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Abstract
A conjecture of Jackson from 1981 states that every d-regular oriented graph on n vertices with 𝑛 ≤ 4𝑑 + 1 is
Hamiltonian. We prove this conjecture for sufficiently large n. In fact we prove a more general result that for all
𝛼 > 0, there exists 𝑛0 = 𝑛0 (𝛼) such that every d-regular digraph on 𝑛 ≥ 𝑛0 vertices with 𝑑 ≥ 𝛼𝑛 can be covered
by at most 𝑛/(𝑑 + 1) vertex-disjoint cycles, and moreover that if G is an oriented graph, then at most 𝑛/(2𝑑 + 1)
cycles suffice.
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1. Introduction

A Hamilton cycle in a (directed) graph is a (directed) cycle that visits every vertex. Hamilton cycles
are one of the most intensely studied structures in graph theory and there are numerous results that
establish (best-possible) conditions guaranteeing their existence. The seminal result of Dirac [7] states
that every graph on 𝑛 ≥ 3 vertices with minimum degree at least 𝑛/2 is Hamiltonian. Ghouila-Houri
[12] showed the corresponding version in directed graphs (digraph for short), that is, every digraph on
𝑛 ≥ 3 vertices with minimum semi-degree at least 𝑛/2 (i.e., every vertex has in- and outdegree at least
𝑛/2) is Hamiltonian. These bounds are tight by taking for instance the disjoint union of two cliques (a
regular extremal example) or a slightly imbalanced complete bipartite (di)graph (an irregular extremal
example). Recall that an oriented graph is a digraph that can have at most one edge between each pair
of vertices (whereas a digraph can have up to two, one in each direction). For oriented graphs, a more
recent result of Keevash, Kühn, and Osthus [17] established a (tight) minimum semi-degree threshold
of �(3𝑛 − 4)/8� for Hamiltonicity. In contrast to graphs and digraphs, there are no regular extremal
examples for this result. Jackson [16] conjectured in 1981 that regularity actually reduces the degree
threshold significantly for oriented graphs:

Conjecture 1.1 (Jackson [16]). For each 𝑑 > 2, every d-regular oriented graph (i.e., every vertex has
d in- and outneighbours) on 𝑛 ≤ 4𝑑 + 1 vertices has a Hamilton cycle.

The disjoint union of two regular tournaments shows that Jackson’s conjecture is best possible. This
example works for 𝑛 ≡ 2 (mod 4) (since regular tournaments require an odd number of vertices), but
similar examples exist for 𝑛 ≡ 0, 1, 3 (mod 4) (see Section 1.2).

We note that an approximate version of Jackson’s conjecture was recently verified by the current
authors in [27], that is, for every 𝜀 > 0, there exists 𝑛0 (𝜀) such that every d-regular oriented graph on
𝑛 ≥ 𝑛0 (𝜀) vertices with 𝑑 ≥ (1/4 + 𝜀)𝑛 is Hamiltonian. Here, we verify the exact version for large n.

Theorem 1.2. There exists an integer 𝑛0 such that every d-regular oriented graph on 𝑛 ≥ 𝑛0 vertices
with 𝑛 ≤ 4𝑑 + 1 has a Hamilton cycle.

Generalizing questions about Hamilton cycles, one can consider the question of covering the vertices
of a (di)graph with as few vertex-disjoint cycles as possible. Indeed, we prove Theorem 1.2 by showing a
more general result about covering regular digraphs and oriented graphs with few vertex-disjoint cycles.

Theorem 1.3. For all 𝛼 > 0, there exists 𝑛0 = 𝑛0 (𝛼) such that every d-regular digraph G on 𝑛 ≥ 𝑛0
vertices with 𝑑 ≥ 𝛼𝑛 can be covered by at most 𝑛/(𝑑 + 1) vertex-disjoint cycles. Moreover, if G is an
oriented graph, then at most 𝑛/(2𝑑 + 1) cycles suffice.

This is best possible by considering the disjoint union of complete digraphs of order 𝑑+1 for digraphs
and the disjoint union of regular tournaments of order 2𝑑 + 1 for oriented graphs. Notice that we have
𝑛/(2𝑑 + 1) < 2 when 𝑛 ≤ 4𝑑 + 1, so that Theorem 1.3 implies Theorem 1.2. We also point out that the
proof of Theorem 1.3 in fact shows that each cycle is relatively long (of length at least 𝑑/2).

Theorem 1.3 generalizes the following result of Gruslys and Letzter [13] from regular graphs to
regular digraphs and oriented graphs.

Theorem 1.4 (Gruslys and Letzter [13]). For all 𝛼 > 0, there exists 𝑛0 = 𝑛0 (𝛼) such that every d-regular
graph on 𝑛 ≥ 𝑛0 vertices with 𝑑 ≥ 𝛼𝑛 can be covered by at most 𝑛/(𝑑 + 1) vertex-disjoint cycles.

Theorem 1.3 implies Theorem 1.4 by making every edge into a directed 2-cycle.
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1.1. Related work

Theorem 1.3 also has connections with several well-studied problems in extremal graph theory: here we
mention some of them.

1.1.1. Path cover
A weaker version of cycle cover is path cover. The path cover number of a (di)graph G, denoted by 𝜋(𝐺),
is the minimum number of vertex-disjoint (directed) paths needed to cover 𝑉 (𝐺). This was introduced
by Ore [30], and he showed that 𝜋(𝐺) ≤ 𝑛−𝜎2 (𝐺) holds where 𝜎2(𝐺) denotes the minimum sum of the
degrees over all non-adjacent vertices. Magnant and Martin [28] conjectured that regularity significantly
reduces the upper bound for 𝜋(𝐺):

Conjecture 1.5 (Magnant and Martin [28]). If G is a d-regular graph on n vertices, then 𝜋(𝐺) ≤

𝑛/(𝑑 + 1).

It is known that Conjecture 1.5 holds for small values of d (see [28] for 𝑑 ≤ 5 and see [9] for 𝑑 = 6).
Han [15] showed that, for dense graphs, it is enough to use 1 + 𝑛/(𝑑 + 1) paths to cover almost all
vertices. Also, Theorem 1.4 verifies Conjecture 1.5 in the dense case. It is worth noting that the Linear
Arboricity Conjecture [2] implies Conjecture 1.5 for odd values of d, and gives 𝜋(𝐺) ≤ 2𝑛/(𝑑 + 2) for
general d (see [9] for a detailed discussion).

For digraphs, the classical result of Gallai and Milgram [11] states that 𝜋(𝐺) can be bounded above
by the size of the maximum independent set (and Dilworth’s [6] theorem says that equality holds for
the special case of posets). As our Theorem 1.3 generalizes Theorem 1.4 from graphs to digraphs and
oriented graphs, we believe the following stronger version of Conjecture 1.5 holds, which Theorem 1.3
establishes in the dense case.

Conjecture 1.6. If G is a d-regular digraph on n vertices, then 𝜋(𝐺) ≤ 𝑛/(𝑑 + 1). Moreover, 𝜋(𝐺) ≤
𝑛/(2𝑑 + 1) holds if G is oriented.

Also, Conjecture 1.6 implies Conjecture 1.5 by making every edge into a directed 2-cycle.

