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New groundwater-level rise data from the Rhine-Meuse delta -
implications for the reconstruction of Holocene relative mean
sea-level rise and differential land-level movements
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We present new local groundwater-level rise data from two Late Glacial aeolian dunes, located near Barendrecht and Qud-Alblas in the western
Rhine-Meuse delta. These data are based on AMS radiocarbon dating of terrestrial macrofossils, collected from the base of peat formed on the
slopes of these dunes. This method avoids contamination of bulk peat samples by old soil carbon or younger rootlets and rhizomes, as well as
the hardwater effect. The new data are used to assess the reliability of previously published groundwater-level index data based on conventional
radiocarbon dating of bulk Basal peat samples from the slopes of the Late Glacial aeolian dunes at Barendrecht, Hillegersberg, Bolnes and
Wijngaarden, all located in the western Rhine-Meuse delta.

Comparison of the new and published groundwater-level data shows no significant systematic difference between conventionally dated bulk
peat samples and AMS-dated samples of terrestrial macrofossils. The new data from the dune at Barendrecht confirm the reliability of the younger
than 6600 cal yr BP age-depth data from the dunes at Hillegersberg and near Bolnes. This result supports the validity of this part of the mean
sea-level (MSL) curve for the western Netherlands. Consequently, the position of the groundwater-level curve for Flevoland (central Netherlands)

below this MSL curve can most likely be attributed to differential land-level movement.
t The available data show that the groundwater-gradient effect in the western Rhine-Meuse delta became less than 5 cm/km after 6600 cal yr
' BP. Finally, temporal correlation between temporary increases in local groundwater-level rise with known shifts of river courses in the delta plain

suggests, that avulsions can explain sudden local deviations from the trend in groundwater-level rise. A general conclusion of this study is that

a complex relationship exists between sea level and local delta-plain water levels.
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accuracy in sea-level reconstruction and for better under-

Introduction
| standing of differences between local groundwater-level
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Reconstructions of Holocene relative sea-level and ground-
water-level rise are crucial for understanding the palaeogeo-
graphical and geological evolution of coastal plains, while also
serving studies of differential land-level change, palaeo-
ecology, and archaeology. At present, the quest for higher
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curves 1s still ongoing.

Studies of Holocene relative (ground)water change and sea-
level change in the Netherlands are based primarily on radio-
carbon-dated samples from the base of peats which accumu-
lated on pre-Holocene substrates (e.qg., Jelgersma, 1961, 1979,
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1980; Van de Plassche, 1982, 1995; Van Dijk et al., 1991;
Roeleveld & Gotjé, 1993; Kiden, 1995; Cohen, 2003; Makaske
et al., 2003; Van de Plassche et al., 2005). In many cases,
basal peats from the slopes of Late Weichselian aeolian dunes
were used to reconstruct local curves of groundwater-level rise.
The approach of using peat as a sea-level or groundwater-level
indicator has been validated by independent research methods
(e.g., Roep & Beets, 1988). Groundwater-level changes in coastal
areas are a function of mean sea-level (MSL) rise, superimposed
changes in regional and local tidal range and changes in
regional and local river or groundwater gradient. The question
is: how should spatial and temporal differences within and
between groundwater-level curves be interpreted, given the
accuracy and reliability of such curves?

Sea-level curves from roughly before 1990 are based on
conventionally radiocarbon-dated bulk samples from (basal)
peat layers. A potential drawback of such samples is that they
may contain rootlets and reed rhizomes that penetrated the
sample from higher stratigraphic levels, resulting in an
apparent younger age (e.g., Streif, 1971). Another drawback
of dating bulk peat samples 1s that they may yield apparent
older ages due to the so-called hardwater effect (e.g., Tornqvist
et al., 1992) or due to inclusion of old soil carbon (Van de
Plassche, 1982). The hardwater effect originates from plants
that assimilate CO, from the water containing CO, from dis-
solved old CaCO;, instead of from the atmosphere. Moreover,
conventional 14C dating of bulk peat samples generally requires
>10 g organic material from a 5 - 10 cm thick core interval,
which may cover a considerable time span. This may affect the
accuracy of the age the date is supposed to represent (Torngvist
et al., 1992). To avoid all of these potential problems, acceler-
ator mass spectrometry (AMS) dating is now generally applied.
This technique allows analysis of much smaller samples (<20
mg) that generally cover only ~1 cm thick core intervals and
presumably results in more representative dates. Errors such
as caused by the hardwater effect, the inclusion of old soil
carbon or younger roots can be avoided by selecting terrestrial
macrofossils instead of bulk peat.

