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COVERING THEOREMS FOR CLASSES OF UNIVALENT 
FUNCTIONS 

DOV AHARONOV AND W. E. KIRWAN 

1. Introduction. Let y denote the class of functions f(z) = z + 
5Z™=2 anz

n that are analytic and univalent in U = \z : \z\ < 1}. j ^ 7 * and ^ 
will denote the collection of / 6 ¥ that map U onto a domain that is respec­
tively starlike with respect to the origin and convex. 

In [4, p. 85] Hayman used Steiner symmetrization to solve a problem, a 
special case of which is the following. If 0 ^ x < \, what is the minimum of 
the linear measure of {w : Re w = x} f^f(U) for/ Ç S^ (if x > | the solution 
is trivially 0)? In this paper we use Steiner symmetrization [4, p. 68] to solve 
this problem for the classes j ^ 7 * and ^ . 

We also solve the following covering problem for the class fé\ Let R(<t>) = 
\w : argw = <t>) and let l(<t>) denote the linear measure of R(<f>) H / ( £ / ) • 
What is the minimum of l(fa) • I {fa) (0 ^ fa Û fa < 2TT) for / G ^ ? The 
solution is complicated by the fact that (except in the case fa = fa and 
02 = fa + ÎT) methods of symmetrization that preserve ^ are of no use for 
this particular problem. If fa = fa our result reduces to a well-known result 
due to Lôwner [8], and if fa = fa + 7r, it reduces to a result due to Strohhâcker 
[10]. 

In addition to Hayman's result mentioned above, the results of this paper 
are similar in spirit to [5] and [6]. 

2. Covering of vertical segments. In order to simplify the statement of 
the following theorem, we introduce the function 

(2.1) F(\, M> s) = f i—i^liO! dt 

where s is a real number, n > 0 and X < 2. F(\, ju, s) is closely related to the 
Incomplete Beta Function [3, p. 104] 

Bip, q, s) = f f~\\ - ty-xdt (Re p > 0, Re q > 0). 

In fact it is easy to show that 

We will have occasion to use the following easily proved fact about ^(X, /x, s). 
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LEMMA 1. / / \s\ ^ 1, r < 1, a > 0, then 

~ i \nl n - T 

We will also need the following known result. 

LEMMA 2. Let D be a domain starlike with respect to w = 0. If D* is the domain 
obtained from D by Steiner symmetrization, then D* is also starlike with respect to 
w = 0. 

The proof of this lemma follows immediately from the observation that if 
D is starlike and l(x) is the linear measure of D C\ {Rew = x}, 0 < x < oo, 
then l(x)/x is a decreasing function of x. 

We now state the main result of this section. 

THEOREM 1. Let 0 < x < \ and let l(x) denote the linear measure of 
f(U)r\{w: Rew = x\. Then, 

(2.2) min l(x) = ~ (1 - a)* sin o J - + F(l + a, $ + a, 1) 
rev* Z La J 

where (a, a) is the unique solution in (0, | ) X (0, 1) of the equations 

x = - - (1 - a)h cos o J - + F(a + 1, a + J, 1) 
(2.3) 4 La 

0 = l + FL+l9a + i9T°L 
a \ l — 

Notes. l.Ux = 0 the extremal function for this problem is/(z) = z / ( l — z2) 
since, as Hayman has shown [4, p. 85], this function is extremal for the class j ^ . 

2. As we will show, the extremal function for this problem maps U onto a 
domain symmetric with respect to the real axis whose boundary in the upper 
half-plane consists of a radial and a vertical slit to oo emanating from the 
point (x, x tancnr). 