1.1.2. Extending perfect matchings
Gruslys and Letzter [13], as well as proving Theorem 1.4, proved that every large d-regular bipartite
graph G on n vertices with d linear in n can be covered by at most 𝑛/2𝑑 vertex-disjoint paths. They
mentioned that one should be able to replace paths by cycles. Indeed, as a corollary of Theorem 1.3, the
result below shows that those cycles can be found in such a way that they even contain any prescribed
perfect matching.

Corollary 1.7. For all 𝛼 > 0, there exists 𝑛1 = 𝑛1 (𝛼) such that, for every d-regular bipartite graph on
𝑛 ≥ 𝑛1 vertices with 𝑑 ≥ 𝛼𝑛, any perfect matching can be extended to vertex-disjoint cycles covering
all vertices with at most 𝑛/2𝑑 cycles.

Proof of Corollary 1.7. Let 𝛼 > 0 and 𝑛1 = 2𝑛0 (𝛼), where 𝑛0 is the function given in Theorem 1.3.
Let G be a d-regular bipartite graph on 𝑛 ≥ 𝑛1 vertices with 𝑑 ≥ 𝛼𝑛 and vertex classes X and Y. Since
G is bipartite and regular, n is even and |𝑋 | = |𝑌 | = 𝑛/2. Let M be any perfect matching of G. Let
𝑋 = {𝑥1, . . . , 𝑥𝑛/2} and 𝑌 = {𝑦1, . . . , 𝑦𝑛/2} be such that 𝑥𝑖𝑦𝑖 ∈ 𝐸 (𝑀) for all i. Define the digraph H
on X such that for any distinct 𝑖, 𝑗 ∈ [𝑛/2], 𝑥𝑖𝑥 𝑗 ∈ 𝐸 (𝐻) if and only if 𝑥𝑖𝑦 𝑗 ∈ 𝐸 (𝐺). Note that H is
(𝑑 − 1)-regular on 𝑛/2 vertices. By Theorem 1.3, H can be covered by at most 𝑛/2𝑑 vertex-disjoint
cycles. Note that a (directed) cycle 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖ℓ in H corresponds to a cycle 𝑥𝑖1 𝑦𝑖2𝑥𝑖2 𝑦𝑖3 . . . 𝑥𝑖ℓ 𝑦𝑖1 in G.
Therefore G can be covered by at most 𝑛/2𝑑 vertex-disjoint cycles that contain all the edges of M. �

Note that Corollary 1.7 is tight by considering the disjoint union of 𝑛/2𝑑 many 𝐾𝑑,𝑑’s. It also shows
that d-regular bipartite graphs on n (sufficiently large) vertices with 𝑑 > 𝑛/4 are examples of graphs in
which every perfect matching can be extended into a Hamilton cycle. This property is called the PMH-
property in [1]. Häggkvist [14] initiated the study of sufficient conditions for the PMH-property (using
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the name F-Hamiltonian where F is a perfect matching) by showing 𝜎2(𝐺) ≥ 𝑛 + 1 is sufficient. Las
Vergnas [24] proved a similar condition for bipartite graphs, which also (almost) implies Corollary 1.7
in the case 𝑑 > 𝑛/4, and Yang [35] gave minimum edge density conditions to guarantee the PMH
property in graphs and bipartite graphs. In the sparse setting, as a special case of a conjecture of Ruskey
and Savage [32], Fink [10] proved that the hypercube has the PMH-property.

1.2. Extremal examples for Conjecture 1.1

We end the introduction with the deferred examples from earlier. Note that we give a general overview
of the paper at the end of the next section.

Recall that the disjoint union of two regular tournaments on 𝑛/2 vertices shows that Jackson’s
conjecture (Conjecture 1.1) is best possible. This example works when 𝑛 ≡ 2 (mod 4) and similar
examples for other values of n are constructed as follows. When 𝑛 ≡ 0 (mod 4), we take the disjoint
union of two complete graphs on 𝑛/2 vertices, remove a perfect matching, and orient the edges so that
the resulting oriented graph is regular. When 𝑛 ≡ 3 (mod 4), we take a disjoint union of a regular
tournament on (𝑛 − 1)/2 vertices and a regular orientation of the complete graph minus a perfect
matching on (𝑛 + 1)/2 vertices. When 𝑛 ≡ 1 (mod 4), we take a regular orientation of a disjoint union
of a clique minus a perfect matching on (𝑛 − 1)/2 vertices and a clique minus a Hamilton cycle on
(𝑛 + 1)/2 vertices.

2. Notation and preliminaries

Throughout the paper, we use standard graph theory notation and terminology. For 𝑘 ∈ N, we sometimes
denote the set {1, 2, . . . , 𝑘} by [𝑘]. For a digraph G, we denote its vertex set by 𝑉 (𝐺) and its edge set
𝐸 (𝐺), and sometimes write |𝐺 | := |𝑉 (𝐺) | and 𝑒(𝐺) := |𝐸 (𝐺) |. For 𝑎, 𝑏 ∈ 𝑉 (𝐺), we write 𝑎𝑏 for the
directed edge from a to b. We write 𝐻 ⊆ 𝐺 to mean H is a subdigraph of G (i.e., 𝑉 (𝐻) ⊆ 𝑉 (𝐺) and
𝐸 (𝐻) ⊆ 𝐸 (𝐺)). We sometimes think of 𝐹 ⊆ 𝐸 (𝐺) as a subdigraph of G with vertex set consisting
of those vertices incident to edges in F and with edge set F. We write 𝐺 − 𝐹 for the digraph obtained
from G by deleting the edges in F. For 𝑆 ⊆ 𝑉 (𝐺), we write 𝐺 [𝑆] for the subdigraph of G induced
by S and 𝐺 − 𝑆 for the digraph 𝐺 [𝑉 (𝐺) \ 𝑆]. For 𝐴, 𝐵 ⊆ 𝑉 (𝐺) not necessarily disjoint, we define
𝐸𝐺 (𝐴, 𝐵) := {𝑎𝑏 ∈ 𝐸 (𝐺) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and we write 𝑒𝐺 (𝐴, 𝐵) := |𝐸𝐺 (𝐴, 𝐵) |1. We often drop
subscripts if these are clear from context. For two digraphs 𝐻1 and 𝐻2, the union 𝐻1 ∪𝐻2 is the digraph
with vertex set 𝑉 (𝐻1) ∪𝑉 (𝐻2) and edge set 𝐸 (𝐻1) ∪ 𝐸 (𝐻2). We say an undirected graph G is bipartite
with bipartition 𝐴, 𝐵 if 𝑉 (𝐺) = 𝐴 ∪ 𝐵 and 𝐸 (𝐺) ⊆ {𝑎𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

For a digraph G and 𝑣 ∈ 𝑉 (𝐺), we denote the set of outneighbours and inneighbours of v by𝑁+
𝐺 (𝑣) and

𝑁−
𝐺 (𝑣), respectively, and we write 𝑑+𝐺 (𝑣) := |𝑁+

𝐺 (𝑣) | and 𝑑−𝐺 (𝑣) := |𝑁−
𝐺 (𝑣) | for the out- and indegree

of v, respectively. For 𝑆 ⊆ 𝑉 (𝐺) we write 𝑑−(𝑣, 𝑆) := |𝑁−
𝐺 (𝑣) ∩ 𝑆 | and 𝑑+(𝑣, 𝑆) := |𝑁+

𝐺 (𝑣) ∩ 𝑆 |.
We write 𝛿+(𝐺) and 𝛿−(𝐺), respectively, for the minimum out- and indegree of G and 𝛿0(𝐺) :=
min{𝛿+(𝐺), 𝛿−(𝐺)} for the minimum semi-degree. Similarly, the maximum semi-degree Δ0(𝐺) of G
is defined by Δ0 (𝐺) := max{Δ+(𝐺),Δ−(𝐺)} where Δ+(𝐺) and Δ−(𝐺) denote the maximum out-
and maximum indegree of G, respectively. A digraph is called d-regular if each vertex has exactly d
outneighbours and d inneighbours.