Hitherto, only one study has been carried out in which a
(ground)water-level curve based on conventional radiocarbon
dating of bulk samples was tested against new AMS-dated
samples of terrestrial macrofossils from the same site (Van de
Plassche et al., 2005). This study was carried out in Flevoland
(central Netherlands, Fig. 1) and yielded water-level index
points below the mean sea-level (MSL) curve for the western
Netherlands (Van de Plassche, 1982). It confirmed results
reached by Roeleveld & Gotjé (1993), which were based on
conventionally dated bulk peat samples, and led to a MSL
curve for Flevoland running below Van de Plassche’s (1982)
MSL curve, at least for the part between 6000 and 3500 cal yr
BP. Because this part of the 1982 MSL curve was based on
conventionally dated bulk peat samples from the western
Rhine-Meuse delta, a methodological cause (AMS macrofossil

dates vs. conventional bulk dates) of the difference between
the two curves was suggested, but alternative causes such as
differences in tidal effects and/or land-level movements could
not be excluded (Van de Plassche et al., 2005). In this paper
we address the question whether previously published dates of
bulk peat samples are too old due to the hardwater effect or
to the inclusion of old carbon as suggested by Roeleveld and
Gotjé (1993).

The aims of this paper are: (1) to evaluate and explain
differences in groundwater-level rise data in the western
Netherlands in terms of methodological effects, and spatial
and temporal effects related to palaeogeography and evolution
of the coastal plain; (2) to evaluate the cause of the difference
between the curve from Flevoland (Van de Plassche et al.,
2005) and the curves from the western Netherlands.

We collected two new local groundwater-level data sets on
the flanks of aeolian dunes in the western part of the Rhine-
Meuse delta. These new data sets represent AMS-dated samples
of terrestrial macrofossils. We compare these new high-quality
data with previously published data sets from this area, which
are based on conventionally dated bulk peat samples
(Jelgersma, 1961; Van de Plassche, 1982; Van Dijk et al., 1991).
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Site characteristics and fieldwork
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Based on the geological map of the Netherlands, scale 1.: 50,000
(Verbraeck, 1974; Bosch & Kok, 1994), we selected two buried
Late Weichselian aeolian dunes in the western part of the
Rhine-Meuse delta. Both dunes are (almost) completely covered
by Holocene deposits: only at one of the sites (Oud-Alblas) the
very top of the dune is exposed at the surface. We constructed
a local groundwater-level rise curve using AMS-dated terrestrial
macrofossils from the base of peat, flanking the dunes. The
dunes are located near the towns of Barendrecht and Oud-
Alblas (Fig. 1). They were selected for accessibility and presence
of basal peat on their slopes over a large vertical range.
Fieldwork for this study was carried out in 1995, and collected
samples were subsequently analysed and dated in 1996 and
1997. Soon after the collection of samples, the Barendrecht
site became inaccessible as a result of development by the city
of Barendrecht. At both locations, the general topography of
the dune was mapped using an Edelman-auger and a 3 cm wide
gouge (Berendsen & Stouthamer, 2001).

The dune at Barendrecht (Fig. 2) is ~14.4 m high, with the
top of the dune sand at 0.6 m below the surface (outside cross-
section in Fig. 2) and the top of the underlying Kreftenheye
Formation (fluvial Weichselian deposits) at a depth of ~15 m
below the surface. At Oud-Alblas (Fig. 3), the top of the dune
1s at 1.3 m below the surface in our cross-section. The base of
the dune was not reached, but 1s at more than 10 m below the
surface. Based on the maps, detailed cross-sections were
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produced at each dune, using an Edelman-auger and a gouge.
The cross-sections are oriented in the direction of maximum
slope; coring sites are ~5 m apart. From these cross-sections,
approximately 50 cm long undisturbed cores were collected at
more or less regular vertical intervals (Figs 2 and 3), using a
Dachnowski-sampler and a 7 cm wide gouge. Depressions 1in

the dune surface were avoided as much as possible, because
peat formation may have started earlier in depressions
relative to better drained slopes (Van de Plassche, 1982). The
cores were sub-sampled for AMS dating.

In addition to the newly collected data, the database for
this paper contains published groundwater-level index data
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Fig. 2. Cross-section of the Barendrecht dune flank, with sample locations. Samples Barendrecht 23, 24, 26 and 27 were not collected in this cross-section.
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Fig. 3. Cross-section of the Oud-Alblas dune flank, with sample locations.

(conventional radiocarbon age determinations of bulk basal
peat samples) for aeolian dunes at Barendrecht (Jelgersma,
1961), Bolnes and Hillegersberg (Van de Plassche, 1982), and
Wijngaarden (Van Dijk et al., 1991), see Table 1, and Fig. 1 for
locations.

Selection of samples for AMS radiocarbon
age determination
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Samples for AMS radiocarbon age determination were taken
directly above the base of in situ peat on the aeolian dune sand.
Because this sand-peat transition usually is blurred by the
presence of a palaeosoil in the top of the aeolian sand and by
the admixture of sand to the peat, multiple methods were
applied for its 1identification: (1) visual inspection of the core
content in the field; (2) laboratory loss-on-ignition measure-
ments on (vertically) 1 cm spaced subsamples in order to 1den-
tify the clastic-organic transition; (3) laboratory analysis of
botanical macroremains in (vertically) 1 cm spaced subsamples
in order to identify the soil-peat transition. The latter analysis
was only carried out if field inspection and loss-on-ignition
measurements gave no clear indication about where to sample.

