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We analyse distributions of the spatial scales of coherent intermittent structures – current
sheets – obtained from fully kinetic, two-dimensional simulations of relativistic turbu-
lence in a collisionless pair plasma using unsupervised machine-learning data dissection.
We find that the distribution functions of sheet length � (longest scale of the analysed
structure in the direction perpendicular to the dominant guide field) and curvature rc
(radius of a circle fitted to the structures) can be well-approximated by power-law distri-
butions, indicating self-similarity of the structures. The distribution for the sheet width
w (shortest scale of the structure) peaks at the kinetic scales and decays exponentially
at larger values. The data shows little or no correlation between w and �, as expected
from theoretical considerations. The typical rc depends linearly on �, which indicates that
the sheets all have a similar curvature relative to their sizes. We find a weak correla-
tion between rc and w. Our results can be used to inform realistic magnetohydrodynamic
subgrid models for plasma turbulence in high-energy astrophysics.
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1. Introduction

Over the last few decades, an increase in computational power has led to larger
and larger direct numerical simulations of magnetohydrodynamic (MHD) turbu-
lence (Biskamp 2008; Beresnyak 2019; Schekochihin 2022). While these simulations
generally support the theory of Goldreich & Sridhar (1995) for self-similar fluctua-
tions in MHD turbulence, the same simulations also show the presence of transient
coherent structures – spatiotemporal fluctuations known as the intermittency
(see, e.g., Vlahos & Isliker (2023), for a review). Among these coherent structures

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S002237782500011X
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Jul 2025 at 23:19:41, subject to the Cambridge Core terms of use, available at

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S002237782500011X
https://orcid.org/0000-0002-3166-1050
https://orcid.org/0000-0002-3226-4575
https://orcid.org/0000-0003-3816-7896
https://crossmark.crossref.org/dialog?doi=10.1017/S002237782500011X&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002237782500011X
https://www.cambridge.org/core


2 R.F. Serrano and others

are current sheets, which are ribbon-shaped regions of high electric current density.
Current sheets have also been identified in simulations of collisionless plasmas where
the full kinetic equations are solved (e.g., Comisso & Sironi 2018, 2019).

Several groups have performed statistical studies of current sheets in MHD turbu-
lence to categorize their geometric distributions (Servidio et al. 2010; Uritsky et al.
2010; Zhdankin et al. 2013, 2014, 2016, 2017a; Ross & Latter 2018). They measured
the distribution of the width, length and thickness of the current sheets. The results
revealed that the current sheets are indeed self-similar structures, and their geometric
components obey power-law or exponential distributions. In addition, recent works
have detected and analysed current sheets in collisionless regimes (Makwana et al.
2015; Azizabadi, Jain & Büchner 2021; Sisti et al. 2021; Bussov & Nättilä, 2021).
Others have also attempted to associate the properties of current sheets with the
statistical distribution of turbulent field fluctuations, including recent works on rel-
ativistic MHD (Chernoglazov, Ripperda & Philippov 2021) and kinetic turbulence
(Davis, Comisso & Giannios 2024).

Here, we focus on current sheets in fully kinetic simulations of magnetically domi-
nated (relativistic) plasma turbulence. In the magnetically dominated regime, a large
reservoir of magnetic energy is available to cascade down and dissipate, leading
to heating and acceleration of non-thermal particles. None of the previous studies
have performed the geometric statistical analysis in this regime of turbulence, which
has vA ≈ c, where vA is the Alfvén velocity and c is the speed of light. Relativistic
kinetic turbulence is an area of active study in recent years, spurred by progress
with particle-in-cell (PIC) simulations (Zhdankin et al. 2017b; Comisso & Sironi
2018; Nättilä & Beloborodov, 2021; Vega et al. 2022; Meringolo et al. 2023; Singh
et al. 2024). It is relevant for many high-energy astrophysical systems (e.g., compact
objects and transients). The motivation of this study is to perform a two-dimensional
(2-D) statistical analysis of current sheets and compare/contrast with previous results
in the literature.

In this article, we apply the computer vision algorithm developed by Bussov &
Nättilä (2021) to 2-D fully kinetic (PIC) simulations of relativistic turbulence in pair
plasmas. Notably, we measure the distributions of spatial scales of current sheets
in the relativistic regime of kinetic turbulence. Section 2 describes the fundamental
time scales and length scales and presents analytical expectations for the statistical
scalings. In § 3, we discuss the numerical set-up of our PIC simulations, review the
machine-learning segmentation algorithm and define our spatial scale measurements.
In § 4, we present our measured distributions and their scaling indices. In § 5, we
discuss the similarities between our scaling indices and previous studies and the
implications for high-energy astrophysical plasmas.