The notation above extends to undirected graphs in the obvious ways. In particular for an undirected
graph G, we write Δ (𝐺) and 𝛿(𝐺), respectively for the maximum degree and the minimum degree. A
graph is called d-regular if each vertex has exactly d neighbours. For a vertex 𝑣 ∈ 𝑉 (𝐺) and subset
𝑆 ⊆ 𝑉 (𝐺), we write 𝑑𝐺 (𝑣, 𝑆) := |𝑁𝐺 (𝑣) ∩ 𝑆 |.

A directed path Q in a digraph G is a subdigraph of G such that𝑉 (𝑄) = {𝑣1, . . . , 𝑣𝑘 } for some 𝑘 ∈ N

and 𝐸 (𝑄) = {𝑣1𝑣2, 𝑣2𝑣3, . . . , 𝑣𝑘−1𝑣𝑘 }. We denote such a directed path by its vertices in order (i.e., we

1We DO NOT write 𝐺 [𝐴, 𝐵] for the graph with vertex set 𝐴∪𝐵 and edge set 𝐸𝐺 (𝐴, 𝐵) , but instead for a bipartite undirected
graph; see below.
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write 𝑄 = 𝑣1𝑣2 · · · 𝑣𝑘 ). A directed cycle in G is exactly the same except that it also includes the edge
𝑣𝑘𝑣1. Sometimes we identify paths with their edge sets.

A set of vertex-disjoint directed paths Q = {𝑄1, 𝑄2, . . .} in a digraph G is called a path system in G.
We interchangeably think of Q as a set of vertex-disjoint directed paths in G and as a subdigraph of G
with vertex set 𝑉 (Q) =

⋃
𝑖 𝑉 (𝑄𝑖) and edge set 𝐸 (Q) =

⋃
𝑖 𝐸 (𝑄𝑖). We sometimes call this subdigraph

the graph induced by Q. A matching M in a digraph (or undirected graph) G is a set of edges 𝑀 ⊆ 𝐸 (𝐺)
such that every vertex of G is incident to at most one edge in M. If 𝑀 = {𝑎𝑖𝑏𝑖 : 𝑖 ∈ [𝑚]} is a matching
in a digraph, then we write 𝑉+(𝑀) := {𝑎𝑖 : 𝑖 ∈ [𝑚]} and 𝑉−(𝑀) = {𝑏𝑖 : 𝑖 ∈ [𝑚]}. A 1-factor in a
digraph G is a set of vertex-disjoint directed cycles whose union has the same vertices as G.

Throughout the paper, we will work with partitions of a vertex set V of the form {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} for
some 𝑘 ∈ N (so a partition into 𝑘2 parts). For each i, we write𝑉𝑖∗ := 𝑉𝑖1∪· · ·∪𝑉𝑖𝑘 and𝑉∗𝑖 := 𝑉1𝑖∪· · ·∪𝑉𝑘𝑖 .
Note that {𝑉𝑖∗ : 𝑖 ∈ [𝑘]} is a partition of V as is {𝑉∗𝑖 : 𝑖 ∈ [𝑘]}. Note also that 𝑉𝑖 𝑗 = 𝑉𝑖∗ ∩𝑉∗ 𝑗 .

For two sets A and B, the symmetric difference of A and B is the set 𝐴�𝐵 := (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴). For
𝑥, 𝑦 ∈ (0, 1], we often use the notation 𝑥 
 𝑦 to mean that x is sufficiently small as a function of y [i.e.,
𝑥 ≤ 𝑓 (𝑦)] for some implicitly given non-decreasing function 𝑓 : (0, 1] → (0, 1]. We implicitly assume
all constants in such hierarchies are positive, and we omit floors and ceilings whenever this does not
affect the argument.

We use the following non-standard notation. Let G be a directed graph and let 𝑈,𝑊 ⊆ 𝑉 (𝐺) not
necessarily disjoint. We define 𝐺 [𝑈,𝑊] to be the auxiliary undirected bipartite graph with bipartition
𝑈,𝑊 where, for each 𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑊 , 𝑢𝑣 is an (undirected) edge of 𝐺 [𝑈,𝑊] if and only if 𝑢𝑣 is a
directed edge in 𝐸 (𝐺). Note that for each vertex in𝑈∩𝑊 , there are two copies of the vertex in𝐺 [𝑈,𝑊]

which are viewed as distinct. So 𝐺 [𝑈,𝑊] has |𝑈 | + |𝑊 | vertices and 𝑒𝐺 (𝑈,𝑊) edges.

2.1. Sketch of proof of Theorem 1.3

Theorem 1.3 is proved in several steps. One of the key ingredients is a structural result for directed graphs
(Theorem 3.5) that we derive from a result of Kühn, Lo, Osthus and Staden [21] about partitioning
dense regular undirected graphs into robust expanders. Robust expansion is a notion introduced and
used by Kühn and Osthus together with several coauthors to obtain a number of breakthrough results on
(di)graph decompositions and Hamiltonicity (see e.g., [23, 22, 21]). In Section 3, we give the necessary
background on robust expansion before proving Theorem 3.5, which we informally describe below.

Informally, robust expanders are dense (di)graphs that are highly connected in a certain sense, and
one of their key properties is that they are Hamiltonian under suitable (mild) degree conditions (see
Theorem 4.2). Moreover, they are robust to small alterations (see Lemma 3.1). If we could show
that every d-regular digraph (resp. oriented graph) can be partitioned into at most 𝑛/(𝑑 + 1) (resp.
𝑛/(2𝑑 + 1)) robust expanders, it would be enough to prove Theorem 1.3. Such a partition does not
exist in general, but our structural result, Theorem 3.5, gives us a starting point. Roughly, it says that
for any d-regular n-vertex digraph G with d linear in n and n sufficiently large, there exist two vertex
partitions 𝑉 (𝐺) = 𝑉1∗ ∪ · · · ∪𝑉𝑘∗ and 𝑉 (𝐺) = 𝑉∗1 ∪ · · · ∪𝑉∗𝑘 with 𝑘 ≤ 1 + 𝑛/(𝑑 + 1) such that for each
𝑖 ∈ [𝑘], 𝐺 [𝑉𝑖∗, 𝑉∗𝑖] is a bipartite robust expander and |𝑉𝑖∗ | ≈ |𝑉∗𝑖 |. Note here that k, the number of parts
in each partition, is at most one more than the number of cycles we desire (in the case of digraphs).
Writing 𝑉𝑖 𝑗 = 𝑉𝑖∗ ∩ 𝑉∗ 𝑗 for all 𝑖, 𝑗 ∈ [𝑘], we can think of our two partitions as a single 𝑘2-partition
P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} of 𝑉 (𝐺).

