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Abstract

Data assimilation is a core component of numerical weather prediction systems. The large quantity of data processed
during assimilation requires the computation to be distributed across increasingly many compute nodes; yet, existing
approaches suffer from synchronization overhead in this setting. In this article, we exploit the formulation of data
assimilation as a Bayesian inference problem and apply a message-passing algorithm to solve the spatial inference
problem. Since message passing is inherently based on local computations, this approach lends itself to parallel and
distributed computation. In combination with a GPU-accelerated implementation, we can scale the algorithm to very
large grid sizes while retaining good accuracy and compute and memory requirements.

Impact Statement

This article addresses scalability issues with one of the core algorithms in numerical weather prediction systems.
Solving these issues contributes to producing higher resolution and more frequently updated weather forecasts.
Improved forecasts are an important tool formitigating and adapting to climate change, with applications, such as
predicting the output of wind and solar power, and warning about extreme weather events.

1. Introduction

Data assimilation (DA) is a core component of numerical weather prediction (NWP) systems. The goal of
DA is to provide the best estimate of the current state of the dynamical system (the atmosphere in NWP).
This is achieved by combining the forecasted state of the system with measurements, for example,
satellites (tracks of which can be seen in Figure 1), sensors on the ground and weather balloons. A
corrected forecast is then produced using the resultant estimate as the initial condition. Due to the number
of observations and dimensionality of the state, DA consumes a large amount of computation time and
memory.

In recent years, the scalability of DA approaches has been pushed to the limit, with operational weather
centers launching programs to solve the problem (Bauer et al. 2020). Several challenges are identified.
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First, the amount of data that must be processed has grown dramatically due to the increasing availability
of satellite observations and the higher resolution of forecasting models. Second, while the total
computational power available continues to increase, this is no longer due to individual cores getting
faster but instead in the form of expanded parallelism. Thus, DA algorithms must be able to take full
advantage of parallel and distributed hardware.

4D-Var and three-dimensional (3D)-Var, and their derivatives, are the DA algorithms used by many
systems for weather forecasting and other applications, such as ocean simulation (Bonavita and Lean
2021; Saulter et al. 2020). A standard approach to distribute these algorithms across many compute nodes
is spatial parallelism using domain decomposition (D’Amore et al. 2014; Arcucci et al. 2015). The
geographic area covered by the model is divided into overlapping subdomains; each subdomain is
assigned to a single compute node that solves the assimilation problem in that subdomain. A key
limitation of this approach is that the overlapping regions between subdomains must be carefully
synchronized between nodes to ensure that the states computed on each node are physically consistent
with each other. These synchronization steps introduce a bottleneck due to communication overheads, and
this can be exacerbated by any computing load imbalance between the subdomains. Although there have
been attempts to relax the level of synchronization required (Cipollone et al. 2020), ideally synchron-
ization requirements would be removed altogether.

In this article, we propose an alternative approach to DA that is designed with distributed computation
in mind. We exploit the formulation of DA as a Bayesian inference problem (Evensen et al. 2022), which
allows us to apply tools from the large-scale Bayesian inference literature. In particular, we develop a
method based on considering DA as inference in a GaussianMarkov random field (GMRF) and develop a
message-passing algorithm to perform inference on this field. This approach naturally supports domain
decomposition across multiple nodes without requiring overlapping regions and, therefore, no synchron-
ization is required. Only a small amount of data must be communicated between subdomains, and this can
be performed asynchronously with the computation on each node. In this initial work, we consider only
two-dimensional spatial inference problems, rather than the 3D or 3D-with-time problems commonly
seen in applications. However, the framework we develop here is designed to be extended to the full
3D-with-time case. The contributions of this work are as follows:

• We propose an approach for expressing the DA problem as a message-passing algorithm.
• We develop a GPU-accelerated implementation for maximum a posteriori (MAP) inference, which
naturally supports distributed computation for very large domains.

Figure 1. Surface temperature computed by message passing from satellite observations. The lines show
the locations of the observations.
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• We demonstrate the efficacy of our algorithm on surface temperature data and demonstrate that our
approach is a viable DA technique.