Proof of Theorem 1. For 0 < x < ^, let D(x, y) denote the domain sym­
metric with respect to the real axis whose boundary in the upper half-plane 
consists of a radial and a vertical slit to oo emanating from the point (x, y). 
Let r(y) denote the conformai mapping radius [4, p. 79] of D{x, y) with respect 
to 0 (in the sequel we write m.r. D(x, y) = r(y)). It follows from the Principle 
of Subordination and the Carathèodory Kernel Theorem that r{y) is a strictly 
increasing continuous function of y. Moreover, \\mv^r(y) = 2x < 1 and 
lim^+00 r(y) = +oo. Thus there exists a unique value of y = y(x), such that 
r[y(x)] = 1. The corresponding domain, which we denote D(x), is then the 
image of U under a function g G S^*. We claim that g is the extremal function 
for (2.2). Indeed, let f(z) be an extremal function for this problem and let 
D = /(£/)• Let / = 2p denote the linear measure of D H {w : Re w = x}. If 

• 
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D* is the domain obtained from the Steiner symmetrization of D, 
D* C\ [w : Rew = x} consists of a single segment of length 2p that is sym­
metric with respect to the real axis. Since D* is starlike with respect to 0 and 
Steiner symmetric with respect to the real axis, 

D* CD(x,p). 

It follows from a result of Polya-Szegô [4, p. 81] and the Principle of Subordi­
nation that 

1 = m.r. D(x) = m.r. D ^ m.r. D* ^ m.r. D(x, p) 

and hence D(x) C D(x, p). But 2p is the extremal value for (2.2). This is 
possible only if D(x) = D(x, p) and hence D(x) is an extremal domain for 
(2.2). It remains to determine explicitly the function g(z). 

We begin by determining the map of the upper half-plane onto the infinite 
triangle whose "sides" are the real axis, the radial slit to oo and the vertical 
slit to oo emanating from the point eiair where 0 < a < J. It follows from the 
Schwarz-Christofel formula [9, p. 189] that 

(2.4) f(z) = - Ce** V{}~zX^adz, 
Jo {z — a) 

where C > 0 and a, 0 < a < 1, are constants depending on a to be determined, 
maps the half-plane Im z > 0 onto the above triangle with/(0) = 0,/(a) = oo , 
/ ( I ) = e ^ a n d / ( o o ) = oo. 

The constants C and a are determined as follows. Since/( l ) = eiair, we have 
from (2.4) 

where the path of integration is contained in the closed upper half-plane 
avoiding the point z = 1 and is otherwise arbitrary. Any choice of C > 0 and 
a, 0 < a < 1, satisfying (2.5) determines a map (2.4) of the upper half-plane 
onto the triangle and since for a function of the form (2.4) where C satisfies 
(2.5),/(oo) = oo,/(0) = 0 a n d / ( l ) = eiaw, there is only one such map, i.e., 
there is a unique solution for C > 0 and a, 0 < a < 1, to (2.5). In order to 
place (2.5) in a more convenient form, we choose a specific path of integration, 
namely, the interval from 0 to a — e (e > 0 small and positive) the semi­
circular arc from a — e to a + e and the interval from a + e to 1. Letting 
/ i , I2 and Iz denote the integral over each of these intervals respectively, we 
have 

-l/C = /1 + /2 + /3. 

Let c, 0 ^ c < a be chosen so that c > 2a — 1. After an elementary calcula-
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tion we have 

- ( l - a ) * * V T i " - ^ + 0(«1~) 

Applying Lemma 1 and a similar calculation for 72 and i"3, we obtain 

_ i _ r (i - *)i+a, 
C~ Jo (*-<z)1+" * 

+c-«'ifeM; + f(I+-*+--r^)] 
-(1 - a)*[i + F(l + a, i+a, 1)J . 

Since the right-hand side of the above equation is continuous in £ for c < a, 
the equation also holds for c = 0. Setting c = 0 and taking real and imaginary 
parts in the resulting equation, we obtain 

(2.6) 0 = - + F\l+a, i + « , - r
5 — ) 

a \ 1 — a/ 

(2.7) i = (1 - a)*[i + F(l + a, J + a, 1 ) ] . 