If the partition P described above is balanced, meaning that |𝑉𝑖∗ | = |𝑉∗𝑖 | for all i, then it turns out
that G can be covered by k vertex-disjoint cycles.2 So to prove Theorem 1.3, we would like to ensure
our partition is balanced, and when 𝑘 = 1 + �𝑛/(𝑑 + 1)�, we would like to slightly improve on the
number of cycles. For the latter, in Section 4, we define an auxiliary graph 𝑆(P) for the partition P ,
which has vertex set [𝑘] and 𝑖 𝑗 ∈ 𝐸 (𝑆(P)) if and only if 𝑉𝑖 𝑗 ∪𝑉 𝑗𝑖 ≠ ∅. For each connected component
𝐼 ⊆ [𝑘] of 𝑆(P), Lemma 4.1 shows how to find a cycle whose vertices are exactly

⋃
𝑖∈𝐼 𝑉𝑖∗ ∪ 𝑉∗𝑖

2This follows essentially from Lemma 4.1 although we do not show it explicitly in the paper.
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(provided P is balanced). These cycles are necessarily disjoint for different connected components of
𝑆(P), so we obtain a cycle partition where the number of cycles is exactly the number of connected
components of 𝑆(P). For digraphs, if 𝑆(P) has at least one edge (so has at most 𝑘 − 1 ≤ 𝑛/(𝑑 + 1)
connected components), then Theorem 1.3 follows. Similarly, for oriented graphs, one can show (using
Proposition 6.5) that at least one edge in 𝑆(P) is enough to prove Theorem 1.3 for oriented graphs.
Thus, it is enough if our partition P is balanced and 𝑆(P) has at least one edge.

To ensure our partition is balanced (i.e., that |𝑉𝑖∗ | = |𝑉∗𝑖 | for all i), note first that, as mentioned
earlier, Theorem 3.5 already guarantees that |𝑉𝑖∗ | ≈ |𝑉∗𝑖 | for all i. The idea will be to find and contract
a suitable collection of vertex-disjoint paths Q. Here suitable simply means that the numbers of edges
of Q between the various parts of P are related in the right way, in which case we call Q a P-balanced
path system (introduced in Section 5). If we can find such a P-balanced path system with few edges,
then contracting the paths will result in a graph with an adjusted partition P ′ that is balanced and has
similar properties as P (Proposition 5.3), and any cycle partition in the contracted graph can be lifted
to a cycle partition in the original graph (Propositions 5.1). If the path system Q satisfies some further
properties then we can also guarantee that 𝑆(P ′) has at least one edge and this will be enough to prove
Theorem 1.3. Lemma 5.4 says that we can always find a P-balanced path system with the required
properties, and so we reduce the task of proving Theorem 1.3 to the task of proving Lemma 5.4.

In Section 6 we reduce the proof of Lemma 5.4 to two lemmas, namely Lemmas 6.1 and 6.3.
Lemma 6.1 allows us to find a P-balanced path system with the desired properties under most circum-
stances, while Lemma 6.3 (together with Proposition 6.2) allows us to find such a path system in the
remaining ‘extremal’ circumstances when G is close to the disjoint union of cliques. Lemma 6.1 is
proved in Section 7 using a flow argument and Lemma 6.3 is proved in Section 8. These last two lemmas
are the most technical parts of the paper, so we defer their sketch of proofs to their respective sections.

3. Robust expanders

We first define robust expansion for graphs. Let 0 < 𝜈 ≤ 𝜏 < 1 and let G be a graph on n vertices.
For 𝑆 ⊆ 𝑉 (𝐺), the 𝜈-robust neighbourhood 𝑅𝑁𝜈,𝐺 (𝑆) is the set of all those vertices with at least 𝜈𝑛
neighbours in S. We say that G is a robust (𝜈, 𝜏)-expander if every 𝑆 ⊆ 𝑉 (𝐺) with 𝜏𝑛 ≤ |𝑆 | ≤ (1 − 𝜏)𝑛
satisfies |𝑅𝑁𝜈,𝐺 (𝑆) | ≥ |𝑆 | + 𝜈𝑛. In fact we will mainly be concerned with bipartite robust expanders.
Let G be a bipartite graph with bipartition 𝐴, 𝐵. We say that G is a bipartite robust (𝜈, 𝜏)-expander with
bipartition 𝐴, 𝐵 if every 𝑆 ⊆ 𝐴 with 𝜏 |𝐴| ≤ |𝑆 | ≤ (1 − 𝜏) |𝐴| satisfies |𝑅𝑁𝜈,𝐺 (𝑆) ∩ 𝐵 | ≥ |𝑆 | + 𝜈𝑛. Note
that the order of A and B matters here. Our first lemma says that bipartite robust expansion is robust to
small alterations; the lemma can easily be derived from the definition of robust expansion.

Lemma 3.1 [33, Lemma 3.4.9]. Let 0 < 1/𝑛 
 𝜈 ≤ 𝜏 
 1 with 𝜈 ≤ 1/2. Let G be a bipartite graph
with𝑈 ⊆ 𝑉 (𝐺). Suppose 𝐺 [𝑈] is a bipartite robust (𝜈, 𝜏)-expander on n vertices with bipartition 𝐴, 𝐵
and that 𝐴′, 𝐵′ ⊆ 𝑉 (𝐺) are sets satisfying |𝐴�𝐴′| + |𝐵�𝐵′ | ≤ 𝜈 |𝐴|/4. Then 𝐺 [𝐴′ ∪ 𝐵′] is a bipartite
robust (𝜈/2, 2𝜏)-expander with bipartition 𝐴′, 𝐵′.

Next we give a structural result due to Kühn, Lo, Osthus and Staden [21] which states that any regular
graph of linear minimum degree has a vertex partition into a small number of parts where each part
induces a robust expander or a bipartite robust expander. In fact we state the special case of this result
for bipartite graphs, which is all we require.

Theorem 3.2 (Bipartite special case of [21, Theorem 3.1]). For all 𝛼, 𝜏 > 0 and every non-decreasing
function 𝑓 : (0, 1) → (0, 1), there exists 𝑛0 such that the following holds. For all d-regular bipartite
graphs G on 2𝑛 ≥ 𝑛0 vertices with bipartition 𝐴, 𝐵 and 𝑑 ≥ 𝛼𝑛, there exist 𝜌, 𝜈 with

1/𝑛0 ≤ 𝜌 ≤ 𝜈 ≤ 𝜏; 𝜌 ≤ 𝑓 (𝜈); and 1/𝑛0 ≤ 𝑓 (𝜌)

such that there is a partition of 𝑉 (𝐺) into sets 𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵𝑘 with the following properties for
all 𝑖 ∈ [𝑘]:
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(i) 𝐺 [𝐴𝑖 ∪ 𝐵𝑖] is a bipartite robust (𝜈, 𝜏)-expander with bipartition 𝐴𝑖 , 𝐵𝑖;
(ii) for all 𝑥 ∈ 𝐴𝑖∪𝐵𝑖 and 𝑗 ∈ [𝑘], 𝑑 (𝑥, 𝐴𝑖∪𝐵𝑖) ≥ 𝑑 (𝑥, 𝐴 𝑗∪𝐵 𝑗 ), so in particular, 𝛿(𝐺 [𝐴𝑖∪𝐵𝑖]) ≥ 𝑑/𝑘;