2. Plasma length and time scales

We analyse the properties of current sheets in collisionless electron–positron pair
plasmas. We consider pair plasma with an average temperature 〈T 〉 (angular brack-
ets 〈·〉 indicate spatial averages in the remainder of the paper). Then, the average
dimensionless temperature is given by

θ ≡ kB〈T 〉
mec2

, (2.1)

where kB is the Boltzmann constant, me is the electron mass and c is the speed of
light.
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Scale statistics in relativistic turbulence 3

The plasma is magnetized by threading it with a uniform background field
B0 = B0ẑ. The dimensionless parameter quantifying the strength of the magnetic
field is the magnetization, given by

σ0 ≡ B2
0

4πn0mec2
, (2.2)

where n0 is the total particle number density.
The microscopic time scale of the plasma is characterized by the (cold) plasma

frequency,

ωp ≡
(

4πn0e2

me

)1/2

, (2.3)

where e is the electron charge. In relativistic plasmas, the plasma frequency also
defines the microscopic length scale of the system, known as the plasma skin depth,

c
ωp

=
(

mec2

4πn0e2

)1/2

. (2.4)

The (non-relativistic) gyrofrequency is

ωB = eB0

mec
. (2.5)

The related gyroradius is

rg ≡ c
ωB

〈p〉
mec

= σ
−1/2
0

c
ωp

〈p〉
mec

, (2.6)

where p is the momentum of the particle. In the following, we use the skin depth
c/ωp as the reference scale when measuring sizes. This choice is made because c/ωp
is the largest of the kinetic scales when σ0 > 1, thus determining the characteristic
width of structures.

1

2.1. Current sheet distributions
The predominant intermittent structures in magnetically dominated plasma tur-

bulence are current sheets.
2

In MHD turbulence, these structures are responsible
for a large fraction of the overall resistive dissipation (e.g., Zhdankin, Boldyrev
& Uzdensky 2016). In collisionless plasmas, they are likewise thought to be sites
of energy dissipation through either magnetic reconnection or other kinetic damp-
ing mechanisms (e.g., Wan et al. 2012; TenBarge & Howes 2013; Howes 2016;

1The formal relativistic versions of expressions (2.3) to (2.6) would have the average Lorentz factor of 〈γ 〉 =
〈(1 − v2/c2)−1/2〉 in front of the masses, where v is the particle velocity in the system rest frame, and the brackets
denote an average over particles.

2Apart from the electric current, J ∝ ∇ × B, vorticity of the velocity field, ζ ≡ ∇ × v, can be used to charac-
terize the local ‘rotation’ of the flow. In an analogue to current sheets, intermittent vorticity sheets exist in plasma
turbulence. We do not discuss vorticity sheets here since we focus on magnetically dominated plasmas.
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4 R.F. Serrano and others

FIGURE 1. Schematic illustration of a 3-D current sheet along a background magnetic field B0.
The two directions perpendicular to the magnetic field are denoted with the 2-D plane. The
length � of a sheet (blue curved segment), followed by the width of the sheet w (green line), and
the radius of curvature rc (orange line).

Parashar & Matthaeus 2016; Loureiro & Boldyrev 2017; Mallet, Schekochihin &
Chandran 2017; Ripperda et al. 2021; Nättilä & Beloborodov 2022; Borgogno et al.
2022; Chernoglazov, Hakobyan & Philippov 2023; Comisso & Jiang 2023; Davis
et al. 2024).

In domains with the full three spatial dimensions, current sheets have a ribbon-
like morphology and, therefore, can be ideally characterized by three scales (ignoring
curvature and finer structure). For 2-D simulations with an out-of-plane background
magnetic field B0, the largest scale is in the direction of B0, which we will ignore. The
remaining two scales are in the directions perpendicular to the background magnetic
field; we use the terminology length � and width w to describe these two scales,
ordered such that � > w. See figure 1 for a schematic view of our general definitions.
We emphasize that this differs from the terminology used in three-dimensional (3-D)
studies.

Numerical simulations of MHD turbulence exhibit current sheets that have a
broad distribution of possible values of �, spanning the turbulent inertial range;
in particular, the data are well-described by a power-law distribution when � is in the
inertial range,

P�(�) ≡ dNsheets

d�
∝ �−α , (2.7)

where Nsheets = ∫
P�(�) d� is the number of sheets, and α ≈ 3.3 is measured in MHD

turbulence simulations (Zhdankin et al. 2016). We note that α is used as a general
index for any power-law distribution in the following text. The widths, on the other
hand, mainly reside near the dissipation scale s, with a narrowly peaked distribution,
which we will approximate as

Pw(w) ≡ dNsheets(w)

dw
∝ exp

(
−w

s

)
, (2.8)

where s ∼ c/ωp. Furthermore, we measure the circular curvature of the current
sheets, rc, which may be expected to be a power-law distribution,

Prc(rc) ≡ dNsheets

drc
∝ r−α

c , (2.9)
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Scale statistics in relativistic turbulence 5

because the structures are distorted by turbulent eddies spanning a broad range
of scales. The power-law index for Prc(rc) is non-trivial to predict from theory. In
addition, we will be analysing the joint 2-D distributions,