• We also include a fast, GPU-accelerated implementation of 3D-Var as a very strong baseline.

We release our message passing and 3D-Var implementations, and code to reproduce our experiments, at
github.com/oscarkey/message-passing-for-da.

2. Background

In this section, we recall the Bayesian formulation of DA and discuss several inference algorithms. In
particular, we introduce the message-passing algorithm that we apply in this work.

2.1. Data assimilation as Bayesian inference

DA comprises a set of techniques in NWP that aim to combine earth observations with assumptions about
the state of the weather to produce an updated estimate of the weather. In this work, we simplify the full DA
problem to spatial inference of a single variable. Let f ¼ f 1,…, f nð Þ∈ℝn be a weather variable, such as
surface temperature, that is discretized on a large 2D spatial grid consisting of points x1,…,xn.We also have
m observations, y∈ℝm, whichmay either be derived from remote sensing products or direct observations of
atmospheric variables. From a probabilistic perspective, DA can then be understood as a Bayesian inference
problem: our assumptions about the weather can be encoded as a prior p fð Þ, the observations as the
likelihood p yjfð Þ, and our updated estimate as the posterior computed via Bayes’ theorem as
p f jyð Þ∝ p yjfð Þp fð Þ. n is typically in the billions and m in the tens of millions (MetOffice 2024), making
direct inference using Bayes’ theorem impossible. Thus, the choice of prior and likelihood is heavily
influenced by the need to make inference efficient, and we discuss several options in the next section.

In operational DA systems, the problem is more complex, consisting of a 3D spatiotemporal grid and
multiple weather variables at each grid point. However, inference in the simplified setting above is still
challenging for large n and m. In Section 5, we discuss extensions to the full DA problem.

2.2. Existing methods for large-scale inference

2.2.1. Optimal interpolation
Optimal interpolation (Kalnay 2003, Section 5.4.1), is virtually synonymous with Gaussian process
(GP) regression from the machine learning literature (Rasmussen and Williams 2006). This is the basis of
all the DA methods discussed in this work, with subsequent methods being approximations to it. GP
regression assumes a Gaussian prior p fð Þ¼N f b,ð Þ and likelihood p yjfð Þ¼N Hf ,Rð Þ. Here, f b ∈ℝn is
the prior mean, and ∈ℝn× n the prior covariance defined by a function k (known as a reproducing kernel),
where Σi,j ¼ k xi,xj

� �
. H ∈ℝm× n and R∈ℝm×m are the linear observation operator and diagonal error

covariance, which are either determined using prior knowledge or learned from data. Under this prior and
likelihood, the posterior p f jyð Þ is also a Gaussian, having a closed form expression. Unfortunately,
computing the desired posterior costs O l3 + nl

� �
, where l is the number of grid points at which there are

observations. A modern solution to large-scale inference with GPs is to use inducing-point methods, which
approximate the observationswith amuch smaller number of pseudo data points (Titsias 2009).However, the
estimates obtained may be too crude for practical use at the scale that is typically considered in numerical
weather forecasting.

2.2.2. Gaussian Markov random fields
Another solution to reducing the cubic cost is to use a prior p fð Þ defined by aGMRF (Rue andHeld 2005).
This approach makes use of the spatial interpretation of f to make a Markovian assumption that each f i
only directly depends on other f j in its neighborhood. Additionally, the prior p fð Þ and inference process
are expressed in terms of the inverse of the covariance matrix, known as the precision. Under the
Markovian assumption, the precision matrix is sparse, allowing inference in GMRFs to scale O n3=2

� �
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in 2D andO n2ð Þ in 3D (the complexity does not depend on the number of observations). In addition, the
INLA (Integrated Nested Laplace Approximation) framework (Rue et al. 2009) makes it possible to
handle nonlinear observation models and infer the model hyperparameters from data, although this
requires further approximations. A downside of the approach is that it is inherently sequential. Thus, it
cannot make effective use of modern parallel computing hardware, such as GPUs, or be distributed across
several compute nodes.