(iii) | |𝐴𝑖 | − |𝐵𝑖 | | ≤ 2𝜌𝑛;
(iv) all but at most 2𝜌𝑛 vertices 𝑥 ∈ 𝐴𝑖 ∪ 𝐵𝑖 satisfy 𝑑 (𝑥, 𝐴𝑖 ∪ 𝐵𝑖) ≥ 𝑑 − 2𝜌𝑛;
(v) 𝑘 ≤ 𝑛/(𝑑 − 2𝜌𝑛);

(vi) 𝐴1, . . . , 𝐴𝑘 is a partition of A and 𝐵1, . . . , 𝐵𝑘 is a partition of B.
Remark 3.3. Note that (i)–(iv) follow directly from the statement of [21, Theorem 3.1]. While (v) and
(vi) cannot be deduced immediately from the statement of [21, Theorem 3.1], they follow immediately
from the proof.3

We now define robust expansion for digraphs. Let 0 < 𝜈 ≤ 𝜏 < 1 and let G be a digraph on n
vertices. For 𝑆 ⊆ 𝑉 (𝐺), the 𝜈-robust outneighbourhood 𝑅𝑁+

𝜈,𝐺 (𝑆) is the set of all those vertices with
at least 𝜈𝑛 inneighbours in S. We say that G is a robust (𝜈, 𝜏)-outexpander if every 𝑆 ⊆ 𝑉 (𝐺) with
𝜏𝑛 ≤ |𝑆 | ≤ (1 − 𝜏)𝑛 satisfies |𝑅𝑁+

𝜈,𝐺 (𝑆) | ≥ |𝑆 | + 𝜈𝑛.
Proposition 3.4. Let 0 < 1/𝑚 
 𝜈 ≤ 𝜏 
 1 with 𝜈 ≤ 1/2. Suppose G is a bipartite graph with
bipartition 𝐴, 𝐵, where 𝐴 = {𝑎1, . . . , 𝑎𝑚} and 𝐵 = {𝑏1, . . . , 𝑏𝑚}. If G is a bipartite robust (𝜈, 𝜏)-
expander with bipartition 𝐴, 𝐵, then the digraph H with vertex set A and edge set 𝐸 (𝐻) = {𝑎𝑖𝑎 𝑗 :
𝑎𝑖𝑏 𝑗 ∈ 𝐸 (𝐺), 𝑖 ≠ 𝑗} is a robust (𝜈/2, 2𝜏)-outexpander.

The proposition above follows immediately from the definitions; we crudely replace (𝜈, 𝜏) with
(𝜈/2, 2𝜏) to account for the loss of any edges of the form 𝑎𝑖𝑏𝑖 .

We now state and prove a structure lemma for regular digraphs that is derived from Theorem 3.2.
This will be one of the key ingredients in the proof of Theorem 1.3. It says that any dense regular digraph
G has two vertex partitions 𝑉 (𝐺) = 𝑉1∗ ∪ · · · ∪𝑉𝑘∗ and 𝑉 (𝐺) = 𝑉∗1 ∪ · · · ∪𝑉∗𝑘 with k relatively small
such that for each i, the (undirected) bipartite graph 𝐺 [𝑉𝑖∗, 𝑉∗𝑖] is a bipartite robust expander (with
bipartition 𝑉𝑖∗, 𝑉∗𝑖). Various other degree and size conditions relating to the partition are also given.
Note that in the theorem below, we actually give a partition {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} and recall that for each
𝑖 ∈ [𝑘], we write 𝑉𝑖∗ := 𝑉𝑖1 ∪ · · · ∪𝑉𝑖𝑘 and 𝑉∗𝑖 := 𝑉1𝑖 ∪ · · · ∪𝑉𝑘𝑖 . Thus 𝑉𝑖 𝑗 = 𝑉𝑖∗ ∩𝑉∗ 𝑗 .
Theorem 3.5. For all 𝛼, 𝜏 > 0 and every non-decreasing function 𝑓 : (0, 1) → (0, 1), there exists 𝑛0
such that the following holds. For all d-regular digraphs G on 𝑛 ≥ 𝑛0 vertices with 𝑑 ≥ 𝛼𝑛, there exist
𝜌, 𝜈 with

1/𝑛0 ≤ 𝜌 ≤ 𝜈 ≤ 𝜏; 𝜌 ≤ 𝑓 (𝜈); and 1/𝑛0 ≤ 𝑓 (𝜌)

such that there is a partition P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} of 𝑉 (𝐺) satisfying, for all 𝑖, 𝑗 ∈ [𝑘],
(i) 𝐺 [𝑉𝑖∗, 𝑉∗𝑖] is a bipartite robust (𝜈, 𝜏)-expander with bipartition 𝑉𝑖∗, 𝑉∗𝑖;

(ii) for all 𝑥 ∈ 𝑉𝑖 𝑗 and 𝑖′, 𝑗 ′ ∈ [𝑘], 𝑑+(𝑥,𝑉∗𝑖) ≥ 𝑑+(𝑥,𝑉∗𝑖′ ) and 𝑑−(𝑥,𝑉 𝑗∗) ≥ 𝑑−(𝑥,𝑉 𝑗′∗), so in
particular, 𝛿(𝐺 [𝑉𝑖∗, 𝑉∗𝑖]) ≥ 𝑑/𝑘;

(iii) | |𝑉𝑖∗ | − |𝑉∗𝑖 | | ≤ 2𝜌𝑛;
(iv) all but at most 2𝜌𝑛 vertices 𝑥 ∈ 𝑉𝑖 𝑗 satisfy 𝑑+(𝑥,𝑉∗𝑖), 𝑑−(𝑥,𝑉 𝑗∗) ≥ 𝑑 − 2𝜌𝑛;
(v) 𝑘 ≤ 𝑛/(𝑑 − 2𝜌𝑛).
Proof. We simply apply Theorem 3.2 to the obvious bipartite graph obtained from the directed graph
G, with the natural correspondence in parameters, as follows.

3The idea of the proof is to successively refine partitions of 𝑉 (𝐺) = 𝐴∪ 𝐵 as follows. Assume we have obtained a partition
U = {𝑈1, . . . ,𝑈𝑟 } of 𝑉 (𝐺) such that there are few edges leaving or entering U for every 𝑈 ∈ U . If for some 𝑈 ∈ U we have
that 𝐺 [𝑈 ] is not a bipartite robust expander (with bipartition 𝑈 ∩ 𝐴,𝑈 ∩ 𝐵), then there is some 𝑆 ⊆ 𝑈 ∩ 𝐴 whose robust
neighbourhood 𝑅 ⊆ 𝑈 ∩ 𝐵 is not much larger than S. Writing𝑈 ′ = 𝑆 ∪ 𝑅 and𝑈 ′′ =𝑈 \𝑈 ′, we let U ′ = U \ {𝑈 } ∪ {𝑈 ′,𝑈 ′′ }.
It is not too hard to show (using the fact that G is regular) that, as with U , there are not many edges entering or leaving each
𝑈 ∈ U ′. We continue refining the partition in this way until we obtain a partition U∗ where every 𝑈 ∈ U∗ satisfies that 𝐺 [𝑈 ]
is a bipartite robust expander with bipartition 𝑈 ∩ 𝐴,𝑈 ∩ 𝐵. The process of refining the partition must eventually stop because
each 𝑈 ∈ U cannot be much smaller than d (the degree of G) since not many edges enter of leave U. This essentially shows (i),
(iii), (v) and (vi), while (ii) and (iv) are obtained by making slight adjustments to the final partition.
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For any d-regular digraph G on n vertices, let 𝐻𝐺 be the d-regular bipartite undirected graph on 2𝑛
vertices defined as follows. Let 𝑉 (𝐻𝐺) = 𝐴 ∪ 𝐵, where A and B are disjoint copies of 𝑉 (𝐺) and for
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 let 𝑎𝑏 ∈ 𝐸 (𝐻𝐺) if and only if 𝑎𝑏 ∈ 𝐸 (𝐺). Now applying Theorem 3.2 with 𝐻𝐺