For the macroremains analysis the samples were cut into 1
cm thick slices, which were treated with KOH and washed over
a 200-pum sieve. The fraction >200 pm was analysed. Figures
4a and 4b present, by way of example, two macroremains
diagrams. Such diagrams have been made for eight basal peat
samples. In the macroremains diagrams, all of which look
rather similar, the level best representing the onset of in situ
peat formation 1s evident from first appearance or strong
increase of indicators of a peat-forming vegetation (leaf frag-
ments, bud scales, Typha, Carex, Alnus remains), together with
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the (near-)absence of soil fungi (Cenococcum fruit bodies) and
a low (<10%) sand content.

After identification of the optimal sampling level, we cut a
1 cm thick slice from the core to extract dateable macroremains.
If a particular slice did not yield enough material, the next
higher 1 cm thick slice was added to the sample, and so on, if
necessary. Terrestrial macrofossils (seeds, fruits, bud scales, leaf
fragments, twigs) were used for dating (Table 2). All samples
were taken at a level where the amount of dune sand had
fallen below 20%, and where fruit bodies of soil fungi
(Cenococcum) were virtually absent.

Error margins

Depth-error margins
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The depth-error margins of water-level index points include

various categories of errors and uncertainties.

1. Errors related to measuring the surface elevation of the
core location relative to NAP: Nieuw Amsterdams Peil; the
national geodetic datum, approximately MSL (mean sea
level). Because all borehole locations were levelled relative
to fixed bench marks that are vertically accurate to 0.1 cm,
the error in surface elevations 1s estimated to be <1 cm.

2. Errors related to measuring the sample depth in the core.
This error is estimated at <2 cm.

3. Uncertainties associated with estimating how much the
dated sample was formed above or below the local average
water level. We distinquished between samples that consisted
of wood peat and samples composed of reed or reed-sedge
peat.
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Berendsen & Stouthamer (2001)

-733 -735 -707 -740 Terrestrial
botanical

-118

Oud Albtas 7

5250-4830 cal BC 108.237-430.588

5170-4930 cal BC

30
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GrA-07128
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macrofossils

Berendsen & Stouthamer (2001);

~-103 -423 -425 -387 -425 Terrestrial

Barendrecht 4/B

3890-3730 cal BC 3970-3670 cal BC 097.379-431.472

70

5010

GrA-07129

elevation corrected

botanical

macrofossils

Berendsen & Stouthamer (2001);

-434 -436 -416 -446 Terrestrnal

-103

Barendrecht 4/0

3950-3750 cal BC 4030-3670 cal BC 097.379-431.472

90

5050

GrA-07134

elevation corrected

botanical

macrofossils

Berendsen & Stouthamer (2001)

-79 -189 -195 -150 -199 Terrestrial

Barendrecht 24

1730-1630 cal BC

40

3380

GrA-13683

1770-1570 cal BC 097.311-431.620

botanical

macrofossils

Berendsen & Stouthamer (2001)

-79 -252 -258 223 -268 Terrestrial

Barendrecht 26

2350-2090 cal BC 097.306-431.622

2290-2150 cal BC

40

3790

GrA-13685

botanical

macrofossils

GrN dates: 200-yr moving average smoothing; GrA dates: 60-yr moving average smoothing.

1
2
3

Location co-ordinates and surface elevation given by Berendsen & Stouthamer (2001).

Sample depth based on Berendsen & Stouthamer (2001) and slightly different from depth as given by Van de Plassche (1982, p. 71).

a) Wood peat: Tornqvist et al. (1998) and Van de Plassche
et al. (2005) proposed, rather optimistically, that wood
peat 1s formed within a vertical range of £+10 cm relative
to the local average groundwater level. Here, we use a
vertical uncertainty of +20 cm. All new AMS-dated
samples consisted of wood peat.

b) Reed peat or reed-sedge peat: this kind of peat forms
below the average water level. However, the environ-
ment in which the samples were formed (transgressive
peats on the flanks of aeolian dunes) excludes
significant water depths. Hence we accept an average
water depth of 10 cm for reed peat and reed-sedge peat
samples and add the same uncertainty margin of +20 cm
as for samples of wood peat.

4. Uncertainties related to compaction. Compaction (Van de
Plassche, 1980) depends mainly on depth, overburden and
kind of peat. Even if all samples were collected at or only
slightly above the compaction-free surface of dune sand,
some compaction needs to be taken into account. We applied
the same correction factors as Van de Plassche et al. (2005),
i.e., a minimum correction factor of 1.5 (for the base of the
dated sample) and a maximum correction factor of 2.5 (for
the top of the dated sample). For instance, a 5 cm thick
sample, taken at 10 ¢cm above the dune surface, 1s ‘decom-
pacted’ to 15 - 37.5 cm above the dune surface.

5. Because the correction factors mentioned under point 4 are
averages from a wider range of possible correction factors,
we added an uncertainty margin for compaction of +10 cm.

