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EXPONENTIAL SUMS ON REDUCED RESIDUE SYSTEMS

W. K. A. LOH

ABSTRACT. The aim of this article is to obtain an upper bound for the exponential
sums

P
e(f (x)Ûq), where the summation runs from x = 1 to x = q with (xÒ q) = 1 and

e(ã) denotes exp(2ôiã).
We shall show that the upper bound depends only on the values of q and s, where s

is the number of terms in the polynomial f (x).

1. Introduction. Let f (x) denote the polynomial

f (x) = a1xk1 + a2xk2 + Ð Ð Ð + asx
ks(1)

with s ½ 2Ò ks Ù ks�1 Ù Ð Ð Ð Ù k1 ½ 1Ò ki 2 N and ai 2 Z n f0g.

Suppose that p is any prime and ã is an integer with

pã j (a1Ò    Ò as)Ò pã+1 6j (a1Ò    Ò as)Ò

then define ã to be the p-content of the function f (X).

In this paper, we wish to estimate the exponential sum

S̃(qÒ f ) =
qX

x=1
(qÒx)=1

e
�
f (x)Ûq

�
Ò(2)

where q ½ 1 and e(ã) denotes exp(2ôiã).
Since such sums are multiplicative, it suffices to estimate

S̃(plÒ f ) =
plX

x=1
(pÒx)=1

e
�
f (x)Ûpl

�
(3)

By using an idea of Loxton and Vaughan [10], we are able to obtain the the following
results:

THEOREM 1. Let f be as in (1) and suppose p Ù ks and p does not divide the content
of f . Then

jS̃(plÒ f )j � (ks � 1)p(1� 1
s )l
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THEOREM 2. Let f be as in (1) and suppose p � ks and p does not divide the content
of f . Then

jS̃(plÒ f )j � m(p�ú0 f 0)p
ú0+1

s p(1� 1
s )lÒ

where pú0 is the largest power of p dividing the content of f and m(f ) denote the total
number of roots of the congruence

f (X) � 0 (mod p)(4)

THEOREM 3. Let f be as in (1) and suppose q is coprime to the content of f . Then

jS̃(qÒ f )j � q(1� 1
s )+èÒ

for large q.

COROLLARY 1. Let
f (x) = a1xk1 + a2xk2 + Ð Ð Ð + asx

ks Ò

and suppose that q Ù 0 is an integer and (qÒ a1Ò a2Ò    Ò as) = q1. Then, for large q,

jS̃(qÒ f )j �

8<
: q1Ûs

1 q(1� 1
s )+è if 1 � q1 Ú q,

û(q) if q1 = q.

2. p-adic Sequences. First of all we establish a reduction procedure along the lines
developed in Loxton and Vaughan (1985). We define sequences of polynomials ffig and
associated sequences of integers fúig, f°ig, fnig, fxig as follows. Let

f0 = f 

Given fi choose úi so that the polynomial p�úi f 0i has integer coefficients but p does not
divide its content. If the congruence,

p�úi f 0i (x) � 0 (mod p)Ò(5)

has no root °i, then the sequences terminate with fi, úi, °i�1, ni�1, xi�1. If it has such a
root °i choose ni so that

p�ni
�
fi(°i + px) � fi(°i)

�
Ò

has integer coefficients but p does not divide its content. Clearly,

ni ½ 2 + úi(6)

Let
fi+1(x) = p�ni

�
fi(°i + px) � fi(°i)

�
(7)

At each stage of the construction there may be several choices for °i modulo p and
so it may be possible to construct many such sequences. Let

xi = °0 + p°1 + Ð Ð Ð + pi�1°i�1Ò(8)
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and let A denote the set of all sequences X = fxig which can be constructed in this
way and write fi(xiÒX ), úi(X ), ni(X ), mi(X ) for the associated quantities arising in the
construction.

We further define

ñ0(X ) = 0Ò ñi(X ) =
i�1X
l=0

nl(X )Ò(9)

Now the polynomials fi(xÒX ) are given by

fi(xÒX ) = p�ñi
�
f (xi + pix) � f (xi)

�
(10)

For each t 2 N we define subsets Bk, Ck, Ek of A as follows. Let Bk denote the subset
of A formed from those sequences X with at least k elements and satisfying

ñk�1 + úk�1 + 2 � t and ñk ½ t

Let Ck denote the subset of A formed from those sequences X with at least k elements
and satisfying

ñk�1 + úk�1 + 2 � t and ñk Ú t Ú ñk + úk + 2

Finally let Ek denote the subset of A formed from those sequences X with at least k
elements and satisfying

ñk + úk + 2 � t

Since ñi + úi increases with i, the sets Bk and Ck are disjoint and Ek is the union of the
Bj and Cj with j Ù k. Let Dk = Bk [ Ck. Note that ni(X ) � k, since if fi(x) =

Pk
m=0 amxm,

then fi(xi + px) � fi(xi) =
Pk

m=0 bmpmxm with bm = am, bm�1 = am�1 + am( m
m�1 )xi, and so

on. Hence the sets Bk, Ck, Dk , Ek are empty for all sufficiently large k. Let

Nk(X ) =

8<
:max

�
1Ò degp(p�úk f 0k )Ò degp(fk) � 1

�
when úk�1 = 0,

max
�
1Ò degp(p�úk f 0k )

�
otherwise.