Pw,�(w, �) ≡ ∂2Nsheets(w, �)

∂w ∂�
(2.10),

Pw,rc(w, rc) ≡ ∂2Nsheets(w, rc)
∂w ∂rc

(2.11)

and

Prc,�(rc, �) ≡ ∂2Nsheets(rc, �)

∂rc ∂�
, (2.12)

which capture the correlations between �, w and rc. The one-dimensional (1-D) dis-
tributions follow naturally from the marginalization of these distributions as, for
example, Pw(w) = ∫

Pw,�(w, �) d�. We anticipate that since w ∼ s ∼ c/ωp, the width
will be weakly correlated (if at all) with the other scales. The correlation between rc
and � is non-trivial to predict, in general, since structures of varying lengths will be
distorted by different populations of turbulent eddies. However, we note that rc ∝ �
if the relative curvature of the structure is scale independent (i.e., the typical shape
of a curved structure is independent of its length).

3. Methods
3.1. Numerical methods and set-up

We analyse the 2-D freely evolving (decaying) turbulence simulations presented in
Nättilä & Beloborodov (2021). Here, we briefly review the simulation set-up, and
initial conditions and refer the reader to the original paper for more details.

The simulations are initialized with a homogeneous pair plasma with a uniform
density n±,0 and an initial temperature θ0 = 0.3. The plasma is threaded by a uni-
form out-of-plane magnetic field B0 = B0ẑ. To seed the turbulence, we perturb the
magnetic field in the directions perpendicular to the magnetic field, B⊥ = (Bx, By, 0)
with sinusoidal large-scale modes with wavelength l0 = L/8 (where L is the size of the
full simulation domain). The initial perturbation has amplitude Brms⊥ /B0 = 1, where

Brms⊥ =
√

〈B2⊥〉.
The simulations use the relativistic PIC module in the Runko framework (Nättilä

2022). The PIC algorithm evolves all three components of the electromagnetic fields
using a second-order finite-difference scheme, while particles evolve in time using a
relativistic Boris pusher. These simulations are 2.5D; i.e., all three components of
the particle momenta and fields are retained, while there is variation in only two
spatial coordinates. In addition, we impose doubly periodic boundary conditions on
the domain and perform eight passes of digital current filtering at each time step.
The current filtering is performed immediately after the particle’s current deposition
using a three-point binomial filter to smooth out the numerical noise that results
from a finite number of computational particles.

The 2-D domain in our simulations is a square in the x–y plane of size L =
1024c/ωp, and it is covered with 51202 cell resolution. The (initial) plasma skin depth
is resolved by five grid cells. In our 2-D simulations, we initialize fluctuations on a
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6 R.F. Serrano and others

scale of l0 ≈ 125c/ωp. We simulate the turbulence for 20l0/c. We focus on two sim-
ulations with σ0 = 1 and 10, which correspond to the transrelativistic (magnetically
dominated) regime. During the simulation, the plasma heats up and so θ0 increases
(see figure 6 in Nättilä & Beloborodov (2021)). For our simulation with σ0 = 1
at t = l0/c, we measure θ ≈ 0.45 which then increases to θ ≈ 0.60 at t = 15l0/c.
Similarly, for the case of σ0 = 10, we first measure θ ≈ 0.50 which then increases to
θ ≈ 2.70. Thus, the temperatures become only mildly relativistic, and it is reasonable
to use the non-relativistic expressions for kinetic scales from § 2.

We present six visualizations of one of our simulations with σ0 = 10 at t = 4.6 l0/c
in figure 2. The magnetic eddies are visible for the fully developed turbulence as large
plasma over-densities (figure 2a). Secondly, we can visually trace out two types of
structure in the out-of-the-plane current density component Jz (figure 2b): elongated
stripes (current sheets) and circular spots (plasmoids). These same structures are also
visible as coherent structures in the (perpendicular) magnetic field B⊥ (figure 2c):
the current sheets coincide with regions of alternating magnetic fields (in between
colliding plasmoids). The plasmoids coincide with the location of magnetic loops.
The regions with current sheets (with antiparallel fields) are prominent locations
of energy dissipation. The sheet regions can be associated with areas of energy
dissipation when visualizing the work done by the electric field ∝ J · E (figure 2d).
We note that a significant fraction of the regions with high electric currents have
magnetic fields that are parallel (rather than antiparallel) on both sides (Ha et al.
2024).

A standard method to segment the current sheets into individual structures is to
apply a threshold in the current density. To illustrate this method, we trace out the
outlines of the sheets by applying a threshold of Jz/Jrms > 3 (figure 2e). In our case,
however, we use the regions originating from a more advanced region-of-interest
(ROI) detection (measured at a time 4l0/c), relying on a computer vision segmenta-
tion algorithm presented in Bussov & Nättilä (2021) (figure 2f ). Such segmentation
method has the advantage that it clusters the sheets based on not only the electric
current but also other features; this enables us to separate the current sheets and
plasmoid cores from each other. The details of the method are given in the next
section.