Instead of summing vertical errors and uncertainties to
obtain a maximum vertical range, as has been done in previous
palaeowater-level studies (e.q., Térnqvist et al., 1998; Makaske
et al., 2003; Van de Plassche et al., 2005), we calculated a
total vertical standard deviation based on the various vertical
errors and uncertainties mentioned above (except the ‘one-
way upward corrections’ 3b and 4) that are considered as
estimates of the 2¢ error range (Table 1; a table containing
the details of the calculations can be downloaded from:
http://www.geo.uu.nl/fqg/palaeogeography). Although this
total vertical standard deviation necessarily is based on
estimates, this statistical approach is more consistent with
the way age-error margins (see below) are represented. In
plotting the samples in time-depth graphs, we took the top of
the dune sand as the lower limit of the vertical error range,
because errors relating to its depth are negligible.

Age-error margins

Age-error margins are determined by the standard deviation in
the dated radiocarbon samples, as given by the laboratory. All
radiocarbon ages were calibrated using CAL25 (Stuiver & Van
der Plicht, 1998). AMS-dated samples were calibrated using a
60-year moving average curve. Conventionally dated bulk peat
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Table 2. Macroremains used for radiocarbon age determination.

Laboratory 14¢C age Sample name Material / dated macrofossils’

number (yr BP)

GrA-04181 5000 + 80 Barendrecht 4 2 Alnus glutinosa, 1 Alnus bud

GrA-04182 5430 + 90 Barendrecht 7 2 Scirpus, 2 Carex, 4 Alnus glutinosa, 3 Oenanthe

GrA-04183 5810 + 90 Barendrecht 10 2 Scirpus, 5 Alnus, 3 Alisma plantago aquatica

GrA-04308 4470 + 60 Barendrecht 1 2 abscission layers, 2 Urtica, 1 Coleoptera fragment

GrA-04315 1290 + 50 Barendrecht 23 1 Atriplex, 1 Alisma, 1 Alnus glutinosa, 3 Polygonum

GrA-05207 5930 + 50 Barendrecht 13 1 Cornus sanguinea

GrA-05208 6660 + 60 Barendrecht 22 2 Cornus, 2 Solanum, 2 Alnus glutinosa, 1 Atriplex

GrA-05215 6360 + 50 Barendrecht 19 1 Alnus cone

GrA-05237 6200 + 50 Barendrecht 16 3 Alisma, 2 Typha, 1 Alnus, 1 Solanum

GrA-05326 5550 + 60 Barendrecht 27 2 Carex, 2 bud scales

GrA-06511 5300 + 60 Oud Alblas 3 1 Alnus glutinosa, 26 Urtica dioica, 17 bud scales, 3 Lythrum salicaria, 1 bud
GrA-06512 5920 + 60 Oud Alblas 5 1 Alnus glutinosa, pieces of Cornus sanguinea

GrA-06513 6280 + 60 Oud Alblas 8 1 Cornus sanguinea, 1 Alnus glutinosa cone, 1 Carex riparia, 1 Solanum dulcamara
GrA-06514 6090 + 60 Oud Alblas 6 1 Alisma plantago aquatica, 1 abscission layer, 12 Carex acuta, 4 Frangula alnus
GrA-07113 5770 + 70 Oud Alblas 4 4 Urtica dioica, 3 Cruciferae, 1 Rumex aquatica, 1 Frangula alnus

GrA-07114 5730 + 70 Barendrecht 10/B 1 Alnus glutinosa, 1 Iypha, 1 bud, 1 Atriplex, 3 Alisma

GrA-07122 3490 + 310  Oud Alblas 1 2 Alnus, 3 Carex riparia

GrA-07123 5090 + 90 Oud Alblas 2 9 Urtica, 1 Carex |

GrA-07124 3720 £ 70 Oud Alblas 9 3 Solanum dulcamara, 1 Carex riparia, 5 Carex acuta, 3 Carex rostrata

GrA-07125 4500 + 80 Oud Alblas 10 3 Carex riparia, 1 Carex rostrata

GrA-07126 5830 + 100  Barendrecht 10/0 1 bud, 5 bud scales, 2 Alisma, 5 Urtica

GrA-07128 6120 + 80 Oud Alblas 7 37 Urtica dioica, 1 Solanum dulcamara, 2 Alnus glutinosa, 1 Carex

GrA-07129 5010 + 70 Barendrecht 4/B 1 bud, 3 bud scales, 1 Atriplex, 6 abscission layers

GrA-07134 5050 + 90 Barendrecht 4/0 4 Urtica, 14 bud scales, 1 abscission layer

GrA-13683 3380 + 40 Barendrecht 24 8 Carex acuta, 4 Rubus fruticosus endocarp, 2 buds, 96 bud scales, 7 abscission layers
GrA-13685 3790 + 40 Barendrecht 26 3 Alnus glutinosa, 3 Carex, 1 Rubus fruticosus endocarp, 65 bud scales, 33 abscission layers

1 Dated macrofossils indicated by species names consist of (fragments of) seeds, fruits or nuts unless otherwise specified.

samples were calibrated using a 200-year moving average curve,
following recommendations by Torngvist & Bierkens (1994).