2.2.3. 3D-Var
Another alternative that reduces the cost of GP regression is to only compute the MAP estimate, rather
than the full posterior, that is find f MAP ¼ argmax f p f jyð Þ. This is the approach taken by 3D-Var, which is
known as a “variational” method. The maximization can also be expressed as minimizing the cost
function J f½ � ¼� logp f jyð Þ¼� logp yjfð Þ� logp fð Þ +C, where C is a constant that does not depend on
f . Substituting in the GP prior and Gaussian likelihood, the cost function becomes

J f½ � ¼ 1
2
y�H fð Þð ÞΤR�1 y�H fð Þð Þ+ 1

2
f � f bð ÞΤ�1 f � f bð Þ: (1)

In practice, this is minimized using an optimizer, for example, L-BFGS (Liu and Nocedal 1989)
(as seen in D’Amore et al. (2015)) or a Krylov solver (as seen in Bauer et al. (2020)). 3D-Var is more
flexible than optimal interpolation, as it can handle nonlinear observation modelsH . However, it has the
downside of not being able to provide uncertainty estimates, as it is a MAP estimator. In weather
forecasting applications, 3D-Var is usually extended to 4D-Var, which includes a time component.

2.3. Factor graphs and inference with message passing

In this work, we perform inference using message passing (Kschischang et al. 2001), which computes the
marginals of any joint probability model that can be expressed as a factor graph. We introduce message
passing for a general continuous distribution g fð Þ¼ g f 1,…, f nð Þ, and specialize it to our posterior in
Section 3.2. g fð Þ can be expressed as a factor graph if it has a known decomposition

g fð Þ∝
Yn
i¼1

ϕi f ið Þ
Yn
j¼1

ϕij f i, f j
� �

, (2)

where ϕi and ϕi,j, referred to as the nodewise and pairwise factors, respectively, are functions from a
variable, or a pair of variables, toℝ. These do not have to be probability distributions. The factorization in
(2) induces a sparse graph on the variables f if gni¼1, where two nodes f i and f j are connected if and only if
ϕi,j is nonconstant. Given such a graph, the algorithm associates a pair of messages on each edge at each
iteration t: a messagemt

ij ¼ atij,b
t
ij

� �
∈ℝ×ℝ from f i to f j, and a similar messagemt

ji from f j to f i. We use
the message-passing variant introduced by Ruozzi and Tatikonda (2013) (in turn a generalization of
Wiegerinck and Heskes (2002)). This is summarized in Algorithm 1 and illustrated for our application in
Figure 2, and Appendix A describes it in more detail.

Figure 2. Illustration of node A sending a message to node B. Black arrows indicate incoming messages
that are combined to compute the outgoing message in blue.
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Algorithm 1 Re-weighted message passing.

1: procedure M P ( f if gni¼1, ϕif gni¼1, ϕij
n on

i,j¼1
) ⊳ input is factor graph

2: mt¼0
ij ¼ 0,10�8

� �
for all i,j

3: for t∈ 1,…Tf g do
4: for f i in the graph do
5: for f j ∈ f j � f i

� �
do

6: mt
ij ¼COMPUTE OUTGOING MESSAGE c,ϕi, ϕki,m

t�1
ki

� �
: f k � f if g∖fj

� �� �
7: end for.
8: end for.
9: end for.

10: return g f ið Þ¼COMPUTE MARGINAL, mT
ki : f k � f i

� �
for alli.

11: end procedure

We use the notation f k � f if g to denote the set of all variables f k that are connected with f i,
COMPUTE OUTGOING MESSAGEðÞ and COMPUTE MARGINALðÞ are defined formally in Appendix B, T is the
total number of iterations, and c∈ℝ is a hyperparameter to re-weight contributions of the messages,
necessary to aid convergence. Note that each iteration of the inner for loops is independent, and each node
only writes and reads messages with the nodes directly connected to it. The algorithm is therefore very
amenable to distributed computation.

While this instance of message passing can theoretically compute both the mean and variance of the
marginals, in practice, the variance estimates are biased and do not provide useful estimates of the
uncertainty (Weiss and Freeman 1999). Thus, we only use message passing to compute the posterior
mean, the MAP estimate of the posterior. This makes message passing an alternative to 3D/4D-Var.