As noted above these equations uniquely determine (a, C) on (0, 1) X (0, oo ). 
The function (2.4) maps the interval (-co, a) onto the real axis. By the 

Schwarz Reflection Principle, f(z) maps the plane slit along [a, +co) onto 
D(cosair, sina7r). If h(z) = 4as/( l + z)2 then foh(z) maps £/ onto 
Z)(cosa7r, sinew). Hence 

(2.8) g(z) = (a'/iQf[Hz)] 

belongs to j ^ 7 * and maps U onto D(x) where 

a 
a 

x = -TT;COS a7r 

( 2 ' 9 ) 

= j (1 - a)* cos a7r[i + F{\ + a, \ + a, 1) J . 

It is clear that given x, 0 < x < \, there is a unique pair (a, a) £ (0, 1) X 
(0, i ) that satisfies (2.6) and (2.9). Indeed, a solution (a, a) G (0, 1) X (0, \) 
to (2.6) and (2.9) determines a function in j ^ * that maps U onto D(x) which, 
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as noted in the beginning of the proof, determines a uniquely. Finally it is 
clear from (2.7) and (2.8) that 

2 Im £ / ( l ) = f (1 - a)* sin aJ^ + F(l + a, J + a, 1) J 

is the extreme value for min /e^* l(x) and the proof is complete. 

We now consider the above problem for the class fé\ Before stating the 
theorem, we introduce the function 

(2.io) •k (* ) = s f l[1-( îqH)1 / , B] 
where J ^ a < +oo. fa £ & and maps U onto an "infinite wedge" that is 
symmetric with respect to the real axis and has its vertex at the point a. 
The angular opening at a is ir/2a. When a = \, the wedge degenerates to a 
half-plane and when a tends to +oo ,/a(z) approaches \ log[(l + z)/(\ — z)]. 
Incorporating this value of a into the definition (2.10) we can state 

THEOREM 2. If 0 ^ x < J, 

(2.11) inf/€* /(x) = (a — x) tan(7r/4a) 

where a is the unique solution of 

(2.12) (2a/x) sin(7r/2a) = (1 - x/a) 

on ( i , oo]. 

The proof follows the lines of the proof of Theorem 1 and consequently the 
details will be omitted. We note that one first shows, using Steiner sym-
metrization, that for given x, 0 ^ x < \, a function of the form (2.10) is 
the extremal function for (2.11). An elementary calculation then shows that 
the value of a that yields the extremal value (2.11) is the unique solution 
to (2.12). 

3. Covering of radial segments. Let / (z) 6 fé7, i?(0) = \w : a r g ^ = <j>) 
and l(<j>) denote the linear measure of i?(#) r\f(U). We consider the following 
question: What is the minimum over the class ^ of /(<£i) • I($2) (0 ^ #1 ^ 
02 ^ 2TT)? 

It will be more convenient for us to reformulate this problem in an equivalent 
way, namely: Let f(z) £ fé7, with R(<l>) and Z(#) defined as above. What is 
the minimum over the class ^ of l(cj>) • /( — <£) for 0 ^ 0 ^ 7r/2? 

With/ a(z) as defined in § 2, we have the following theorem. 

THEOREM 3. Letf(z) e ^ and <t> e [0, TT/2]. If 

0 ^ tf> ^ tan-1(2/7r) 
then 

/(«) • / ( - « ) ^ ( l /4)sec20 
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with equality for f(z) = z/(l + z). If tan-1(2/7r) < 0 g TT/2 then l(<t>) • / ( - « ) 
w minimized by fa(z) where a = a(<t>) is the unique solution of the equation 

1 - c o s ( ^ ) 
(3.1) tan <£ = XZa/ 

IT 

Ya~Sm \2a) 
Proof. Using the principle of subordination, we may deduce that the extremal 

function for this problem is an "infinite wedge." Using the transformation 
g(z) = —f(—z) we conclude that the vertex of the "infinite wedge" must 
be in the right half-plane. Our first aim is to show that for each 0, there exists 
an extremal function among the functions fa{z), (a ^ J) . 