Streif (1971, 1972) demonstrated the rejuvenating effect of
reed rhizomes on the radiocarbon age of Phragmites peat
samples. Van de Plassche (1982) therefore removed all reed
rhizomes, rootlets and subsurface stem parts from his samples.
Theoretically, samples which have not been subjected to such
preparation (e.g., the Barendrecht samples of Jelgersma, (1961))
may have ages that are too young.

' Results

Rejected data

The dating results are summarised in Table 1. The following
index points were rejected:

GrA-07122 (A1) - Given the age of the suite of samples
from the Oud-Alblas site, the age of this sample is approxi-
mately 1300 yrs too young. Alternatively, the sample has been

translocated ~2 m by a slump. Slumps are common on dune
slopes that drowned quickly (personal observation first and

second authors at the archaeological excavation Hardinxveld-
Giessendam). The large standard deviation of the date i1s due
to the minute sample size.

GrA-04315 (B23) - Compared to the suite of age-depth data
from the Barendrecht site this sample 1s either approximately
1500 yrs too young or it was translocated by ~1 m due to
slumping or human activities (the sample location is very near
the present surface).

GrA-05326 (B27) - This sample is approximately 1500 yrs
too old, or the sample position is ~2 m too high, possibly as a
result of activities of Neolithic settlers.

Comparison of the old and new Barendrecht data

——

Barendrecht is the only locality in the Rhine-Meuse delta where
we can compare the age-depth positions of conventionally
dated bulk peat samples (Jelgersma, 1961) with those of our
AMS-dated samples (Fig. 5). The comparison is not optimal
because the samples were collected decades apart and at
different locations on the dune.
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Fig. 5. Barendrecht groundwater-level index points from this study (green) and from Jelgersma (1961) (black).

Three of Jelgersma’s (1961) fen-wood peat samples (BV, BVI
and BVII) plot exactly in line with the AMS-dated samples.
Three of her index points (BI, BVIII and BX) seem to be ~200 yrs
too old, while two samples (BIV and BXII) seem to be ~100 yrs
too old (rather than too young, as might be expected given
the possible presence of reed rhizomes and younger rootlets).
Sample ages that seem too old may reflect a hardwater etfect
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or inclusion in the sample of ‘old” organic carbon from the
humic top of the underlying soil. Although five of Jelgersma’s
samples seem to be too old, we see no evidence for a systematic
age difference between conventionally dated bulk samples ot
fen-wood peat and AMS-dated samples of terrestrial macro-
fossils. If such a difference exists, it is, on average, smaller
than ~150 yr.
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In order to investigate the influence of in-core sample
depth on sample age we obtained for Barendrecht cores 4 and
10, dates on samples taken 11 cm and 9 cm apart, respectively
(Fig. 6). The two samples (bottom and top) from Barendrecht
4 and from Barendrecht 10 differ 60 cal yr and 120 cal yr,
respectively. This result suggests that a 10 cm long core inter-
val taken between 4 m and 6 m depth represents a ~100 cal yr
time span. Thus the depth of a 1 or 2 cm thick sample of
macroremains is, in terms of age, less critical than 1s often
thought. Nevertheless, we recommend that samples be taken
as low as possible, without including the top of the underlying
palaeosoil. Of course the age difference between bottom and
top increases as accumulation rate decreases.

Comparison of the Barendrecht, Oud-Alblas
and Wijngaarden data o

R i AT Ry TR P s e T e T T T i Ll

Comparison of the new, AMS-based groundwater-level data
from Barendrecht and Oud-Alblas (Fig. 7), located 11 km apart
in an E-W direction, shows no significant difference prior to
5500 cal yr BP. Between 5500 and 4000 cal yr BP, however, the
Oud-Alblas data plot approximately 40 cm higher. This higher
position cannot be explained by an increased river-gradient
effect, because river gradients decreased continuously during
the Holocene (Van Dijk et al., 1991). A possible explanation 1s
that local/regional water levels were raised temporarily as a
result of the successive avulsions leading to the formation of
the nearby Zijderveld (5345 - 4653 cal yr BP) and Schoonrewoerd
(4354 - 4037 cal yr BP)! fluvial systems (Fig. 8) that existed
during that time interval (Berendsen & Stouthamer, 2001;
revised dates, see http://www.geo.uu.nl/fqg/palaeogeography).
The Oud-Alblas study site is located near these fluvial systems.
For comparison: presently ongoing avulsions in the Pantanal
region in southwestern Brazil (Makaske et al., 2006) have
resulted in regional water levels that are estimated to have
risen by at least 0.5 m (personal observation second author).

Age (cal yr BP)
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Sample depth

B4b: 423-425 - NAP
B40: 434-436 - NAP

B10b: 598-599 - NAP
B100: 607-609 - NAP

1 Makaske et al. (2007) proposed a shorter period of activity for the Schoonrewoerd system: 3900-3800 yr BP (~4350 - 4200 cal yr BP).

