively for which 

(1-3) max{||/ | |p, HI/HI,} < oo 

and 

(1-4) ll/IU<oo, 

where 

= sup { [ \f(rQ\» da®) , 
0S/<1 (Js ) 

sup<Xz)|/(z)|, 
zeB 

and 

• / d<Kr) [ \f(rQ\" da(Q 
Jo Js 

UP 

JO JS 

Here a denote the rotation invariant probability measure on S. 
Our Hp^ version on the growth of area is as follows. 

THEOREM. Let 0 < p ^ 2. / / 

(1-5) / G / / * * , 
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then 

(1.6) f <t>{p)2-pA{p,f)dp<^ 
Jo 

and 

(1.7) feLP($2-?). 

Conversely, let 2 ^ p < oo and let f be holomorphic in B with f(z) = 0(4>(z)~l). 
Then (1.6) or (1.7) implies (1.5). 

This theorem, of course, has a corollary concerning little (big) "o" argument. Be­
cause the proofs are identical, we state it only for Hp(Bn) case. 

COROLLARY. Let 0 <p S 2 ^ q < oo, and let f be holomorphic in Bn. 

(1.8) / / / G Hp{Bn) thenA(p,f) = o(\ - py^^/P. 

(1.9) / / A(p,f) = 0(1 -pT1 for some 7,0 < 7 < l+n(2-q)/q thenf G //*(£„). 

2. Weighted subspaces of Hardy spaces. Note that Hp^ and Ap^ are complete 
topological vector spaces equipped with the translation invariant metric appeared in 
(1.3) and (1.4). 

LEMMA 1. Let 0 < p < q < oo. Then there is the continuous inclusion 

(2.1) H^(Bn)CAq^-P(Bn). 

The case where n = 1 and </>(r) = (1 — r)7, 0 < 7 = 1/p was proved by P. Ahern 
and appeared in [4. Theorem B]. The inclusion (2.1) cannot be improved to a fully 
Hardy-Little wood type [5. Theorem 2]. The proof of Lemma 1 presented below is 
rather elementary but different from that of one variable case of Ahern. We present it 
for the sake of completeness. 

PROOF. Let/ € Hp^ and a — q—p. We may assume/ is nonconstant and/(0) = 0. 
Denote/C(A) =/(C*), A e ( / and/c(6>) the radial limit of/c at ew. Note that/c £ HP(U) 
a.e. Ç If we set 

(2.2) (/c)(p, A) - |/c|
/7-2|(^/^A)(/c)|

2(A), À € tf, and 

Ap(p,fO= [ (/<)(/>, A)dw2(A), 
JpU 
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then the Green's formula followed by a familiar limiting process gives that 

(2.3) [ \fc(6)\pd0 = p2 [ p~lAp(p, fc)dp, a.e. <• 
Jo Jo 

Since/G//*'*, 

(/<)(/>, A) 2; [<t>(\rl\\\f\\Ura (/c)to, A),CG S,À G £/, 

iot follows from (2.3) that 

(2.4) / | / c ( 0 ) | " ^ p 2 | | | / | | | ^ / p-^ipfA^ftdp 
Jo Jo 

= VI11/11 i r / d<Kr) f p-xAq(Pl ftdp 
Jo Jo 

a.e. £ G S. Now, another application of the Green's formula as in (2.3) gives 

(2.5) q2 f p-lAq(p, fc)dp = [ * \fc(rel6)\«d6. 
Jo Jo 

Inserting (2.5) into the right hand side of (2.4) and then integrating (2.4) with respect 
to da therefore gives 

P2 rl 

a\\f\\P> p 

" ' - q2 [ d<t>a(r) [ \f(rO\qda(Q. 
Jo Js 

This completes the proof. • 

3. Proofs. Our proof depends essentially on the following elementary lemma. 

LEMMA 2. For holomorphic f in B, the following are equivalent. 

(3.1) feA2j{B), 

(3.2) [ <Kp)A(p,f)dp <oo, 
Jo 

(3.3) / G LP(<t>). 

PROOF OF LEMMA 2. If / is a monomial za, a è 0, then it follows from [7. pp. 
16-17] that 

(3.4) / \f(rQ\2da(Q = l/(0)|2 + 2^Z11 f pi-2M(p, / )dp. 
Js n Jo 
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By orthogonality, (3.4) holds for polynomials, and hence for holomorphic / . Now, 
integrating (3.4) with respect to d<j>, 

ll/ik* = i/(0)i2 - ^ ^ f dm f P
l-2nA(p, / )dP. 

* Jo Jo 

While, the last integral is 

- - ^ f Pl-2nmA{pj)dp, 
*n Jo 

so that the equivalence of (3.1) and (3.2) follows. 
Next, let ft E D(</>). By (1.2), 

/ X{\z\<P}(z)<i)(p)dp = / <t>(p)dp 
JO J\z\ 

^ / Xn(^z)d£/,for \z\ close to 1, 
Ju 

where X{.}(z) °f course denote characteristic functions. Hence it follows that 

(3.5) / <l>(p)A(p1f)dp= [ <f>(p)dp [ \Vf(z)\2dm(z) 

Jo Jo JpB 
= [ |V/(z)|2 [ / <j>{p)df\ dm(z) 

JB U\Z\ J 

« f dU [ \Vf(z)\2dm(z). 
Ju JuQ. 

