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EXPONENTIAL SUMS ON REDUCED RESIDUE SYSTEMS

W. K. A.LOH

ABSTRACT. Theaim of this articleis to obtain an upper bound for the exponential
sums 3" e(f (x) /), where the summation runs from x = 1 to x = q with (x,q) = 1 and
€(«) denotes exp(2ric).

We shall show that the upper bound depends only on the values of g and s, where s
is the number of termsin the polynomial f(x).

1. Introduction. Letf(x) denote the polynomial
() f(x) = EillXkl + a2Xk2 +.o+ astS

withs>2 ks >ks1>--- >k > 1Lk eNanda €7\ {0}.
Supposethat p isany prime and « is an integer with

p” | (@, ..., a). p*t/f(a.....a).

then define o to be the p-content of the function f (X).
In this paper, we wish to estimate the exponential sum

~ q
2 Sa.f)= > e(f(¥/a).

x=1
(g,x)=1

whereq > 1 and &(«) denotes exp(2ri ).
Since such sums are multiplicative, it sufficesto estimate

- P
® Sp.H= 2 e(f/p).
(pE1
By using anideaof Loxton and Vaughan [10], we are able to obtain the the following
results:
THEOREM 1. Letf beasin (1) and supposep > ks and p does not divide the content
of f. Then
18P )] < (6 — p).
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THEOREM 2. Letf beasin (1) and supposep < ks and p does not divide the content
of f. Then

~ 7o+l 1
&P, )| < m(pof)p s pl-2),

where p™ is the largest power of p dividing the content of f and m(f) denote the total
number of roots of the congruence

4 f(X) =0 (mod p).
THEOREM 3. Letf beasin (1) and supposeq is coprimeto the content of . Then

8@ f)| < gt
for largeq.

COROLLARY 1. Let
f(x) = apx +apx@ + - - - + aX,

and supposethat g > O isaninteger and (g, a1, &, - . - as) = qp. Then, for largeq,

T @ ifgr=q.

2. p-adic Sequences. First of all we establish areduction procedure along the lines
developed in Loxton and Vaughan (1985). We define sequencesof polynomials{f; } and
associated sequencesof integers {7 }, {wi}, {ni}, {x } asfollows. Let

fo =f.

Given f; choose 7; so that the polynomial p~"f/ has integer coefficients but p does not
divide its content. If the congruence,

©) p /() =0 (mod p).

has no root wj, then the sequences terminate with f;, 7y, wi_1, Ni—1, Xi—1. If it hassuch a
root w; choose nj so that

P (fiwi +px) — fiwi)).
has integer coefficients but p does not divide its content. Clearly,

(6) n > 2+7.
Let
Y fira () = P~ (fiwi + PX) — fi(wi)).-

At each stage of the construction there may be several choices for w; modulo p and
so it may be possible to construct many such sequences. Let

(8) % =wo+pwr+ - +p twig,
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and let A denote the set of al sequences X = {x;} which can be constructed in this
way and write fi(x;, X), 71(X), ni(X), m(X) for the associated quantities arising in the

construction.
We further define -
©) po(X) =0, wi(X) = g n(X),
Now the polynomialsf;(x, X) are given by
(10) fi(x. X) = p~ (f(x +p'x) — F(x)).

For each t € N we define subsets By, Cy, E, of A asfollows. Let B, denote the subset
of A formed from those sequences X with at least k elements and satisfying

pr-1+Te1+2<t and >t

Let Cy denote the subset of A formed from those sequences X with at least k elements
and satisfying

pr-1tTe1+2 <t and oy <t <+t 2
Finaly let E, denote the subset of A formed from those sequences X with at least k
elements and satisfying

kT +2 <t

Since p; + 7 increases with i, the sets By and Cy are disjoint and E is the union of the
Bj and C; withj > k. Let Dy = By U Cy. Note that ni(X) < k, sinceif f;(x) = =K_o amx™,
then fi(x + px) — fi(x) = 2K bmp™™ with by, = am, bm-1 = am-1 + am(,,"; )%, and so
on. Hencethe sets By, Cy, Dy, Ex are empty for all sufficiently large k. Let
max (1, deg,(p~"f}). deg,(fi) — 1) whenn_; =0,

) lW“):{mw@ﬂwdfwo) otherwise.