playing the role of G, we obtain the following statement.
For all 𝛼, 𝜏 > 0 and every non-decreasing function 𝑓 : (0, 1) → (0, 1), there exists 𝑛0 such that

the following holds. For all d-regular digraphs G on 𝑛 ≥ 𝑛0 vertices and 𝑑 ≥ 𝛼𝑛, taking 𝐻𝐺 to be the
corresponding bipartite d-regular graph on 2𝑛 ≥ 𝑛0 vertices there exist 𝜌, 𝜈 with

1/𝑛0 ≤ 𝜌 ≤ 𝜈 ≤ 𝜏; 𝜌 ≤ 𝑓 (𝜈); and 1/𝑛0 ≤ 𝑓 (𝜌)

such that there is a partition of 𝑉 (𝐻𝐺) into sets 𝐴1, . . . , 𝐴𝑘 , 𝐵1, . . . , 𝐵𝑘 with the following properties
for all 𝑖 ∈ [𝑘]:

(i′) 𝐻𝐺 [𝐴𝑖 ∪ 𝐵𝑖] is a bipartite robust (𝜈, 𝜏)-expander with bipartition 𝐴𝑖 , 𝐵𝑖;
(ii′) for all 𝑥 ∈ 𝐴𝑖 ∪ 𝐵𝑖 and 𝑗 ∈ [𝑘], 𝑑𝐻𝐺 (𝑥, 𝐴𝑖 ∪ 𝐵𝑖) ≥ 𝑑𝐻𝐺 (𝑥, 𝐴 𝑗 ∪ 𝐵 𝑗 ), so in particular, 𝛿(𝐻𝐺 [𝐴𝑖 ∪

𝐵𝑖]) ≥ 𝑑/𝑘;
(iii′) | |𝐴𝑖 | − |𝐵𝑖 | | ≤ 2𝜌𝑛;
(iv′) all but at most 2𝜌𝑛 vertices 𝑥 ∈ 𝐴𝑖 ∪ 𝐵𝑖 satisfy 𝑑𝐻𝐺 (𝑥, 𝐴𝑖 ∪ 𝐵𝑖) ≥ 𝑑 − 2𝜌𝑛;
(v′) 𝑘 ≤ 𝑛/(𝑑 − 2𝜌𝑛);

(vi′) 𝐴1, . . . , 𝐴𝑘 is a partition of A and 𝐵1, . . . , 𝐵𝑘 is a partition of B.

For 𝑖, 𝑗 ∈ [𝑘], define 𝑉𝑖 𝑗 = 𝐴𝑖 ∩ 𝐵 𝑗 (where we think of 𝐴𝑖 and 𝐵 𝑗 as sets of vertices of the digraph G).
First note that, by (vi′), P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} is a partition of 𝑉 (𝐺), and 𝐴𝑖 = 𝑉𝑖∗ and 𝐵𝑖 = 𝑉∗𝑖 . Now
the natural correspondence between 𝐻𝐺 and G means that (i′)–(v′) imply (i)–(v), respectively. �

4. Finding long cycles

Theorem 3.5 from the previous section shows that every (dense) regular digraph has a vertex partition
with some useful properties. In this section, we show how properties (i) and (ii) from Theorem 3.5
together with a simple balancing condition on the partition allow us to construct few long cycles that
can cover all the vertices of several parts in the partition.

Let G be a digraph on V and letP = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of V where we allow some parts to
be empty. We say thatP is balanced if |𝑉𝑖∗ | = |𝑉∗𝑖 | for all 𝑖 ∈ [𝑘]. For 𝑖, 𝑗 ∈ [𝑘], let𝐺𝑖 𝑗 be the subdigraph
of G on 𝑉𝑖∗ ∪𝑉∗ 𝑗 with edges from 𝑉𝑖∗ to 𝑉∗ 𝑗 , that is, 𝐸 (𝐺𝑖 𝑗 ) = 𝐸𝐺 (𝑉𝑖∗, 𝑉∗ 𝑗 ) = 𝐸 (𝐺) ∩ (𝑉𝑖∗ ×𝑉∗ 𝑗 ).

Define 𝑆(P) to be the graph (without loops) on [𝑘] such that for all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , 𝑖 𝑗 ∈ 𝐸 (𝑆(P))

if and only if 𝑉𝑖 𝑗 ∪ 𝑉 𝑗𝑖 ≠ ∅. The connected components of 𝑆(P) will determine which parts of P can
be covered by one long cycle. We remark that, by definition,

⋃
𝑖∈𝐼 (𝑉𝑖∗ ∪ 𝑉∗𝑖) and

⋃
𝑗∈𝐽 (𝑉 𝑗∗ ∪ 𝑉∗ 𝑗 ) are

disjoint for two distinct connected components I and J of 𝑆(P). The aim of this section is to prove the
following lemma.

Lemma 4.1. Let 1/𝑚 
 𝜈 ≤ 𝜏 
 𝛼 < 1. Let G be a digraph with a balanced vertex partition
P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]}. Let I be a connected component in 𝑆(P). Suppose that, for all 𝑖 ∈ 𝐼,
𝐺 [𝑉𝑖∗, 𝑉∗𝑖] is a bipartite robust (𝜈, 𝜏)-expander with bipartition 𝑉𝑖∗, 𝑉∗𝑖 such that |𝑉𝑖∗ | ≥ 𝑚 and
𝛿(𝐺 [𝑉𝑖∗, 𝑉∗𝑖]) ≥ 𝛼 |𝑉𝑖∗ |. Then there exists a cycle C in G with 𝑉 (𝐶) =

⋃
𝑖∈𝐼 (𝑉𝑖∗ ∪𝑉∗𝑖).

The lemma above will be used as follows. Suppose we have a dense d-regular digraph G with a vertex
partition P such as that given by Theorem 3.5 but with the additional property that P is balanced. Then
Lemma 4.1 applied to each connected component of 𝑆(P) gives us a collection of s vertex-disjoint
cycles that cover 𝑉 (𝐺), where s is the number of connected components in 𝑆(P). So in later sections
we will be interested in obtaining balanced partitions P where the number of connected components of
𝑆(P) is ‘small’.

