Can. J. Math., Vol. XXIV, No. 6, 1972, pp. 11371138

GROUP RINGS WITH ONLY TRIVIAL UNITS
OF FINITE ORDER

IAN HUGHES AND CHOU-HSIANG WEI

1. Introduction. We denote by ZG the integral group ring of the finite
group G. S.D. Berman [1] showed that every unit of finite order x in G is
trivial (i.e., » = +¢ for some g in G) if and only if either G is abelian or G is
a Hamiltonian 2-group. In this note, we give a new and shorter proof for the
“only if”’ part. In fact, we prove the following

THEOREM. Let G be a finite group. Suppose that for v in (ZG)* (the group of
units of ZG), y~'gy is in G for all g in G. Then G is either abelian or a Hamil-
tonian 2-group.

We also characterize all the finite groups in the set %, which Sehgal has
defined as the set of groups G with the property that for any isomorphism
6: ZG — ZH, for each gin G, 0(g) = 4%, where h is in H [3, p. 1182]. In fact,
we obtain the following

COROLLARY. Let G be a finite group. Then the following are equivalent.

(1) Gisin €.

(2) Every inner automorphism of ZG 1s the extension of an automorphism of G.
(3) G 1s etther abelian or a Hamiltonian 2-group.

(4) ZG contains only trivial units of finite order.

For a group G as in the Corollary, we remark that by Sehgal [2, Theorem 2]
we see that every normalized automorphism of ZG is the extension of an auto-
morphism of G.

2. Proof of the theorem. We assume the hypothesis of the theorem. We
claim that if u € ZG, u2 =0, then u = 0. Since (1 + u)A —p) =1, 14+ u
is in ZG*. By assumption the mapping ¢ defined by ¢(g) = (1 4+ u)g(l 4+ )1
is an automorphism of G. As G is finite, ¢ has finite order k. So ¢*(g) =
(1 4 ku)g(l — ku) = g for all g in G. Thus we have that 1 + ku is in the
centre of ZG and so u is in the centre of QG. But the centre of QG is a direct
sum of fields; thus p = 0.

We now show that every cyclic subgroup is normal in G, and that will imply
that G is Hamiltonian. For, given g in G as a generator of a cyclic group of
order #, and for any % in G, let p= (1 —Q)h(L+g+ g+ ...+ g");
then u? = 0 and consequently by the above u = 0. Hence, we must have
h = ghg™ for some positive integer r. It follows that the cyclic group generated
by g is normal in G.
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If G is a Hamiltonian group, then G is the direct product of a quaterion
group H = {a, b;a* = 1,0* = a? b~'ab = ¢?*), an abelian group S of odd
order and an abelian group of exponent 2. We now show that S is trivial under
our assumption.

Suppose there exists an s in S of order p, an odd prime. Let ¢ = ¢s. Then T,
the group generated by ¢, has order 4p. Let ¢, be a primitive dth root of unity.
Consider the mapping 6 from Q7" onto K = @q4,Q(f4) given by:

6(t) =2 ta(dldp)
and extended to the whole Q7" in the obvious way to make it a homomorphism.
By the Chinese remainder theorem 6 is an isomorphism.

Let R = @Z[¢4)(d|4p); then 8(ZT") and R are two orders in K with §(Z7")
contained in R. Clearly there exists an integer / such that /R is contained in
0(ZT). Let g, h be in R* and g + IR = h + IR; then g~ is in 6(ZT)*. Since
the index of R over /R is finite, so also is the index of R* over 0(Z7)*.

Let ¢4 = ¢. Applying the Dirichlet-Minkowski unit theorem to both
Z[¢] and Z[{?], we can choose a v in Z[¢]* such that for all 7, 2¢ is not in Z[{2]*.
Lety =61+ 14 ...4 1+ 2) bein 6~1(R). Then we can find an integer
k with ¥ in ZT*. Again as in the previous proof, v = (y*)!is in the centre of
ZG for some integer I. So y8(w) is not in Z[¢{?]* where ¢ is the projection
mapping from R onto Z[{]. It follows that 8 (w) is not even in Z[{?]. We now
show that ¢ (w) is in Z[{?].

Now, w is in Z7. Let W be the group generated by (2. Then v = a + 3
with «, 8 in ZW (which is contained in the centre of ZG). Thus b(a + 18) =
(e 4 #8)b which implies that (1 — a?)8 = 0, hence 8 = (1 + «@?)o for some
cin ZW. Now, w = a + a(1 + a*)os = f(t*) + (#* + t7)g(¢2) where f and ¢
are polynomials over Z.

Thus

Yo(w) = f(2) + @ + ¢ )g?)
= f({?), since {? 4 7 = 0,
i.e., ¥8(w) is in Z[{?]. This is a contradiction.

Hence, we have shown that S'is trivial and |G| = 2™ for some m. The theorem

is thus proved.

We now prove the Corollary by showing that (1) = (2) = 3) = (4) = (1).
The implication (2) = (3) is our theorem and (3) = (4) follows easily (see
Berman [1]). The other implications are obvious.

REFERENCES

1. S. D. Berman, On the equation X™ = 1 in an integral group ring, Ukrain. Mat. Z. 7 (1955),
253-261.

2. S. K. Sehgal, On the isomorphism of integral group rings. I, Can. J. Math. 21 (1969), 410-413.

3. On the isomorphism of integral group rings. II, Can. J. Math. 21 (1969), 1182-1188.

Queen’s Unaiversity,
Kingston, Ontario

https://doi.org/10.4153/CJM-1972-120-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-120-1