3. Preliminary Lemmata.

LEMMA 1. Suppose p does not divide the content of f and let Ni(X) be asin (13).
Then

o0

> 2 Nu(X) < degy(p™f").

k=1 X EDk
PROOF. See Loxton and Vaughan (1985), Lemma 2.
The next lemma plays an important role in the proof of the Theorems.

LEMMA 2. Supposethat f € Z[X] and p does not divide the content of f, p > 3 and
t>m+2orp=2andt > 7y +3. Then

&)=Y X e(fp)p ™+ 3 3 e(f(xop)pse
k=1 X B k=1 X Cy

where
ik

5= e(ip" ).
In particular, if A is empty, then §f; p') = 0.
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PrROOF. Thisisidentical to the proof of Lemma 3 of Loxton and Vaughan (1985).
By making use of the following lemma, we can establish a upper bound for §p', f)
which depends on the number of terms in the polynomial f(x).

LEMMA 3. Let
g(x¥) = apx + - + anx,

withl <k; <--- <kj,and(a,a,..., an, p) = 1, and suppose zis a root of
g(x) =0 (mod p).
of multiplicity mand withp / z Thenm <n-— 1.

PrOOF. We argue by induction. The lemmais trivial when n = 1. Supposen > 1.
If p| (az....an), thenp f a;, and the lemma follows from the case n = 1. Hence
(@, ...,an,p) = 1. Wehave

g(z+y) =bo+ by +- - + by~
wherek =k, andb; = 0 (mod p) for 0 <i < mand by, £ 0 (mod p). Then

(z+y) isafactor of by +byy + - - - + by,

and
bo +byy+ -+ + by = (z+y)4(Co+Cry+ - +ayh).
i i — .
=YY ¢ (i ')kal‘
o\ k
Since the coefficient of y is ¢z + ci,l("ll)zkrl +..., itiseasily seen by induction on
ithatco=¢ =+ = Cn1 = 0 (mod p) and cnZ¢ = by, (Mod p) SO p / cm. Thus

g1(x) = ag + apxe ™ + ... + g ¥k hasaroot of multiplicity mat z. Now
gy(z+y) =cp+2cy+- -+ Loy,
and so g; hasaroot of multiplicity m— 1 at z. But
05 (%) = (k2 — kp)agX 271 4o (kg — ky)agxo et

and so by the inductive hypothesism—1 <n— 2.

LEMMA 4. Supposethat uk, me and 7, are defined asin §2. Then

12 Mg < m.
and
k—1
(13) uk§k+zm+7'o—7'k.

i=1
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ProOF. For agiven X, let m = m(w;) denote the multiplicity of the root w; of
p~f/(x) = 0 (mod p). In other words, on writing

(14) P (wi +y) = o+ bry+ - - -+ bpy",

with b, € Z, wehaveb, =0 (mod p) when 0 <| <m andby, # 0 (mod p). By (7),
(15 P (0 = Pt T (wi + pX),

and this polynomial hasinteger coefficients. By (14),

(16) P (¢) = P T (b + bypx + - -+ byp™X"Y),

andfor | > m the coefficient of X' isdivisible by ahigher power of p than the coefficient
of x™. Thus

degy (p ™1 (9) < m,
and so for eachi,
17) Mg <M

Since the polynomial in (16) has integer coefficientsand p / by, , we have
1—-n—74+7+m >0.

Hence
n<1+m—7wtm,
and so

k=1 k=1
pe= oM <k+ > m+10— k.
i=0 i=0
This completes the proof of the lemma.