(11)

3. Preliminary Lemmata.

LEMMA 1. Suppose p does not divide the content of f and let Nk(X ) be as in (13).
Then

1X
k=1

X
X2Dk

Nk(X ) � degp(p�ú0 f 0)

PROOF. See Loxton and Vaughan (1985), Lemma 2.
The next lemma plays an important role in the proof of the Theorems.

LEMMA 2. Suppose that f 2 Z[X] and p does not divide the content of f , p ½ 3 and
t ½ ú0 + 2 or p = 2 and t ½ ú0 + 3. Then

S̃(f ; pt) =
1X

k=1

X
X2Bk

e
�
f (xk)p�t

�
pt�k +

1X
k=1

X
X2Ck

e
�
f (xk)p�t

�
pñk�kSkÒ

where

Sk =
pt�ñkX
x=1

e
�
fk(x)pñk�t

�


In particular, if A is empty, then S̃(f ; pt) = 0.
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PROOF. This is identical to the proof of Lemma 3 of Loxton and Vaughan (1985).
By making use of the following lemma, we can establish a upper bound for S̃(plÒ f )

which depends on the number of terms in the polynomial f (x).

LEMMA 3. Let
g(x) = a1xk1 + Ð Ð Ð + anxkn Ò

with 1 � k1 Ú Ð Ð Ð Ú kn and (a1Ò a2Ò    Ò anÒ p) = 1, and suppose z is a root of

g(x) � 0 (mod p)Ò

of multiplicity m and with p 6j z. Then m � n � 1.

PROOF. We argue by induction. The lemma is trivial when n = 1. Suppose n Ù 1.
If p j (a2Ò    Ò an), then p 6j a1, and the lemma follows from the case n = 1. Hence
(a2Ò    Ò anÒ p) = 1. We have

g(z + y) = b0 + b1y + Ð Ð Ð + bkykÒ

where k = kn and bi � 0 (mod p) for 0 � i Ú m and bm 6� 0 (mod p). Then

(z + y)k1 is a factor of b0 + b1y + Ð Ð Ð + bkykÒ

and

b0 + b1y + Ð Ð Ð + bkyk = (z + y)k1 (c0 + c1y + Ð Ð Ð + cLyL)Ò

=
X

i
yi

iX
l=0

cl

0
@i � l

k1

1
Azk1+l�i

Since the coefficient of yi is cizk1 + ci�1

�
k1
1

�
zk1�1 + Ð Ð Ð , it is easily seen by induction on

i that c0 � c1 � Ð Ð Ð � cm�1 � 0 (mod p) and cmzk1 � bm (mod p) so p 6j cm. Thus
g1(x) = a1 + a2xk2�k1 + Ð Ð Ð + anxkn�k1 has a root of multiplicity m at z. Now

g01(z + y) = c1 + 2c2y + Ð Ð Ð + LcLyL�1Ò

and so g01 has a root of multiplicity m � 1 at z. But

g01(x) = (k2 � k1)a2xk�2�k1�1 + Ð Ð Ð + (kn � k1)anxkn�k1�1Ò

and so by the inductive hypothesis m � 1 � n � 2.

LEMMA 4. Suppose that ñk, mk and úk are defined as in x2. Then

mi+1 � miÒ(12)

and

ñk � k +
k�1X
i=1

mi + ú0 � úk(13)
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PROOF. For a given X , let mi = mi(°i) denote the multiplicity of the root °i of
p�úi f 0i (x) � 0 (mod p). In other words, on writing

p�úi f 0i (°i + y) = b0 + b1y + Ð Ð Ð + bnynÒ(14)

with bl 2 Z, we have bl � 0 (mod p) when 0 � l � mi and bmi 6� 0 (mod p). By (7),

p�úi+1f 0i+1(x) = p1�ni�úi+1+úi pú�if 0i (°i + px)Ò(15)

and this polynomial has integer coefficients. By (14),

p�úi+1f 0i+1(x) = p1�ni�úi+1+úi(b0 + b1px + Ð Ð Ð + bnpnxn)Ò(16)

and for l Ù mi the coefficient of xl is divisible by a higher power of p than the coefficient
of xmi . Thus

degp

�
p�úi+1f 0i+1(x)

�
� miÒ

and so for each i,

mi+1 � mi(17)

Since the polynomial in (16) has integer coefficients and p 6j bmi , we have

1 � ni � úi+1 + úi + mi ½ 0

Hence

ni � 1 + mi � úi+1 + úiÒ

and so

ñk =
k�1X
i=0

ni � k +
k�1X
i=0

mi + ú0 � úk

This completes the proof of the lemma.