3. DAwith message passing

Our method begins by placing a Matérn GP prior over the domain, which is the de facto standard model
choice in spatial geostatistics (Guttorp and Gneiting 2006), and assuming a Gaussian likelihood. We
discretize the prior to a GMRF and derive the corresponding factor graph. Then, we apply a message-
passing algorithm to the graph and the observations to compute the marginal posterior means.

3.1. Derivation of the factor graph

The Matérn GP prior can be characterized as the solution to a stochastic partial differential equation
(SPDE) of the form

κ2�Δ
� �α=2

f ¼W, (3)

where f is the process, Δ is the Laplacian operator, κ and α are the positive hyperparameters, andW is the
spatial white-noise process with spectral density σ2q, for hyperparameters σ,q∈ℝ. Following Lindgren
et al. (2011), we first derive a GMRF representation of the Matérn GP by discretizing this SPDE using
finite differences (finite elements would also be possible). On a uniform 2D grid with step sizesΔx andΔy
in the x and y directions, respectively, this yields a random matrix–vector system

Lf ¼w, where w¼
ffiffiffiffiffiffiffiffiffiffiffi
σ2q
ΔxΔy

s
z, z∈ℝn �N 0,Inð Þ: (4)

Here, L∈ℝn× n is a matrix representing the operator L≔ κ2�Δð Þα=2 under discretization, which
is guaranteed to be sparse if the exponent α=2 is an integer (Lindgren et al. 2011), and f ,w are
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finite-dimensional vector representations of the random fields f andW (see Appendix C for details on the
discretization). Now, (4) implies that f is a Gaussian random variable of the form

f �N 0, γLΤL
� ��1

� �
, where γ ≔

ΔxΔy
σ2q

, (5)

which is a GMRF, since its precision matrix P ≔ γLΤL is sparse (here, L is sparse and banded). We can
build a graph from this GMRF by the following simple rule: Take all of f 1,…, f n as nodes in the graph and
connect two nodes f i and f j by an edge if P½ �ij ≠ 0. Then, we have

p fð Þ∝ exp �1
2
f ΤPf

	 

¼ exp �

Xn
i¼1

1
2
P½ �iif 2i �

X
j�i

P½ �ij f i f j
 !

, (6)

where Σj�i �ð Þ denotes the sum over all indices j that are adjacent to i in the graph. Setting

ϕi f ið Þ≔ exp �1
2
P½ �iif 2i

	 

and ϕij f i, f j

� �
≔ exp � P½ �ijf if j

� �
, (7)

we have that the prior p fð Þ∝QN
i¼1ϕi f ið ÞQj�iϕij f i, f j

� �
, thus we have a factor graph representation.

3.2. Computing the posterior mean with message passing

Having calculated the factor graph corresponding to the prior, we can now apply message passing
(Algorithm 1) to combine this with the observations and compute the posterior marginals. We make
several modifications to tailor the algorithm to DA, which we summaries below and detail in Appendix B.

3.2.1. Including observations
To add information about the observations y into our factor graph, wemodify the nodewise factor in (7) by
ϕi f ið Þ↦p yijf ið Þϕi f ið Þ. In our experiments, we assume that the weather variable is noisely observed at a
subset of grid cells, where the noise σ2y ∈ℝ is constant for all observations. Thus, we set p yijf ið Þ¼
N yijf i,σ2y
� �

at grid points xi where there is an observation, and p yijf ið Þ¼N yij0,zð Þ, for very large z,

where there is not.

3.2.2. Update damping
To improve the stability of the algorithm,we follow Pretti (2005) and dampen the updates of themessages,
replacing line 6 of Algorithm 1 with

mt + 1
ij ¼ 1�ηð Þmt + ηCOMPUTE OUTGOING MESSAGE �ð Þ,

where η∈ 0,1ð Þ is a hyperparameter, which we refer to as the learning rate.

3.2.3. Early stopping
To avoid specifying the total number of iterations as a hyperparameter, we choose a generic large T and
stop when the change in message between iterations is smaller than a threshold.