The equivalence of (3.2) and (3.3) follows from (3.5). • 

PROOF OF THEOREM. The first part follows directly from Lemmas 1 and 2. For the 
converse, suppose 2 ^ p < oo and/ is holomorphic in B with || |/ | | |^ < oo. It suffices 
to prove that (1.6) implies (1.5). We may assume/(0) = 0. Recall (£)(/>, A) in (2.2). 
Since 

(fcKp,\) ^ wAr'w/iiur2!/^)!2,^ S,A € u, 
it follows by (2.5) that 

°*\f^td0 = p2 I p~ldp 
JpU 

(3.6) [*\fc(rew)\y6 = p2 [ p~xdp [ (fc)(p,\)dm2(\) 
Jo Jo Jpu 

^ 2 H I / l l l f 2 f P~^(pf-pdp f \{d/d\)fi(\)\
2dm2(X). 

Jo Jpu 
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Now, it is not difficult to see that 

so that slice 

fdaiO [ \(d/d\)fc(X)\2dm2(X) 
JS JpU 

integration makes (3.6) into 

Il/H^ C(p,«)|||/|||$-2/V2' 
Jo 

_ ( n -
7T" 

V(P)2" 

•D! A(p,f) 
- l n2n~2 

pA{p,f)dp, 

which completes the proof. D 

PROOF OF COROLLARY. Let c/>(r) = (1 — r) r, r > 0. Since A(p1 f) is nondecreasing 
function of p, 

(3.7) (1 - p)1+TA(p, / ) è (1 +r) /" (1 - r)rA(r, /)rfr. 

If r = w/p then Hp^{Bn) = //"(#„) [7. Theorem 7.2.5], so that a l l / G T / ^ ) satisfy, 
by Theorem and (3.7), that A(p, / ) = o(l - P)-I-*V-P)/Pm This proves (4.1). 

For the converse, suppose A(p, f) — 0{\ — p)~J for some 7, 0 < 7 < 1. Then 
obviously, 

(3.8) / (1 - pT8A(p, f)dp < oo for S < 1 - 7. 

In particular, by (3.4),/ G H2(Bn), so that 

(3.9) /(z) = 0(1 - |z|)-"/2. 

Hence it follows from (3.8), (3.9), and Theorem tha t / is a member of Hqi(Bn), 
q\ — 2 + 2è/n, and this in turn gives/(z) = 0(1 — \z\)~nlqx. Continuing this way using 
(3.8), we conclude by induction that / G Hq{Bn) for all q < 2n/(n - 1 + 7 ) . Now, 
(1.9) follows. D 

4. Remarks. 
(1) We present the following example as for the sharpness of Theorem 1; If n = 2, 

0(r) = 1 - r, and (3/2) <p < 2, then there exists/ G Hp^ such that 

(4.1) [ (j)(p)aA(p, f)dp = oo for a > 2 - p. 
Jo 

(So that / G LP((/)a) for a > 2 - /?). 
Fix a p, 3/2 < p < 2. Let 

4 = [jfc^flog ^)1/(P-D]1/(2-P)? jfc = 2 , 3 , . . . . 
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Then J2^k < oo, and ^(dk/k)s < oo if and only if s ^ 2 — p. Let g(z) be the 
Blaschke product formed by {1 —du}. Then it follows from [1. Theorem 6.2] that 

(4.2) g' £ HP~X(U) and g' e Hq{U) for <?> /? - 1. 

Since g'{z) = 0(1 — \z\)~\ g' is a member of Hp~~l^(U), and so by Lemma 1, 

(4.3) g' G LP(U\ 

Now, let/(z,w) = g'(z), (z,w) G £2. Then, by [7. p. 15] and (4.3), 

11/11?- f \g\z)\pdvx(z)<™. 
Ju 

Hence/ G HP>*(B2). On the other hand, since 

WfWlr = oc [ (l-r)a-ldr [ \g\rz)\2dvx(z) 
Jo Ju 

= <x[\[ (l-r)a-lr-2dr] \g'\zf dv{(z) 

« f (\-\z\r\g'{z)\2dvx{z) 
Ju 

for a > 0, by (4.2) and [1. Theorem 6.2 a) «-• c)], the last integral is finite if and only 
if a ^ 2 — p. Therefore we conclude (4.1) by Lemma 2. 

(2)/(z) = (1 — z\)~T for appropriate positive constants r show that the exponents 
of Corollary are best possible. 

(3) Iff G {LHf{Bn) i.e. \f\p has pluriharmonic majorants [5. p. 145] then/(z) = 
0(1 - Izlr1/^, so that by Theorem A(p, / ) = o{\ - p)~2/p. 
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