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GROUP RINGS WITH ONLY TRIVIAL UNITS 
OF FINITE ORDER 

IAN HUGHES AND CHOU-HSIANG WEI 

1. Introduction. We denote by ZG the integral group ring of the finite 
group G. S.D. Berman [1] showed that every unit of finite order /z in G is 
trivial (i.e., \x = -j-g for some g in G) if and only if either G is abelian or G is 
a Hamiltonian 2-group. In this note, we give a new and shorter proof for the 
"only if" part. In fact, we prove the following 

THEOREM. Let G be a finite group. Suppose that for y in (ZG)* (the group of 
units of ZG), y~1gy is in G for all g in G. Then G is either abelian or a Hamil­
tonian 2-group. 

We also characterize all the finite groups in the set ^, which Sehgal has 
defined as the set of groups G with the property that for any isomorphism 
6 : ZG-> ZH, for each g in G, 6(g) = +h, where h is in H [3, p. 1182]. In fact, 
we obtain the following 

COROLLARY. Let G be a finite group. Then the following are equivalent. 
(1) G is in <g. 
(2) Every inner automorphism of ZG is the extension of an automorphism of G. 
(3) G is either abelian or a Hamiltonian 2-group. 
(4) ZG contains only trivial units of finite order. 

For a group G as in the Corollary, we remark that by Sehgal [2, Theorem 2] 
we see that every normalized automorphism of ZG is the extension of an auto­
morphism of G. 

2. Proof of the theorem. We assume the hypothesis of the theorem. We 
claim that if /x £ ZG, /x2 = 0, then /x = 0. Since (1 + \x) (1 — xx) = 1, 1 + xx 
is in ZG*. By assumption the mapping <t> defined by cj>(g) = (1 + n)g(l + /x)-1 

is an automorphism of G. As G is finite, 4> has finite order k. So <£*(#) = 
(1 + k^)g(l — kn) = g for all g in G. Thus we have that 1 + &/x is in the 
centre of ZG and so /x is in the centre of QG. But the centre of QG is a direct 
sum of fields; thus /x = 0. 

We now show that every cyclic subgroup is normal in G, and that will imply 
that G is Hamiltonian. For, given g in G as a generator of a cyclic group of 
order n, and for any h in G, let /x = (1 — g)h(l + g + g2 + . . . + gw-1)î 
then /x2 = 0 and consequently by the above /x = 0. Hence, we must have 
h = ghgr for some positive integer r. It follows that the cyclic group generated 
by g is normal in G. 
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If G is a Hamiltonian group, then G is the direct product of a quaterion 
group H = (a, b\aï = 1, b2 = a2, b~lab = as), an abelian group 5 of odd 
order and an abelian group of exponent 2. We now show that 5 is trivial under 
our assumption. 

Suppose there exists an 5 in S of order p, an odd prime. Let t = as. Then T, 
the group generated by t, has order 4:p. Let fd be a primitive dth. root of unity. 
Consider the mapping 6 from QT onto K = ®d\4pQ(.Çd) given by: 

6(t) =T,Ud\ip) 
and extended to the whole QT in the obvious way to make it a homomorphism. 
By the Chinese remainder theorem 0 is an isomorphism. 

Let R = ©Z[fd](d|4£); then d(ZT) and R are two orders in K with d(ZT) 
contained in R. Clearly there exists an integer / such that IR is contained in 
6(ZT). Let g, h be in R* and g + IR = h + IR\ then g~% is in 6(ZT)*. Since 
the index of i£ over IR is finite, so also is the index of R* over d(ZT)*. 

Let f4p = f. Applying the Dirichlet-Minkowski unit theorem to both 
Z[f] and Z[f2], we can choose a ^ in Z[f]* such that for all i, vl is not in Z[f2]*. 
Let 7 = 0 - 1( l + 1 + . . . + 1 + v) be in 0_1(i?). Then we can find an integer 
k with yk in ZT*. Again as in the previous proof, co = (7*)l is in the centre of 
ZG for some integer /. So \pô(co) is not in Z[f2]* where \p is the projection 
mapping from R onto Z[f]. I t follows that î 0(co) is not even in Z[f2]. We now 
show that \pd(œ) is in Z[f2]. 

Now, co is in ZT. Let W be the group generated by t2. Then co = a + t/3 
writh a, jS in ZW (which is contained in the centre of ZG). Thus b(a + ^ ) = 
(a + tfi)b which implies that (1 — a2)/3 = 0, hence /3 = (1 + a2)a for some 
a in ZTF. Now, co = a + a (I + a2)as = f(t2) + (/p + t~v)g(t2) where / and g 
are polynomials over Z. 

Thus 
**(«) =/(f2) + (r + rpk(f2) 

= /(f2), since r + r p = 0, 
i.e., \f/d(œ) is in Z[f2]. This is a contradiction. 

Hence, we have shown that S is trivial and \G\ = 2m for some m. The theorem 
is thus proved. 

We now prove the Corollary by showing that (1) =^ (2) => (3) => (4) => (1). 
The implication (2) =̂> (3) is our theorem and (3) => (4) follows easily (see 
Berman [1]). The other implications are obvious. 
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