LEMMA 5. Suppose (q1Ò q2) = 1. Then

X
xmodq1q2

e
�
f (x)Ûq1q2

�
=

X
y1 modq1

e
�
u1f (y1)Ûq1

� X
y2 modq2

e
�
u2f (y2)Ûq2

�


LEMMA 6. Suppose K Ù 0, then for large q,

K°(q) � qèÒ

where °(q) is the number of distinct prime factor of q.
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PROOF. Let p1Ò p2Ò    Ò pw be the first °(q) primes.

£(q) =
°(q)X
r=1

log pr �
X
pjq

log p � log q

By the Prime Number Theorem,

£(x) ¾ xÒ Π(x) ¾
x

log x


Therefore,
p° � log q + o(log q)

Since

°(q) = Π(pw) ¾
p°

log p°

�
log q

log log q
+ o

� log q
log log q

�

K°(q) � K
log q

log log q +o( log q
log log q )

� exp
 

log q
� log K

log log q
+ o(

log q
log log q

�!

Ú exp(è log q)

for large q.

4. Proof of Theorems.

PROOF OF THEOREM 1. When t = 1, we use Weil’s estimate,

jS̃(plÒ f )j �
�
degp(f 0) � 1

�
p

1
2 �

�
degp(f 0) � 1

�
pt(1� 1

s )Ò

since s ½ 2. Suppose that t ½ 2. Since p Ù k1, we have

úi = 0 for each iÒ(18)

because differentiating fi one introduces a factor Ú p in the coefficients. If X 2 B, then
by Lemma 3 we have m0 � s � 1. Thus, by (17), mi � s � 1 for each i. Now, by (13),
ñk � sk and so k ½ tÛs. Thus the first double sum in Lemma 2 is bounded by

1X
k=1

X
X2Bk

p(1� 1
s )t(19)

If X 2 Ck, then ñk�1 + 2 � t = ñk + 1. Hence, by the Weil estimate,

jSkj �
�
degp(fk) � 1

�
p

1
2 Ò
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for which see Chapter II of Schmidt (1976). Moreover t � 1 � sk. Thus the second
double sum in Lemma 2 is bounded by

1X
k=1

X
X2Ck

pt� 1
2�k

�
degp(fk) � 1

�


This is

�
1X

k=1

X
X2Ck

p(1� 1
s )t
�
degp(fk) � 1

�
(20)

The theorem follows from (19), (20) and Lemma 1.

PROOF OF THEOREM 2. First of all, when t = 1. Trivially,

jS̃(plÒ f )j = p
1
s p(1� 1

s ) = p
1
s pt(1� 1

s )

Secondly, suppose 2 � t � ú0 + 1. By using the trivial estimate, we have

jS̃(plÒ f )j � pt � p
é+1

s pt(1� 1
s )

Thirdly, suppose t ½ ú0 + 2, we use Lemma 3. By (13),

ñk =
kX

i=0
ni � k +

k�1X
i=0

mi + ú0 � úkÒ

with all mi � s � 1. Therefore,

ñk � sk + ú0 � úk

If X 2 Bk, then
ñk�1 + úk�1 + 2 � t � ñk

Hence,
t � sk + ú0 � úk � sk + ú0(21)

The first double sum in Lemma 2 is bounded by
1X

k=1

X
X2Bk

p
ú0+1

s p(1� 1
s )t

If X 2 Ck, then
ñk Ú t � ñk + úk + 1(22)

Again by (13),
t � sk + ú0 � úk + úk + 1 � sk + ú0 + 1

Let t = ñk + í, hence 1 � í � úk + 1. Therefore,

pñk�kjSkj � pñk�kpí

= pt�k

� pt�((t�ú0�1)Ûs)

= p
ú0+1

s pt(1� 1
s )
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The second double sum in Lemma 2 is bounded by

1X
k=1

X
X2Ck

p
ú0+1

s pt(1� 1
s )

Hence,

jS̃(plÒ f )j � p
ú0+1

s t(1� 1
s )
²1X

k=1

X
X2Bk

1 +
1X

k=1

X
X2Ck

1
¦
Ò

� m(p�ú0 f 0)p
ú0+1

s pt(1� 1
s )

This completes the proof of the theorem.

PROOF OF THEOREM 3. Let p = p1p2 Ð Ð Ð pR. We divide the proof into two cases.
(i) If pi Ù k for all i, then by Theorem 1

jS̃(pti
i Ò f )j � (ks � 1)p

(1� 1
s )ti

i 

By Lemma 5, we have
jS̃(qÒ f )j � q(1� 1

s )+èÒ

for large q.
(ii) If pr � k1 and pr+1 Ù k1, then

S̃(pti
i Ò f ) �

8><
>:

m(p�ú0 f 0)k
é+1

s
s p

(1� 1
s )ti

i Ò if i � r,

(ks � 1)p
(1� 1

s )ti
i Ò if i Ù r.

Note that m(p�ú0 f 0)r � ks � 1. By Lemma 5, we have

jS̃(qÒ f )j �
�
(ks � 1)k

é+1
s

s

�°(q)
q(1� 1

s )

By Lemma 6, �
(ks � 1)k

é+1
s

s

�°(q)
Ú qèÒ

if q is large. Therefore,
jS̃(qÒ f )j � q(1� 1

s )+è

This completes the proof of the theorem.
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