The Schoonrewoerd avulsion in particular is interpreted to
have been a similar catastrophic event with extensive formation
of crevasse splays (Makaske et al., 2007). Rhythmically bedded
channel deposits in the lower reaches of the Zijderveld
(Langerak) and Schoonrewoerd fluvial systems indicate marine
influence, with raised water levels in the study area due to
storms and/or spring tides (Makaske, 1998, p. 220).

The coeval (6000 - 4000 cal yr BP) index points from
Wijngaarden, which are based on conventionally dated bulk
peat samples, also plot higher than the Barendrecht
groundwater-level index points (Fig. 9). At first sight, the
difference in elevation between the Wijngaarden and
Barendrecht index points might be explained in terms of a
changing river-gradient effect: curves that can be drawn
through the datapoints for each location converge toward the
present. Accordingly, sample W8 would have to be too young,
because it deviates clearly from the trend. However, the fact
that the Wijngaarden data W7, Wé and W5 plot higher than
the Oud-Alblas data, which were collected nearby at almost
the same alongstream position, indicates that local controls
on water levels probably offer a better explanation for the
trends in the data sets than (changes in) regional river
gradients.

The Wijngaarden site is very close to the Schaik fluwvial
system (6087 - 4830 cal yr BP) (Fig. 8). The Schaik system
became active approximately 6000 cal yr BP, when the difference
between the Barendrecht en Wijngaarden index points 1s
greatest (Fig. 9). The lack of indications of simultaneous higher
water levels at the Oud-Alblas site (for the period 6200 - 5500
cal yr BP the Oud-Alblas index points plot below those from
Wijngaarden) suggests that the dunes at Oud-Alblas and
Wijngaarden were, at that time, located in separate flood-
basins. We exclude the possibility that the difference in
elevation of the index points of Wijngaarden and Oud-Alblas 1s
a result of the difference in dating methods, because then we
would have to accept that there is a consistent ~400 cal yr

Groundwater-level index points

¥
4

1o

Fig. 6. Comparison of sample ages and depths of
closely spaced Barendrecht samples. The diagram
suggests that depth of samples is less critical than
previously thought, as long as the top of the

underlying palaeosoil 1s avoided.
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Fig. 7. Barendrecht groundwater-level index points (green) compared with Oud-Alblas groundwater-level index points (yellow).

difference between AMS (Oud-Alblas) and conventional dates
(Wijngaarden), which is not evident from the Barendrecht
data (Fig. 5). Moreover, after 5500 cal yr BP no age difference
is observed between the Wijngaarden en Oud-Alblas data sets.

In any case, the data suggest varying floodbasin-water levels
over short distances, possibly related to the avulsion that led
to the formation of the Schaik channel belt. If fluctuating
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floodbasin-water levels in the Rhine-Meuse delta are indeed
caused by avulsions, such fluctuations may be related to the
average period of existence (~1100 cal yr) of channel belts
(Berendsen & Stouthamer, 2001), or to the duration (~500 - 600
cal yr) of avulsion sequences (Stouthamer & Berendsen, 2007).
This gives a maximum order of magnitude of the duration of
locally raised floodbasin-water levels due to avulsions.
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In conclusion, it seems that the evaluation of small
groundwater fluctuations at the flanks of aeolian dunes in a
fluvial area 1s a very complicated matter. Small fluctuations
(on the order of 0.5 m) cannot be related simply to sea-level
fluctuations, as has been tried in the past. Instead, fluvial
processes like avulsions may have played a significant role.

Comparison of the new data with the Hillegersberg
and Bolnes data

The Hillegersberg and Bolnes index points (Van de Plassche,
1982) are based on conventionally dated bulk peat samples
from the base of the peat. Younger rhizomes and rootlets were
thoroughly removed from the samples. The index points
generally plot at approximately the same elevation as the new
Barendrecht index points (Fig. 10). Only between 6800 and
5500 cal yr BP do the Barendrecht samples plot slightly
higher. As Hillegersberg is situated further to the west, this
difference could be explained as a slight gradient effect.
Contrary to expectation, the index points older than 6800 cal
yr BP do not show this difference, although the gradient effect
at that time must have been slightly stronger. Contradicting
this interpretation is also the fact that between 5200 and
4200 cal yr BP groundwater levels at Hillegersberg appear to
be higher than at Barendrecht.

The new Barendrecht index points in.Figure 10 suggest an
abrupt rise at ~6700 cal yr BP followed by a gradual conver-
gence with the Hillegersberg index points forward in time.
This difference in elevation of the Barendrecht and Hillegersberg
Index points between 6800 and 5500 cal yr BP may also be
related to an avulsion, but at present no detailed data are
available for this area and that time interval.

sampling sites (see Fig. 1 for location). The
Langerak system is the downstream reach

of the Zijderveld system.