3.2. Overview of the machine-learning algorithm
We employ the unsupervised ensemble machine-learning algorithm developed by

Bussov & Nättilä (2021) to segment the current sheets from fully kinetic plasma tur-
bulence simulations. The algorithm is an ensemble extension of the self-organizing
map (SOM) algorithm (Kohonen 2001, 2013) dubbed ‘statistically combined ensem-
ble’ (SCE), which merges multiple (independent) SOM evaluations together, hence
increasing the robustness of the ROI boundaries.

Briefly, we outline how the algorithm works. We apply the SOM algorithm to
our simulation snapshots and cluster the data using three features: B⊥, Jz and Jz ·
E, where B⊥ is the (in-plane) perpendicular magnetic field, Jz, is the (out-of-the-
plane) parallel component of the current and Jz · E is a measure of the work done
by the electric field E. Each pixel on the image then defines a multidimensional
feature-space data point.

The SOM algorithm is based on a 2-D network of neurons that are trained to
approximate the multidimensional (feature-space) data. In practice, the map can be
thought of as a (finite) surface that is fitted to the input data points. Conversely,
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Scale statistics in relativistic turbulence 7

FIGURE 2. Visualization of the analysed turbulence data measured at time t = 4.6l0/c: plasma
density n/n0, where n0 is the initial plasma density (a); out-of-the-plane current density Jz/n0ec

(b); strength of the in-plane magnetic field component
√

B2
x + B2

y/B0, and the field lines (red
curves), where B0 is the initial guide field strength (c); a proxy of the work done by the parallel
electric field J · E/

√〈(J · E)2〉 in units of the root mean square value (d); regions of the cur-
rent density with J/Jrms > 3, where Jrms = √〈J2〉 (e); and, current sheet regions from the SCE
algorithm (f ). The SCE algorithm is shown at t = 4.0l0/c.
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8 R.F. Serrano and others

each feature-space data point can be associated with a best-matching neuron on the
map. The map defines a latent (reduced) data space for the input data.

The neural map is then used to cluster the feature-space data into different groups
by associating a region on the map (i.e., a set of connected neurons) as one data
cluster. The (feature-space) distance between the neurons defines a convenient cost
function to separate the neurons into a finite number of clusters. In theory, the
number of resulting clusters is arbitrary. Still, in practice, the map often has distinct
regions of closely connected neurons that help set the number of resulting clusters
from the analysis. In our case, the SOM algorithm results, on average, in four distinct
clusters, one of which is the current sheets (see, Bussov & Nättilä (2021) for more
details).

3

In practice, we use an ensemble version of the SOM to segment the sheets. This
so-called SCE method combines multiple SOM segmentations into one clustering
realization to increase the signal-to-noise ratio of each ROI boundary. In general,
our machine-learning-based segmentation method should be contrasted with the pre-
viously used threshold technique, where the boundaries of the current sheets are
found by setting a threshold value for the magnitude of the electric current (see
figure 2f ). We emphasize that our definition of a current sheet is more complex
than what results, e.g., from segmenting the sheets with the threshold method: our
definition of the current sheets is based on a combination of all three input features.
The second reason, in addition to the more generic definition of the current sheet
cluster, is that the SCE method is computationally faster, making it feasible to con-
struct large structure catalogues. We note, however, that the algorithm is currently
calibrated only on 2-D data, so we focus on that here.

3.3. Measurements
The following section presents our definitions of geometric length and width.

Specifically, we analyse a time series of 2-D masks separated by 
t = 1l0/c for two
simulations with σ0 = 1 and σ0 = 10. We analyse a time interval, l0/c� t � 15l0/c
when the turbulence is fully developed but still sustains large amplitude fluctuations.
In practice, when analysing the structures, we use the open-source geometry library
‘Shapely’ (Gillies et al. 2024) to automate the geometric analysis of the structures.
First, we dissect each independent closed contour in a mask into (x, y) coordinate
lists that trace the element’s boundary. This procedure is repeated for every mask in
the time series. Specifically, we use the Shapely.Polygon class, which takes a set of
Np data points and connects the chain of coordinate points into a ‘ring’. We gener-
ate an instance of this polygon class for each structure in a given image. Once we
generate the Polygon class to represent the current sheet, we measure its perimeter
S (= ∮

ds, where the line integral is performed along the closed curve around the
polygon) and use it to define a robust estimator of the sheet length � as

S≈ 2� + 2w ≈ 2�, (3.1)

so that � ≈ S/2, where we assumed that w 
 � in the second part of the equation.
We also tried measuring � by taking the pairwise distance between each coordinate
point and identifying the largest distance as �. However, we forgo this definition

3The clustering analysis also identifies plasmoids as a separate cluster. Here, we omit the analysis of that
cluster because the chosen 2-D geometry makes the plasmoids longer-lived compared with three dimensions.
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Scale statistics in relativistic turbulence 9

FIGURE 3. Examples of current sheets in our catalogue. Individual current sheets of varying
length, �, and radius of curvature, rc, are visualized in the transformed position space (x′, y′)
using (A1) and (A2). The three red points mark the locations used to calculate the curvature
radius using (C2). The green line shows the arc of the circle passing through the three points,
with the centre calculated using (C6).

since we find it to be a noisier estimator of �. We also note that when accounting
for the possible curvature of the structure, the natural length is the arclength of the
structure, not the distance along the structure’s longest dimension; therefore, our
definition � also naturally includes the curvature effects.