3.2.4. Multigrid
We apply a multigrid technique to speed up the convergence of the algorithm. These have been used
extensively when solving partial differential equations numerically, and provide an efficient way of
accelerating the convergence of iterative approaches if multiscale phenomena are being modeled, with
grids at different resolutions capturing different spatial scales. In the case of message passing, we can
intuitively view information propagating from the observation locations across the graph. If the density of
the observations is low, this can take many iterations. To solve this, the multigrid approach starts with a
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low-resolution grid, and iterates message passing until convergence—this is fast on a low-resolution grid.
It then doubles the size of the grid, initializing the messages to the converged messages from the previous
grid. This process is repeated until we reach the target grid size. Observations are taken on the target
resolution and introduced at eachmultigrid level when the observation location exactly coincides with the
grid level coordinates. Figure 3 illustrates the procedure.

3.2.1. Computational efficiency
The Markovian assumption made by the GMRF prior from which we derive the factor graph results in a
sparse graph in which each node is only connected to nodes in its local area. The connectivity is also very
regular, with each node connected to the same set of relative nodes except at the edges of the graph. These
two properties make the graph high amenable to GPU computation, using an approach similar to (Zhou
et al. 2022) but optimized for our particular graph structure.

The main advantage of the message-passing approach is that it can naturally be distributed by dividing
the nodes of the graph into subdomains and splitting them between compute nodes. The only commu-
nication required between compute nodes is to update the messages on the borders of the subdomains,
which is a small amount of data. Additionally, there is no requirement that the border messages are
updated every iteration, so they could be updated asynchronously to the computation within each
subdomain.

4. Experiments

We evaluate the performance of message passing on both simulated data and a more realistic surface
temperature DA problem. We compare against two baselines: the GMRF method, using the R-INLA
implementation (Lindgren and Rue 2015), and 3D-Var. Note that R-INLA computes the exact marginals
of the posterior, while 3D-Var andmessage passing are approximate methods that compute only themean.
Thus, R-INLA provides a reference for the best-case error that the approximate methods could achieve.

GPU-accelerated 3D-Var implementation. The 3D-Var cost function is obtained by substituting in the
same GMRF prior and Gaussian likelihood as used for message passing, and then minimized using the
L-BFGS optimizer. We use our own GPU-accelerated implementation using the experimental support for
sparse linear algebra in JAX (Bradbury et al. 2018) and JAXopt (Blondel et al. 2021). We expect this
implementation to be significantly faster than the CPU implementations currently in deployment.We also
implement message passing in JAX with GPU acceleration, while R-INLA runs on the CPU only.

Hyperparameters. We perform a grid search, reported in Appendix D.1, to select the message
weighting and learning rate hyperparameters of message passing, and the early stopping thresholds for
both message passing and 3D-Var.We note that selecting the message weighting and learning rate is quite
easy: the algorithm converges for a wide range of choices and, if it does converge, the exact choice has
only a small effect on the speed of convergence. Appendix E gives the remaining details of all
experiments.

Figure 3. Illustration of the multigrid implementation, showing the marginal means computed at two
levels (128× 128 to 256× 256) of resolution on the simulated data.
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4.1. Effect of domain size and observation density

Our first set of experiments are performed on simulated data.We sample a square ground truth field from a
GMRF prior, randomly select a given fraction of the grid points as observations, and perform inference
against these observations and the same prior. Table 1 shows the RMSE between the posterior mean and
the ground truth and the time taken, as we vary the grid size and the observation density. In the message-
passing runs, the multigrid approach is used, with a base grid size of 32× 32 in all cases.

The results show that 3D-Var and message passing achieve similar RMSEs in all cases, although both
have more error than R-INLAwhen only 1% of the grid is observed. When 5% and 10% of the grid is
observed, 3D-Var and message passing take similar amounts of time; however, message passing is
significantly slower for a larger grid when only 1% is observed. While the iteration time of message
passing is independent of the number of observations, as the observation density falls it takes an
increasing number of iterations for the information to propagate from the observed points across the
grid, thus early stopping happens later. R-INLA is much slower than the other methods, because it is a
sequential method that cannot take advantage of the GPU.