Denote the polar coordinates of the vertex of the "infinite wedge" by 
(|L|, x) (so the vertex is the point L = \L\eix). Let the upper and lower sides 
of the wedge form angles a and 0, respectively, with the segment joining the 
origin with the vertex. If h = /($), l2 = /( —#) denote the linear measures 
defined as above, then 

/3#2) ij2 |L|2 sine* sin ff ^ 
sin(# — x + a) sin(<£ + x + /3) ' 

If we "fix" a, /3, \L\ and let x vary in the interval — T/2 < x < T/2, we find 
by a trivial calculation that for an extremal function 

(3.3) x = (a - p)/2. 

The condition (3.3) implies that there exists an extremal function / (2) of the 
form 

/(*) = g («)/«'(0) 
where 

(3.4) g(z) -L- L l - [(i- + 0 ) / ( 1 + fz)]e-J 

for some L, a, 0 and f such that |f | < 1, 0 S 0 < 2T and J ^ a. 
From (3.2) and (3.3) we have for t = (a + 0)/2 = 7r/4a, 

(3.5) /i • /2 
L| sin(/ + x) sin(l — x) 

sin2(# + /) 

Since g(0) = 0, it follows from (3.4) that 

(3.6) z = [YZTJ^J . « (0) - - - \ r ^ 7 V (i - r*?#)' 
Denoting fei0 = rei(i we obtain after an easy calculation 

/ . 2 , . 2 N 2 

(sin £ — sin x)a (3.7) h(f)-h{f) = sin (# + 0 cos (2ax) 
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Since 0 > 0, x = (a - 0 ) / 2 < (a + 0 ) / 2 = t = 7r/4a. Let 

TV \ sin2 I — sin2 x 
cos (2ax) 

I t is not hard to show T(x) è T(0) (0 < x < t) and hence for the extremal 
we m a y assume t h a t x — 0 which together with (3.4), implies there exists an 
extremal function of the form fa(z). F rom (3.7) we have for this extremal 
function, 

4/ s in (0 + /) 

This formula holds even if a = co ; i.e., / = 0 if we interpret the right hand 
side as a limit. If we set 

y(t) = i/Tl(t) 

then the problem of minimizing /(/) for 0 ^ / ^ T/2 (or J ^ a ^ oo ) is 
equivalent to maximizing the function 

t«n(* + t) ( 0 j S / s , / 2 ) . 
sin / 

I t is readily seen tha t if t an <j> ^ 2 / T , y' (t) > 0 on (0, T/2) and hence y(t) 
assumes its maximum a t t — ir/2 and hence for a — \. For this value of a, 
fa(z) — z/(l + z) and h = h = h sec <£. Th is proves the first assertion of the 
theorem. 

If t an <j> > 2/7T, then it can be shown t h a t there exists a unique t0 £ (0, TT/2) 
such t h a t /(/<>) = 0. Moreover, / ( / ) > 0 for 0 < / < h and y'(t) < 0 for 
to < t < 7r/2. T h u s /0 is a unique maximum for 3>(/) on [0, TT/2]. I t follows 
t h a t /i = / i (a) has a unique maximum a t the point a = 7r/4/0, where a is the 
unique solution of 

1 — cos(7r/2a) 
tan 0 = —TZ / /o \ • 

7r/2a — sin(7r/2a) 
This completes the proof of the theorem. 

Remarks. 1. Theorem 3 extends two results for the class fé\ T h e case </> = 0 
is the well-known result due to Lôwner [8] t h a t for every f u n c t i o n / ( s ) £ ^ , 
/ ( f ) D {|H < | } . T h e case <f> = 7r/2 generalizes the result due to St rohhâcker 
[10] t h a t if 77 and e are the boundary points o f / ( [ / ) t h a t lie on a line through 
the origin, then max( |^ | , |e|) ^ 7r/4. Indeed, if <t> = ir/2, the solution of (3.1) 
is a = co which implies t h a t the extremal function is 

Us) = èlogj4l-
2. I t is perhaps worth not ing t h a t the corresponding problems for the 

classes j ^ 7 and j ^ 7 * follow quite easily from results in [ 1 ; 2 ; 6]. 
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