To measure the width (see appendix A for the full derivation), we take each struc-
ture and calculate the major axis of each sheet, which is defined as the largest
distance between any set of points. Then, we rotate the structure such that its major
axis lies on the x axis. Then, we translate the structure to the origin. Once in this
new reference frame, we measure the width using (B1).

Finally, we introduce a measurement of the curvature of the current sheet, dubbed
‘curvature radius’, rc. The radius of curvature is calculated by fitting a circle through
the three points on the curve: leftmost point, centre point and rightmost point (in
the new reference frame described above). Then, a circle with a radius rc can be
defined to pass through each point. In the limit that the curvature radius rc → 0, the
structure is highly curved, and as rc → ∞, the structure becomes flat. We detail our
simple circle fitting algorithm in appendix C.

In figure 3, we display representative examples from the resulting current sheet
catalogue for the simulation with σ0 = 10. These examples show that most of the
sheets have approximately constant width w.

Lastly, the approximation of the sheet curvature as part of a circle’s arc seems
appropriate in almost all cases; in total, we find that only approximately 0.5 % of the
sheets can not be adequately modelled as arcs (but are, e.g., S- or L-shaped). Such
non-standard morphologies can sometimes result from the interactions and mergers
of sheets.

4. Results

Our catalogue contains ≈13 000 individual objects for σ0 = 1 and ≈10 000 for
σ0 = 10 simulations. Each time snapshot contains, on average, ≈1 000 current
sheets and provide detailed time-dependent statistics of the structures. The total
volume-integrated magnitude of the electric current closely traces the evolution
of the decaying turbulence: for t = 0 to ∼ 3 l0/c, we observe an initial transient
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10 R.F. Serrano and others

FIGURE 4. The filling fraction of current sheets, f , of our simulation of σ0 = 10 measured
at 4.6l0/c, as function of Jthr/Jrms (blue line), where Jthr is the threshold factor, and where
Jrms = √〈J2〉 is the root mean square of the current density. The star symbol denotes the fill-
ing fraction measured using our machine-learning algorithm. We also fit the MHD data from
Zhdankin et al. (2016) (green line).

period where the turbulent structures form and the magnitude of the electric current
rapidly grows; for t � 3 l0/c, the turbulence decays and the magnitude of the current
decreases slowly (see also, e.g., Nättilä & Beloborodov 2021). The analysed current
sheets are long-lived intermittent structures and their time evolution is analysed and
discussed in more detail, e.g., in Imbrogno et al. 2024.

We calibrate our current sheet identification method with the previous method of
‘thresholding’ used in Zhdankin et al. (2014) and Zhdankin et al. (2016). In figure 4,
we plot the volume filling fraction f of the structures occupying pixels having current
densities |J| > Jrms, where Jrms is a threshold parameter that we vary. The filling
fraction of the structures with current densities above the threshold exhibits a steep
exponential decay at low Jthr/Jrms < 3, which then flattens to a less steep decay for
Jthr/Jrms > 3. We also compare our results with the MHD analysis by Zhdankin et al.
(2016) which shows a very similar behaviour for Jthr/Jrms > 3. We find that the filling
fraction of structures detected by the SCE algorithm agrees with the thresholding
method when Jthr/Jrms ≈ 3 (the red star in figure 4). This indicates the ‘effective’
threshold of the SCE algorithm.

In figure 5, we plot the width distribution, Pw(w), of our current sheets for both
values of σ0 = 1 and 10. The distribution resembles an exponential distribution,
peaking at around 3 c/ωp. Qualitatively, the distributions are best modelled with an
exponential function, exp ( − wωp/c). The width distribution does not greatly vary
over time.

In figure 6, we visualize the length distribution of our current sheets, P�(�), and
similarly to the width distribution, we find that the distribution remains roughly
constant over time. The distribution can be modelled as a power-law distribution
with an index, α = 2.5. The distribution peaks at 5c/ωp, and extends to ∼100 c/ωp;
i.e., close to the initial energy-carrying scale l0 of the simulation.

Next, in figure 7, we visualize the curvature distribution Prc(rc) (although we
omit structures with � < 7.5c/ωp because the curvature measurement becomes unre-
liable for very short structures). The distribution is a clear power-law with an index
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FIGURE 5. Width distributions, dN/dw, for simulations with initial σ0 = (1, 10). Two reference
exponential fits with the corresponding index are shown in the legend.