We need the following theorem, which states that a robust outexpander with linear minimum degree
contains a (directed) Hamilton cycle.
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Theorem 4.2 ([23]; see also [25]). Let 1/𝑛 
 𝜈 ≤ 𝜏 
 𝛾 < 1. Let G be a robust (𝜈, 𝜏)-outexpander on
n vertices with 𝛿0(𝐺) ≥ 𝛾𝑛. Then G contains a Hamilton cycle.

The next lemma shows that, under the conditions of Lemma 4.1, 𝑉𝑖∗ ∪ 𝑉∗𝑖 can be covered either by
vertex-disjoint paths from𝑉𝑖∗ \𝑉𝑖𝑖 to𝑉∗𝑖 \𝑉𝑖𝑖 or by a cycle, and it is used inductively to prove Lemma 4.1.

Lemma 4.3. Let 1/𝑚 
 𝜈 ≤ 𝜏 
 𝛼 < 1. Let G be a digraph with a vertex partition P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈
[𝑘]}. Let 𝑖 ∈ [𝑘]. Suppose that 𝐺 [𝑉𝑖∗, 𝑉∗𝑖] is a bipartite robust (𝜈, 𝜏)-expander with bipartition 𝑉𝑖∗, 𝑉∗𝑖
such that |𝑉𝑖∗ | = |𝑉∗𝑖 | = 𝑚 and 𝛿(𝐺 [𝑉𝑖∗, 𝑉∗𝑖]) ≥ 𝛼𝑚. Let 𝜙 : 𝑉𝑖∗ \ 𝑉𝑖𝑖 → 𝑉∗𝑖 \ 𝑉𝑖𝑖 be a bijection. Then
there exists a path system Q in 𝐺𝑖𝑖 such that Q ∪ {𝜙(𝑣)𝑣 : 𝑣 ∈ 𝑉𝑖∗ \ 𝑉𝑖𝑖} is a cycle with vertex set
𝑉𝑖∗ ∪ 𝑉∗𝑖 . In the special case that 𝑉𝑖∗ = 𝑉∗𝑖 = 𝑉𝑖𝑖 , we have that 𝜙 is an empty function and Q is a cycle
(rather than a path system) with vertex set 𝑉𝑖𝑖 .

Proof. Let H be the digraph on 𝑉𝑖∗ obtained from 𝐺𝑖𝑖 by identifying v with 𝜙(𝑣) for all 𝑣 ∈ 𝑉𝑖∗ \ 𝑉𝑖𝑖
and deleting any loops. Note that 𝛿0 (𝐻) ≥ 𝛿(𝐺 [𝑉𝑖∗, 𝑉∗𝑖]) − 1 ≥ 𝛼𝑚/2 and H is a robust (𝜈/2, 2𝜏)-
outexpander by Proposition 3.4 applied to the undirected bipartite graph 𝐺 [𝑉𝑖∗, 𝑉∗𝑖]. By Theorem 4.2,
H has a Hamilton cycle C. Note that if𝑉𝑖∗ = 𝑉𝑖𝑖 = 𝑉∗𝑖 , then H coincides with𝐺 [𝑉𝑖𝑖], proving the lemma
in this case. If not, let 𝑉𝑖∗ \𝑉𝑖𝑖 = {𝑥1, . . . , 𝑥ℓ } be such that C visits 𝑥1, . . . , 𝑥ℓ in that order. Thus, C can
be decomposed into paths 𝑃1, . . . , 𝑃ℓ such that 𝑃 𝑗 is a path from 𝑥 𝑗 to 𝑥 𝑗+1, where we take 𝑥ℓ+1 = 𝑥1.
Let 𝑄 𝑗 be obtained from 𝑃 𝑗 by replacing 𝑥 𝑗+1 with 𝜙(𝑥 𝑗+1). Note that 𝑄 𝑗 is a path in 𝐺𝑖𝑖 from 𝑥 𝑗 to
𝜙(𝑥 𝑗+1). The result follows by setting Q = {𝑄1, . . . , 𝑄ℓ }. �

We now prove Lemma 4.1. For a connected component I in 𝑆(P), the idea is to apply Lemma 4.3 to
each 𝑖 ∈ 𝐼. Some care is needed to ensure that the union of path systems forms only one cycle.

Proof of Lemma 4.1. If I consists of a single vertex say i, then the result follows by Lemma 4.3 (since
in that case 𝑉𝑖∗ = 𝑉∗𝑖 = 𝑉𝑖𝑖). Now assume |𝐼 | ≥ 2, so 𝑉𝑖∗ ∪ 𝑉∗𝑖 ≠ 𝑉𝑖𝑖 for all 𝑖 ∈ 𝐼. Without loss of
generality, let 𝐼 = [ℓ] and order the indices of I such that for each 𝑗 ∈ [ℓ − 1], there is a 𝑗 ′ ∈ [ℓ] \ [ 𝑗]
with 𝑗 𝑗 ′ ∈ 𝐸 (𝑆(P)). This can be achieved since I is connected, (e.g., by taking a reverse breadth-first
search ordering). Note that 𝑉𝑖 𝑗 = 𝑉 𝑗𝑖 = ∅ for all 𝑖 ∈ [ℓ] and 𝑗 ∉ [ℓ].

For 𝑖 ∈ [ℓ], let𝑊+
𝑖 =

⋃
𝑖′ ∈ [𝑖 ], 𝑗′∉[𝑖 ] 𝑉𝑖′ 𝑗′ =

⋃
𝑖′ ∈ [𝑖 ] 𝑉𝑖′∗ \

⋃
𝑖′, 𝑗′ ∈ [𝑖 ] 𝑉𝑖′ 𝑗′ and𝑊−

𝑖 =
⋃

𝑖′∉[𝑖 ], 𝑗′ ∈ [𝑖 ] 𝑉𝑖′ 𝑗′ =⋃
𝑗′ ∈ [𝑖 ] 𝑉∗ 𝑗′ \

⋃
𝑖′, 𝑗′ ∈ [𝑖 ] 𝑉𝑖′ 𝑗′ . Since P is balanced, |𝑊+

𝑖 | = |𝑊−
𝑖 | for each 𝑖 ∈ [ℓ]. Also, by our ordering

of the indices, we have that𝑊+
𝑖 ,𝑊

−
𝑖 ≠ ∅ for 𝑖 ∈ [ℓ − 1] and that𝑊+

ℓ = 𝑊−
ℓ = ∅.

Let Q0 = 𝑊+
0 = 𝑊−

0 = ∅ and suppose for some 𝑖 ∈ [ℓ], we have already found a path system Q𝑖−1
such that 𝑉 (Q𝑖−1) =

⋃
𝑖′ ∈ [𝑖−1] (𝑉𝑖′∗ ∪𝑉∗𝑖′ ) and Q𝑖−1 consists of precisely |𝑊+

𝑖−1 | paths from 𝑊+
𝑖−1 to

𝑊−
𝑖−1. We now construct Q𝑖 as follows. Let 𝜙 : 𝑉𝑖∗ \ 𝑉𝑖𝑖 → 𝑉∗𝑖 \ 𝑉𝑖𝑖 be any bijection such that if there

is a path in Q𝑖−1 from 𝑣+ ∈ 𝑉∗𝑖 \ 𝑉𝑖𝑖 to 𝑣− ∈ 𝑉𝑖∗ \ 𝑉𝑖𝑖 , then 𝜙(𝑣−) = 𝑣+. Apply Lemma 4.3 and obtain a
path system Q′

𝑖 in 𝐺𝑖𝑖 such that Q′
𝑖 ∪ {𝜙(𝑣)𝑣 : 𝑣 ∈ 𝑉𝑖∗ \𝑉𝑖𝑖} is a cycle with vertex set 𝑉𝑖∗ ∪𝑉∗𝑖 . We set

Q𝑖 = Q𝑖−1 ∪Q′
𝑖 .