Figure 10 gives no indication for a systematic age difference
between the conventional dates of bulk peat samples from
Hillegersberg and Bolnes and the AMS dates of selected
macroremains from Barendrecht. If such a difference exists, we
would expect the Hillegersberg samples to be slightly too old,
in particular due to the possible inclusion of old carbon from
the soil, and/or a hardwater effect. Such a slightly greater age
would generally increase the difference between the index
points, and favour the interpretation of a slight river-qradient
effect, with the Hillegersberg index points generally below the
Barendrecht index points as a result of a ~4 km more down-
stream location of the Hillegersberg site. The high/old position
of the Bolnes index points relative to the Barendrecht index
points between 7600 and 7000 cal yr BP is in agreement with
a slight river-gradient effect (the Bolnes site is located ~1 km
upstream of the Barendrecht site), even if the Bolnes data
would be slightly too old for the same reasons as the
Hillegersherg data set. The relatively low/young position of
the younger Bolnes data (Bo6 and Bo7) does not fit this
interpretation, although river gradients must have decreased
over time.

As shown in Figure 11, the Oud-Alblas index points plot
above the Hillegersberg-Bolnes index points between 7000 and
6500 cal yr BP and between 5500 and 4000 cal yr BP. Before
7000 cal yr BP and between 6200 and 5500 cal yr BP they are at
the same elevation. If we attribute the relatively high position
of the Qud-Alblas index points between 5500 and 4000 cal yr
BP to the avulsions of the Zijderveld and Schoonrewoerd
fluvial systems (as argued above), the distribution of the
index points before 5500 cal yr BP can be taken to represent
either (1) a river-gradient effect, with the general divergence
backward in time of the Oud-Alblas and Hillegersberg index
pomnts indicating an increasing gradient, or (2) an earlier,
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undocumented avulsion that caused a steep rise in water
levels at approximately 7000 cal yr BP, indicated by the index
points A7 and A6, followed by a gradual lowering relative to
regional water levels, which is indicated by the trend through
index points A5, A4 and A3.

The relatively low/young position of the index points A7 and
A8 contradicts the river-gradient’ interpretation. On the other
hand, a slight difference in water levels between the Oud-Alblas
and Hillegersberg sites (almost 15 km apart in the alongstream
direction), must have existed, and therefore a combination of
avulsion and river gradient effects may be valid in this case.
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Fig. 9. Barendrecht (green) and Oud-Alblas (yellow) groundwater-level index points from this study, and Wijngaarden (purple) groundwater-level index

points from Van Dijk et al. (1991).
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Discussion

- e e e e e e e e T e et et

Van de Plassche (1982, 1995) suggested that the floodbasin
effect significantly influenced regional water levels in the
western Rhine-Meuse delta since ~7500 cal yr BP. The flood-
basin effect involves lowering of mean high water (MHW) in a

back-barrier lagoon relative to coastal MHW, as a result of
friction and storage of the (limited) amount of water that can
enter the lagoon through tidal inlets. The gradual develop-
ment of a floodbasin effect is suggested by reconstructions of
Holocene coastal evolution showing narrowing/closure of tidal
inlets in the coast of Holland between 6500 and 5500 cal yr
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et al., 2005) are also shown.

BP (Beets et al., 1992, 1994; Beets & Van der Spek, 2000). To
what extent do the new data from the western Rhine-Meuse
delta support this notion of the development of a floodbasin
effect since ~7500 cal yr BP?

If it is assumed that the MSL curve published by Van de
Plassche (1982) is correct for the time interval 7500 - 6600 cal
yr BP, then the gradual convergence of the index points B22,
B19, B16 and B13 (representing MHW) with the MSL curve

(Fig. 11) could be taken to represent the development of a
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floodbasin effect, with the tidal amplitude decreasing from
~0.8 m (B22) to ~0.2 m (B13). It is generally assumed that,
when tides exist, peat in a back-barrier lagoon develops near
MHW (e.g., Jelgersma, 1961; Van de Plassche, 1982, 1995;
Kiden, 1995), an assumption that is confirmed by observations
in modern tidal marshes (personal observations third author).
This ‘tidal’ interpretation of the new Barendrecht data
suggests a rather early development of the floodbasin effect
relative to the above-mentioned time interval of narrowing
and closure of tidal inlets.

A problem with inferring palaeotidal amplitudes from (local)
water-level curves is that the older than 6600 cal yr BP part
of the MSL curve is poorly constrained by independent MSL
indicators (Van de Plassche, 1982). The limits indicated by Van
de Plassche (1982, his Fig. 52) allow an upward adjustment of
this part of the MSL curve, which would bridge the gap with
the new Barendrecht data. This adjustment would imply a
strongly to fully developed floodbasin effect and absence of a
significant tidal range well before 6600 cal yr BP, which seems
1n conflict with palaeogeographic reconstructions of the coast.
In absence of a well-constrained MSL curve for the period
betore 6600 cal yr BP, the issue of the development of a flood-
basin effect can be settled only when new independent MSL
data for the Rhine-Meuse delta are obtained.