FIGURE 6. Length distribution, dN/d�, for simulations with initial σ0 = (1, 10). Three reference
power laws with the corresponding index are shown in the legend.

FIGURE 7. Radius of curvature distributions, dN/drc, for simulations with initial σ0 = (1, 10).
Two reference power laws with the corresponding index are shown in the legend. This distribu-
tion is restricted to current sheets with � > 7.5c/ωp, to avoid spurious measurements from small
structures.
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12 R.F. Serrano and others

FIGURE 8. The 2-D histogram correlating the average width and length distributions for
simulations with initial σ0 = 1, 10. The power law index fits the distributions shown in the
legend.

FIGURE 9. The 2-D histogram correlating the radius of curvature and length distributions for
simulations with initial σ0 = 1, 10. The power law index fits the distributions shown in the
legend.

α = 2.0. The distribution peaks at 3 c/ωp, and extends to approximately 1000 c/ωp.
The distribution is steady in time, with no significant evolution.

Furthermore, we study the 2-D joint distributions of the width and length,
Pw,�(w, �), in figure 8. We find no clear scaling between the two quantities. The dis-
tribution is bounded such that the upper limits of the distribution are fit by w ∝ �α ,
where α = 1.0. We fit 2 log10 (�) for the lower bound.

Similarly, in figure 9, we visualize the 2-D distributions of the curvature and length,
Prc,�(rc, �). The mean value of the sheets linearly scales with � (dark orange line).
This suggests that the relative curvature to size is the same for all �. Additionally,
we find that the distribution can be traced with rc ∝ �/π . We also show a fit that
corresponds to rc ∝ �α/2, where α = 1. One final note is that at � < 7c/ωp the cur-
vature measurement becomes unreliable and one can see a small ‘cluster’ of points
at rc ≈ 100c/ωp and rc ≈ 300c/ωp − 400c/ωp.

Finally, in figure 10, we visualize the 2-D distribution of the width and curvature,
Pw,rc(w, rc). Here, no strong correlation is seen. The upper end of the distribution
is traced with w ∝ �α , where α = 1. Since the structures have widths close to the
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FIGURE 10. The 2-D histogram correlating the width and radius of curvature distributions for
simulations with initial σ0 = 1, 10. The power law index fits the distributions shown in the
legend.

dissipation scale, it seems reasonable that they are independent of the curvature,
which is more likely sensitive to MHD-scale fluctuations.

5. Discussion

We have analysed various length statistics of tens of thousands of current sheets
found in freely evolving (decaying) plasma turbulence. In particular, we have found
the following.

(i) The current sheet length distribution has a power law tail with index α = 3.3;
it is shallower (α ≈ 2) at small lengths (�� 30 c/ωp).

(ii) The width distribution is sharply peaked at w ∼ 3 c/ωp; it resembles an expo-
nential decay at higher w. There is a slight logarithmic increase of w as a
function of �.

(iii) The characteristic curvature radius is rc ∼ �/2, hence the sheets are slightly
curved. However, we find that short (� ∼ 10 c/ωp) sheets are often flatter
(larger rc); hence, the curvature distribution is a shallower distribution than
the length distribution (as seen by the 1-D histogram indices), with α = 2.0.

(iv) All distributions have weak (or no) time dependence as the turbulence evolves
during the studied period of fully developed turbulence.

(v) All distributions have weak (or no) magnetization dependency in the consid-
ered range 1 � σ0 � 10.

(vi) In addition, we calibrated the machine-learning-based identification algorithm
of Bussov & Nättilä (2021) against the thresholding method. We found that
the filling fraction of current sheets in our algorithm matches the thresholding
method at a value of Jthr/Jrms = 3.

The limitations of our study are mainly due to our algorithm being 2-D. This is a
simplification since, in this case, the sheets have a simpler topology to character-
ize. In three dimensions, the current sheets can have much more complex shapes.
Ultimately, however, the analysis must be generalized to full three dimensions to
obtain physically realistic sheet distributions.
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14 R.F. Serrano and others

Many possible extensions of the work can also be devised. For example, it is possi-
ble to measure plasma parameters (e.g., plasma-β, real magnetization σ , temperature
T , the ratio of reversing field to guide field δB/B0, etc.) upstream from the current
sheet using the SCE algorithm, as done in Nurisso et al. (2023), to gather informa-
tion about the particle acceleration conditions. The sheet statistics should also be
studied in different parameter regimes by varying, e.g., the initial amplitude δB/B,
helicity and plasma composition (e.g., using an electron–ion rather than pair plasma
composition). In addition, different driving methods should be explored, such as
via wave collisions or purely compressive/solenoidal driving. These are expected to
change the turbulence intermittency and affect the sheet statistics. The presented
work is, therefore, only the first step in this direction. The differences between the
non-relativistic (σ0 
 1) and ultrarelativistic (σ0 � 1) regimes are not obvious and
will require more parameter studies.