LEMMA 5. Suppose(qz, g2) = 1. Then

>oe(f/ma) = 3 e(uf(yn)/a) Y e(uwf(y2)/a).

xmoda G yimoda, y2modap
LEMMA 6. SupposeK > 0, then for largeq,
K“’(q) S qf_

where w(q) is the number of distinct prime factor of g.
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PROOF. Let p1, P2, . ... pw bethefirst w(g) primes.

w(q)
9(Q) = Zl logpr < ; logp < logq.
r= pIq

By the Prime Number Theorem,

900 ~ % M(X) ~ ——

logx’
Therefore,
p. <logq+o(logq).
Since
_ P
w(@) = M(pw) ~ logp.
logq +0( logq )
~ loglogq loglogq
KU(Q) < K|o|golgogq+o(|o|;ﬁ:gq)
logK logqg
<
- eXp(IO(‘:]q<Ioglogq * Ioglogq))
< exp(elogq)
for large g.

4. Proof of Theorems.

PROOF OF THEOREM 1. Whent = 1, we use Weil’s estimate,
IS0 1)] < (degy(f') — 1)p? < (degy(f) — 1)p 2.
sinces > 2. Supposethatt > 2. Sincep > ki, we have
(18) 71=0 foreachi,

because differentiating f; one introduces a factor < p in the coefficients. If X € B, then
by Lemma 3 we have my < s— 1. Thus, by (17), my < s— 1for eachi. Now, by (13),
i < skandsok > t/s. Thusthe first double sumin Lemma 2 is bounded by

(19) S 3 pi

k=1X GBk

If X € Cy, then 1 +2 < t =y + 1. Hence, by the Weil estimate,

IS < (degy(fi) — 1)p?,
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for which see Chapter Il of Schmidt (1976). Moreover t — 1 < sk. Thus the second
double sum in Lemma 2 is bounded by

o)

> 3 i (degy(fi) — 1).
k:lXECk
Thisis o
(20) <> 3 p% P (degy(fi) — 1).
k=lX€Ck

The theorem follows from (19), (20) and Lemma 1.
PROOF OF THEOREM 2. First of al, whent = 1. Trivially,

§p'. )| = pipt=?) = pipd-3)
Secondly, suppose2 <t < 7p + 1. By using the trivial estimate, we have
&1 <p <pFpltd,
Thirdly, supposet > 7o + 2, we use Lemma 3. By (13),

K k-1
=y i <k+ Y m+7— 7,
i=0 i=0

with all m < s— 1. Therefore,

pk < Sk+ 719 — Ty

If X € Bk, then

pk—1 + -1 +2 <t < e
Hence,
(21 t<sk+7g— 1 < Sk+ 7.

Thefirst double sumin Lemma 2 is bounded by

[ee]

> Y pEpti
k:lXEBk
If X € Cy, then
(22) p <t <+t 1
Again by (13),

t<sk+mp—m+k+t1l<sk+7p+1.
Lett=px+0, hencel <0 <7+ 1 Therefore,

PrHS) < prtp’
= ptk
< ptf((tf'fo*l)/s)

ol 5
- At1-1)

p=p
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The second double sum in Lemma 2 is bounded by

) o+l 1
D ps pld=9),

k=1X Eck

Hence,
~ otlea 1y (S 0
ECRE DO SERD SR
k:j.XGBk k=1XECk
< m(p o )p’ pl-d,
This completes the proof of the theorem.

PROOF OF THEOREM 3. Let p = pip2 - - - pr. We divide the proof into two cases.
(i) If pp > kfor al i, then by Theorem 1

|§(pit'-f)| < (ks — 1)pi(l_§)ti-
By Lemmas, we have
1a. )] < gD,

for large g.
(i) If pr < kg and pr+1 > kg, then
- m(p ket p I, ifi <,
S(pi'-,f) S (p )(1S,l§:.| ) L. B
(ks — Dp;~ =", ifi >r.
Note that m(p~f’)r < ks — 1. By Lemma5, we have

b 1y w(@) (11
18a.1)] < ((ks — Dks* ) Vg2,
By Lemma 6,
Mao@ _ .
((ks — Dks* )™ <,

if gislarge. Therefore,
(. f) < gt

This completes the proof of the theorem.
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