4.2. Large-scale example

For a more realistic use case, we consider the global surface temperature field. We take the ground truth
data from a run of theMetOffice’sUnifiedModel (Walters et al. 2019) at N1280 resolution, where the data
are valid for 06UTC 2020-01-01. To avoid issues with boundary conditions, we consider a clipped
domain with dimensions 2500× 1500¼ 3:75M grid points. We use spherical polar coordinates. The
observation locations are generated from the geographical positions (latitude, longitude) of weather-
focused satellites calculated over a 3-hour window, which corresponds to ≈ 8% of the grid being
observed. As the prior mean, we select a climatology mean of the global surface temperature calculated
from ERA5 (Hersbach et al. 2020).

Figure 1 highlights the resultant mean estimates from the message-passing approach, while error plots
are shown in Figure 7 in Appendix D. 3D-Var achieved an area-weighted RMSE of 2:33 K and took 16
seconds, while message passing achieved an area-weighted RMSE of 1:23 K and took 115 seconds. For
comparison, the area-weighted RMSE calculated for the prior mean (ERA5) against the high-resolution

Table 1. Comparison on simulated data. We give the mean over three ground truths; we do not observe
significant variance (therefore omitted). Bold indicates where either 3D-Var or message passing
performed better. R-INLA is included to show the minimal achievable error given the prior, as it

computes an exact posterior

RMSE duration (seconds)

grid size observations R-INLA 3D-Var MP R-INLA 3D-Var MP

256 × 256 1% 0.192 0.202 0.213 19.4 3.6 7.6
5% 0.093 0.093 0.093 21.6 4.1 1.7
10% 0.069 0.069 0.068 22.5 4.5 0.9

512 × 512 1% 0.101 0.128 0.127 107.9 3.9 15.9
5% 0.047 0.048 0.048 104.8 5.3 4.2
10% 0.034 0.036 0.034 99.8 5.9 2.5

1024 × 1024 1% 0.050 0.116 0.066 601.6 4.5 50.5
5% 0.024 0.026 0.024 848.7 8.0 13.8
10% 0.017 0.020 0.017 547.5 11.5 8.7
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temperature field is 2:78 K. R-INLA did not complete after > 1 hour of processing time; thus, we do not
include its results.

5. Conclusion

In this article, we present a new perspective on DA based on insights from the literature on large-scale
Bayesian inference. We demonstrate that our message-passing approach is viable and can, in many
scenarios, produce results competitive with a GPU-accelerated 3D-Var implementation. In the era of large
heterogeneous computing systems, the scalability issues with state-of-the-art variational DA are well
documented and the design of the proposed method should offer improved scalability. However, further
research is required to determine if this design offers advantages for operational-scale problems.

We make several simplifying assumptions. First, we have only considered spatial inference in two
dimensions. However, our approach can be extended to full spatiotemporal inference as we describe in
Appendix C.3. We have also only considered a single weather variable and linear observation operators.
However, this can be extended relatively easily to multiple weather variables under the current frame-
work, by assuming that they are independent under the prior. Further work is required for variables
coupled in the prior. It may also be possible to support nonlinear observation operators using iterative
linearization techniques (Kamthe et al. 2022).

The primary limitation of our approach is that message passing only reliably computes the posterior
mean; the obtained posterior marginal uncertainties are inherently biased when the graph is loopy (Weiss
and Freeman 1999). Thus, we cannot get an accurate estimate of the uncertainty in the assimilated state. It
also requires Gaussianity assumption in the prior, although for non-Gaussian priors arising from nonlinear
stochastic PDEs, we may be able to handle this using an iterative linearization method (Anderka et al.
2024). Finally, due to our unreliable uncertainty estimates, we cannot make use of the marginal likelihood
to learn the hyperparameters of the prior, for example, the kernel lengthscale. Currently, we handle this
using cross-validation on held-out observations. We note, however, that all of these limitations are shared
with popular large-scale DAmethods, such as 3D-Var and resolving these issues will be a significant step
forward for future DA research.
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