Our findings are relevant to a broad range of astrophysical systems because
kinetic/MHD turbulence is also ubiquitous in those systems. Some problems where
intermittency of kinetic/MHD turbulence plays a crucial role are as follows.

(i) Black hole accretion flows and jets in low luminosity active galactic nuclei.
Their environments are expected to be magnetized and turbulent (e.g., Nättilä
2024). Most of the current efforts in supermassive black-hole accretion
flow modelling employ general relativistic MHD simulations (Event Horizon
Telescope Collaboration et al. 2019). However, ideal fluid simulations cannot
self-consistently model the temperature of electrons so the electron tempera-
ture profile is often ‘painted on’ via postprocessing (e.g., Mościbrodzka et al.
(2016); however, see Galishnikova et al. (2023) for a recent fully kinetic
general relativistic PIC simulations with realistic electron plasma physics).
Alternatively, some general relativistic MHD simulations employ a variety of
subgrid models to compute the electron and ion temperatures based on local
PIC simulations of magnetic reconnection (Ball, Sironi & Özel 2018; Werner
et al. 2018) or kinetic/MHD turbulent heating based models (Howes 2010;
Kawazura, Barnes & Schekochihin 2019; Meringolo et al. 2023).

(ii) The Crab pulsar wind nebula (PWN) is another example of a highly magne-
tized (σ0 � 1) environment that can accelerate particles to very high energies
(Rees & Gunn 1974; Kennel & Coroniti 1984a, b; Atoyan 1999). Recently, in
an attempt to resolve observational discrepancies of the Crab PWN with theo-
retical models, Luo et al. (2020) proposed a turbulent origin of the non-thermal
emission in the Crab PWN.

(iii) Cosmic ray diffusion in galactic environments, such as interstellar and inter-
cluster mediums, strongly depends on the turbulence physics (Ruszkowski &
Pfrommer 2023). It is still not understood what exactly scatters the cosmic
rays. However, one hypothesis is the intermittent structures in the turbulence
(Kempski et al. 2023; Lemoine 2023).

In summary, we have obtained the scaling distributions for the geometric prop-
erties of current sheets, including the length, width and radius of curvature. We
find that the length and radius of curvature distributions are well-approximated as
power-law distributions and the width distribution with an exponential function. This
information can be used to develop realistic subgrid models for turbulent heating in
the accretion flows of compact objects and other turbulent environments.
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Appendix A. Transformation to local coordinate frame
In this appendix, we describe the local coordinate system constructed for present-

ing example current sheets in figure 3 and for measuring the width. This coordinate
system is defined individually for each structure.

For each current sheet, we first need the perimeter points of the polygon, (xi, yi)
with i ∈ {1, . . . , Np}, where Np is the number of perimeter points identified by the
SOM algorithm.

4
First, we identify the left-hand (or right-hand) edges of the polygon

by finding the index iL (or iR) at which xi takes a minimal (or maximal) value
in the set {xi}; we denote the (Euclidean) distance between these points by rx =
[(xiR − xiL)2 + (yiR − yiL)2]1/2. Likewise, we identify the bottom (or top) edge of the
polygon by finding the index iB (or iT) at which yi takes a minimal (or maximal)
value in the set {yi}; we denote the distance between these points by ry = [(xiT −
xiB)2 + (yiT − yiB)2]1/2. The ‘major axis’ is then defined by the larger of rx and ry.

5

Next, we transform to a new coordinate system (x′, y′) such that the centre of the
polygon and the major axis is along the x′-axis. To achieve this, we define a vector
D that is oriented along the major axis,

D =
⎧⎨
⎩

(xiR−xiL ,yiR−yiL )
rx

rx > ry
(xiT−xiB ,yiT−yiB )

ry
otherwise

(A1)

and a rotation matrix

M =
[
Dx Dy
−Dy Dx

]
. (A2)

4Here, two special cases need to be discussed: (i) What happens if multiple points satisfy the criterion for being
the maximum or minimum coordinates? This tends to be the case for structures with complex topologies (e.g. if the
structure is a branchlike shape or deformed). We checked that these include at most ≈ 60 sheets out of our sample.
Thus, they are statistically negligible, and we will ignore them. (ii) How to account for the splitting of structures
when they cross the periodic boundary of the simulation? For simplicity, we do not account for this; However, in
that case, it should be noted that these structures are double-counted. We verified that there are O(10) such sheets
per time step, so they are not expected to influence our analysis.

5Note that this procedure is not coordinate invariant since it treats separations along the x and y directions as
special.
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To transform to the new coordinates (x′, y′) for each structure, we multiply the
original coordinates (x, y) by the rotation matrix M and then subtract the structure’s
‘average’ location from its position coordinates,

(x′
i, y′

i) = M · (xi, yi) − (〈xi〉, 〈yi〉) , (A3)

where 〈xi〉 and 〈yi〉 are the mean location values from the sets xi, and yi, respectively.

