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GROUP RINGS WITH ONLY TRIVIAL UNITS 
OF FINITE ORDER 

IAN HUGHES AND CHOU-HSIANG WEI 

1. Introduction. We denote by ZG the integral group ring of the finite 
group G. S.D. Berman [1] showed that every unit of finite order /z in G is 
trivial (i.e., \x = -j-g for some g in G) if and only if either G is abelian or G is 
a Hamiltonian 2-group. In this note, we give a new and shorter proof for the 
"only if" part. In fact, we prove the following 

THEOREM. Let G be a finite group. Suppose that for y in (ZG)* (the group of 
units of ZG), y~1gy is in G for all g in G. Then G is either abelian or a Hamil
tonian 2-group. 

We also characterize all the finite groups in the set ^, which Sehgal has 
defined as the set of groups G with the property that for any isomorphism 
6 : ZG-> ZH, for each g in G, 6(g) = +h, where h is in H [3, p. 1182]. In fact, 
we obtain the following 

COROLLARY. Let G be a finite group. Then the following are equivalent. 
(1) G is in <g. 
(2) Every inner automorphism of ZG is the extension of an automorphism of G. 
(3) G is either abelian or a Hamiltonian 2-group. 
(4) ZG contains only trivial units of finite order. 

For a group G as in the Corollary, we remark that by Sehgal [2, Theorem 2] 
we see that every normalized automorphism of ZG is the extension of an auto
morphism of G. 

2. Proof of the theorem. We assume the hypothesis of the theorem. We 
claim that if /x £ ZG, /x2 = 0, then /x = 0. Since (1 + \x) (1 — xx) = 1, 1 + xx 
is in ZG*. By assumption the mapping <t> defined by cj>(g) = (1 + n)g(l + /x)-1 

is an automorphism of G. As G is finite, 4> has finite order k. So <£*(#) = 
(1 + k^)g(l — kn) = g for all g in G. Thus we have that 1 + &/x is in the 
centre of ZG and so /x is in the centre of QG. But the centre of QG is a direct 
sum of fields; thus /x = 0. 

We now show that every cyclic subgroup is normal in G, and that will imply 
that G is Hamiltonian. For, given g in G as a generator of a cyclic group of 
order n, and for any h in G, let /x = (1 — g)h(l + g + g2 + . . . + gw-1)î 
then /x2 = 0 and consequently by the above /x = 0. Hence, we must have 
h = ghgr for some positive integer r. It follows that the cyclic group generated 
by g is normal in G. 
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If G is a Hamiltonian group, then G is the direct product of a quaterion 
group H = (a, b\aï = 1, b2 = a2, b~lab = as), an abelian group 5 of odd 
order and an abelian group of exponent 2. We now show that 5 is trivial under 
our assumption. 

Suppose there exists an 5 in S of order p, an odd prime. Let t = as. Then T, 
the group generated by t, has order 4:p. Let fd be a primitive dth. root of unity. 
Consider the mapping 6 from QT onto K = ®d\4pQ(.Çd) given by: 

6(t) =T,Ud\ip) 
and extended to the whole QT in the obvious way to make it a homomorphism. 
By the Chinese remainder theorem 0 is an isomorphism. 

Let R = ©Z[fd](d|4£); then d(ZT) and R are two orders in K with d(ZT) 
contained in R. Clearly there exists an integer / such that IR is contained in 
6(ZT). Let g, h be in R* and g + IR = h + IR\ then g~% is in 6(ZT)*. Since 
the index of i£ over IR is finite, so also is the index of R* over d(ZT)*. 

Let f4p = f. Applying the Dirichlet-Minkowski unit theorem to both 
Z[f] and Z[f2], we can choose a ^ in Z[f]* such that for all i, vl is not in Z[f2]*. 
Let 7 = 0 - 1( l + 1 + . . . + 1 + v) be in 0_1(i?). Then we can find an integer 
k with yk in ZT*. Again as in the previous proof, co = (7*)l is in the centre of 
ZG for some integer /. So \pô(co) is not in Z[f2]* where \p is the projection 
mapping from R onto Z[f]. I t follows that î 0(co) is not even in Z[f2]. We now 
show that \pd(œ) is in Z[f2]. 

Now, co is in ZT. Let W be the group generated by t2. Then co = a + t/3 
writh a, jS in ZW (which is contained in the centre of ZG). Thus b(a + ^ ) = 
(a + tfi)b which implies that (1 — a2)/3 = 0, hence /3 = (1 + a2)a for some 
a in ZTF. Now, co = a + a (I + a2)as = f(t2) + (/p + t~v)g(t2) where / and g 
are polynomials over Z. 

Thus 
**(«) =/(f2) + (r + rpk(f2) 

= /(f2), since r + r p = 0, 
i.e., \f/d(œ) is in Z[f2]. This is a contradiction. 

Hence, we have shown that S is trivial and \G\ = 2m for some m. The theorem 
is thus proved. 

We now prove the Corollary by showing that (1) =^ (2) => (3) => (4) => (1). 
The implication (2) =̂> (3) is our theorem and (3) => (4) follows easily (see 
Berman [1]). The other implications are obvious. 
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