For the province of Flevoland in the central Netherlands
(Fig. 1), a recent data set that partly covers the time interval
before 6600 cal yr BP is available. These index points (Almere
12, 13, 14, 15, 27/28 and 23/25/26 in Makaske et al. (2003, their
fig. 8); not shown in figures of this paper) all plot exactly on
the MSL curve in the time interval 7300 - 6300 cal yr BP. These
data can be considered an upper limit of MSL in the former
southwestern Flevo lagoon. The abundance of tidal deposits in
this area dating from this time interval (Menke et al., 1998)
implies a substantial tidal range. The Almere datapoints can
therefore be interpreted as indicative of local MHW, at some
unknown level above MSL. In the eastern part of Flevoland
(Schokland), Roeleveld & Gotjé (1993) collected time-depth
data that largely plot below the MSL curve of Van de Plassche
(1982). In order to explain this discrepancy, Van de Plassche
et al. (2005) rigorously tested the Roeleveld & Gotjé data set
(partly using new AMS dates of selected macroremains) and,
as a result, proposed a new relative MSL curve for the central
Netherlands that runs below Van de Plassche’s (1982) MSL
curve for the western Netherlands (Fig. 11).

Van de Plassche et al. (2005) left open the possibility
that the difference between the two MSL curves is due to
methodological effects (i.e., the difference between AMS-
dated macroremains and conventionally dated bulk samples).
At that time, high-quality (AMS) index points were not
avallable for the western Netherlands. This study provides new
AMS index points from aeolian dunes in the western Rhine-
Meuse delta, that also plot higher than AMS-dated index
points from Flevoland (Van de Plassche et al., 2005). This

indicates that the difference between the curves cannot be
explained by methodological effects.

In a discussion of the available water-level evidence from
Flevoland, Makaske et al. (2003) proposed three hypothetical
explanations for the difference between the Flevoland data
and the MSL curve of Van de Plassche (1982): (1) the latter
curve erroneously indicates a water level higher than MSL, (2)
relative basin subsidence has caused lowering of the Flevoland
data relative to the MSL curve, (3) the Schokland data
(Roeleveld & Gotjé, 1993) are unreliable. Hypothesis 3 has
been ruled out by the research of Van de Plassche et al.
(2005). Hypothesis 1 is contradicted by the high-quality data
from this study that generally support the MSL curve by Van
de Plassche (1982). None of the new index points plots below
the 1982-MSL curve, rendering hypothesis 1 unlikely. With the
data presently available, subsidence of Flevoland relative to
the western Rhine-Meuse delta (hypothesis 3) becomes the
most likely explanation of the difference between the Flevoland
and western Rhine-Meuse delta data sets. Kiden et al. (2002)
also inferred regional differences in Holocene relative sea-level
changes within the Netherlands. Vink et al. (in press) support
de result obtained by Kiden et al. (2002) and provide further
evidence for strongly increasing glacio-isostatic subsidence
going from Belgium to northwest Germany.

Conclusions

1. No significant systematic differences are observed between
conventionally dated bulk peat samples and AMS-dated
terrestrial macrofossils from basal peat on the flanks of
aeolian dunes in the western part of the Rhine-Meuse delta.

2. All new groundwater-level index points from this study plot
slightly above Van de Plassche’s (1982) mean sea-level
(MSL) curve for the western Netherlands (Fig. 11), based
essentially on the Hillegersberg-Bolnes data set. The new,
high-quality groundwater-level index data obtained for
this study confirm that the MSL curve for the western
Netherlands (Van de Plassche, 1982) is valid for the western
Rhine-Meuse delta. The early (pre-6600 cal yr BP) part of
the MSL curve is, however, not as tightly constrained as the
younger part.

3. If a systematic difference exists between conventionally
dated bulk peat samples and AMS-dated macroremains, it
seems to be smaller than ~150 yr. Only a systematic analysis
of conventional bulk dating and AMS dating on subsamples
from the same sample can provide more information on this.

4. Depth selection of basal peat samples is less critical than
previously thought, as long as the top of the palaeosoil in
the underlying deposits is not included, and macroremains
are selected from levels with indications for wet conditions
(peat formation).

5. Differences between groundwater-level rise trends at
individual aeolian dunes may be caused by differences in
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gradient and/or floodbasin effects. Results confirm the
study of Van Dijk et al. (1991), which suggests that gradient
effects in this area are small after 6600 cal yr BP (<5 cm/
km). The development of a floodbasin effect, which is
suggested by the new Barendrecht data for the time interval
7500 - 6600 cal yr BP, could not be substantiated in this
study, because of the absence of independent MSL data for
the period before 6600 cal yr BP.

6. This study suggests that the occurrence of avulsions
(regionally and temporarily raising water tables) can be an
important cause of local deviations from the general regional
trend of groundwater-level rise, in addition to various other
causes, e.g.: ingressions by the sea, closure of tidal inlets,
development of oligotrophic peats, and increased wood peat
formation. Discrimination between these factors is difficult
and often impossible.

7. The difference between Van de Plassche’s (1982) MSL curve
and the Flevoland curve (Van de Plassche et al., 2005;
Roeleveld & Gotjé, 1993) is most likely not due to
methodological effects, but to differences in subsidence
between the two areas.

A general conclusion of this study is that a complex
relationship exists between sea-level and local delta-plain
water levels. Back-barrier environments not subject to the
complicating effects of avulsions and multi-directional river
gradients, are likely more suitable for high-resolution sea-
level reconstruction.
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