Appendix B. Algorithm for measuring the sheet width
Continuing the calculation from appendix A, we are now in the local coordinate

frame (x′
i, y′

i). In this frame, we calculate the width of each current sheet. First,
we must reidentify the left-hand (or right-hand) edges of the polygon in the local
coordinate frame; i′L (or i′R) at which x′

i takes a minimal (or maximal) value in the
set {x′

i} of points on the structure’s perimeter. Likewise, we reidentify the bottom (or
top) edge of the polygon by finding the index i′B (or i′T) at which y′

i takes a minimal
(or maximal) value in the set {y′

i}.
One simple method to calculate the width would be to take the (Euclidean) dis-

tance between the points (x′
i′T
, y′

i′T
) and (x′

i′B
, y′

i′B
). However, this definition may not

represent the overall structure if the current sheet’s width varies along its length.
Therefore, to define a better representation of the overall width, we take the addi-

tional step of breaking each current sheet into vertical strips and averaging the width
across the strips. The first step is to divide each sheet into a ‘top’ half and ‘bottom’
half along the direction parallel to x′

i. We begin from x′
i′L

, and find its y′-coordinate

y′
i′L

, and similarly, we take x′
i′R

and find it’s y′-coordinate pair y′
i′R

. Next, we begin

sorting the y′-coordinate pairs into two new arrays, yi,top and yi,bot in the following
manner. We begin from x′

i at i = 1 and begin looping through i until x′
i′L

= x′
i, or

x′
i′R

= x′
i. In the former case, we append the values of y′

i to yi,top(x′
i), and in the later

case we append y′
i to yi,bot(x′

i). This process iterates until we reach i = Np.
Next, we use the ‘scipy.interpolate’ subpackage (Virtanen et al. 2020) to interpo-

late between y′
i,top(x′

i) and y′
i,bot(x

′
i) using an array of points linearly spaced between

x′
i′L

and x′
i′R

, thus creating two new arrays y′′
top(x′

i) and y′′
bot(x

′
i) of the y′ coordinates

corresponding to {x′
i}. This allows us to create vertical slices (along the y′-axis), and

then we average over the sum of the slices to obtain our width,

w = 1

Nx

Np∑
i=1

∣∣∣ y′′
top(x′

i) − y′′
bot(x

′
i)

∣∣∣ , (B1)

where Nx = 50 is the number of points we use to generate the interpolator. We have
found this method to yield a more robust estimate of w in comparison with just using
a slice (e.g., w ≈ |y′′

top(x′
s) − y′′

bot(x
′
s)| at location x′

s = 1
2 |x′

iL − x′
iR |) or averaging using

the number of available pixels only. The reason for that is that the width of the sheet
can vary along the length.

Appendix C. Algorithm for calculating the parameters of a circle fitted through
three points

Here, we summarize the algorithm that we use to calculate the radius of curvature
of a given current sheet and the centre of the circle. The algorithm is based on
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the curve fitting algorithms listed in Umbach & Jones (2003). More sophisticated
methods, using more than three points, could also be used to obtain a ‘best fit’ circle
instead.

We begin by choosing three points in our current sheet; the first two are x′
iL and x′

iR
described above, and the third point is obtained by first calculating the half width
at the centre of the sheet using (B1); i.e., yh = 1/2|y′′

top(x′
s) − y′′

bot(x
′
s)| at location

x′
s = 1

2 |x′
iL − x′

iR |. Then we obtain the midpoint ym = yh + y′′
bot(x

′
s). These points are

marked by red dots in figure 3. Next we map the three points into the complex
numbers (z′

1, z′
2, z′

3); using the definition z′ = x′ + √−1y′.
We then apply a linear transformation to (z′

1, z′
2, z′

3); i.e.,

z′
j →

z′
j − z′

1

z′
2 − z′

1
, (C1)

which results in z′
1 → 0, z′

2 → 1 and z′
3 → (z′

3 − z′
1)/(z′

2 − z′
1) ≡ u. Here z′

1 is the left-
hand point of the structure, z′

2 is the right-hand point of the structure and finally, z′
3

is the middle point in the structure.
We can then use the relationship |z′

j − C| = rc (where rc is the radius of curvature
of the circle fit, C is the coordinates of the circle’s centre, and j ∈ {1, 2, 3}) to obtain
the following system of equations:

|z′
1 − C|2 = |C|2 = r2

c (C2)
,

|z′
2 − C|2 = 1 − C − C + |C2| = r2

c (C3)
,

|z′
3 − C|2 = |u|2 − uC − uC + |C|2 = r2

c . (C4)

We solve C from (C2)–(C4). The centre of the circle is then

C = u − |u|2
u − u

. (C5)

Finally, we undo the linear transformation, which yields the centre of the circle in
our original coordinates,

C → (z′
2 − z′

1)
u − |u|2
u − u

+ z′
1 . (C6)

Therefore, we now have C, and using (C2), we obtain the radius of curvature, rc.
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