Suppose 𝑖 = ℓ. Note that𝑊−
ℓ−1 = 𝑉ℓ∗ \𝑉ℓℓ and𝑊+

ℓ−1 = 𝑉∗ℓ \𝑉ℓℓ . Hence Qℓ−1 consists of paths from
𝜙(𝑣) ∈ 𝑊+

ℓ−1 to 𝑣 ∈ 𝑊−
ℓ−1, we have 𝑉 (Qℓ−1) =

⋃
𝑖′ ∈ [ℓ−1] (𝑉𝑖′∗ ∪𝑉∗𝑖′ ) =

⋃
𝑖′ ∈ [ℓ ] (𝑉𝑖′∗ ∪𝑉∗𝑖′ ) \ 𝑉ℓℓ . Since

Q′
ℓ ∪ {𝜙(𝑣)𝑣 : 𝑣 ∈ 𝑉ℓ∗ \ 𝑉ℓℓ } is a cycle with vertex set 𝑉ℓ∗ ∪ 𝑉∗ℓ , we deduce that Qℓ = Q′

ℓ ∪Qℓ−1 is a
cycle with vertex set

⋃
𝑖′ ∈ [ℓ ] (𝑉𝑖′∗ ∪𝑉∗𝑖′ ) as required.

Suppose 𝑖 ∈ [ℓ − 1]. Note that 𝑉 (Q𝑖) =
⋃

𝑖′ ∈ [𝑖 ] (𝑉𝑖′∗ ∪𝑉∗𝑖′ ). It remains to check that Q𝑖 is a path
system consisting of precisely |𝑊+

𝑖 | paths from 𝑊+
𝑖 to 𝑊−

𝑖 . Note first that paths in Q′
𝑖 ⊆ 𝐺𝑖𝑖 start in

𝑉𝑖∗ \ 𝑉𝑖𝑖 and end in 𝑉∗𝑖 \ 𝑉𝑖𝑖 and have all internal vertices in 𝑉𝑖𝑖 . On the other hand a path in Q𝑖−1 can
only intersect𝑉∗𝑖 at its start point and𝑉𝑖∗ at its end point and it avoids𝑉𝑖𝑖 . Therefore in Q𝑖 = Q𝑖−1 ∪Q′

𝑖 ,
all indegrees and outdegrees are at most 1. A vertex has indegree zero in Q𝑖−1 ∪Q′

𝑖 if and only if it is
a start point of some path in Q𝑖−1 ∪ Q′

𝑖 but not an endpoint of any path in Q𝑖−1 ∪ Q′
𝑖 , (i.e., the set of

vertices of indegree zero is(
𝑊+

𝑖−1 ∪ (𝑉𝑖∗ \𝑉𝑖𝑖)
)
\
(
𝑊−

𝑖−1 ∪ (𝑉∗𝑖 \𝑉𝑖𝑖)
)
=

(
𝑊+

𝑖−1 ∪𝑉𝑖∗
)
\𝑉∗𝑖 = 𝑊

+
𝑖
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and similarly the set of vertices of outdegree zero is 𝑊−
𝑖 . Finally it remains to check that there are no

cycles in Q𝑖−1 ∪Q′
𝑖 . By our choice of 𝜙, if there is a cycle, it spans all the vertices of 𝑉 (Q𝑖−1 ∪Q′

𝑖), but
this cannot happen because vertices in𝑊+

𝑖 ≠ ∅ have in-degree zero. �

5. Balanced path systems and path contraction

As mentioned in the previous section, in order to apply Lemma 4.1 to obtain a suitable cycle partition of
a dense regular digraph G, we will require a vertex partition P of G such as that given by Theorem 3.5
but with the additional properties that P is balanced and 𝑆(P) has few connected components. In this
section, we state a result (Lemma 5.4) that allows us to adjust a partition P to have these additional
properties. In particular, if P is not balanced, Lemma 5.4 guarantees us a so-called P-balanced path
system in G whose ‘contraction’ makes P balanced in a suitable way. At the end of the section we show
how Lemma 5.4 implies our main result, Theorem 1.3.

Let P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of a vertex set V and let G be a digraph on V. Recall the
definition of 𝐺𝑖 𝑗 and of P being balanced at the beginning of Section 4. Write 𝐺𝑖∗ =

⋃
𝑗≠𝑖 𝐺𝑖 𝑗 and

𝐺∗ 𝑗 =
⋃

𝑖≠ 𝑗 𝐺𝑖 𝑗 . Let B(𝐺,P) = 𝐺 −
⋃

𝑖∈[𝑘 ] 𝐺𝑖𝑖 . Note that B(𝐺,P) =
⋃

𝑖∈[𝑘 ] 𝐺𝑖∗ =
⋃

𝑗∈[𝑘 ] 𝐺∗ 𝑗 . We
say that a digraph H on V (where H is usually a path system in G) is P-balanced if, for all 𝑖 ∈ [𝑘],

|𝑉𝑖∗ | − |𝑉∗𝑖 | = 𝑒𝐻 (𝑉𝑖∗, 𝑉) − 𝑒𝐻 (𝑉,𝑉∗𝑖) =
∑
𝑗∈[𝑘 ]

𝑒(𝐻𝑖 𝑗 ) −
∑
𝑗∈[𝑘 ]

𝑒(𝐻 𝑗𝑖) = 𝑒(𝐻𝑖∗) − 𝑒(𝐻∗𝑖).

The above gives three equivalent conditions for H to be P-balanced. Note that if H is regular, then it is
P-balanced for any P .

Let Q be a path in G from 𝑣+ ∈ 𝑉𝑖+ 𝑗+ to 𝑣− ∈ 𝑉𝑖− 𝑗− . We define the Q-contracted subgraph𝐺 ′ of G to be
𝐺\𝑉 (𝑄) together with a new vertex w such that𝑁+

𝐺′ (𝑤) = 𝑁+
𝐺 (𝑣−)\𝑉 (𝑄) and𝑁−

𝐺′ (𝑤) = 𝑁−
𝐺 (𝑣+)\𝑉 (𝑄).

We call P ′ = {𝑉 ′
𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} the Q-contracted partition of P , where

𝑉 ′
𝑖 𝑗 =

{
(𝑉𝑖 𝑗 \𝑉 (𝑄)) ∪ {𝑤} if (𝑖, 𝑗) = (𝑖−, 𝑗+);
𝑉𝑖 𝑗 \𝑉 (𝑄) otherwise.

(5.1)

Let Q be a path system in G. The Q-contracted subgraph of G (and Q-contracted partition of P) is
obtained by successively contracting each 𝑄 ∈ Q for G (and P , respectively).

The following two propositions follow from the definition of Q-contraction. In fact the definitions
are chosen precisely so that these propositions hold.

Proposition 5.1. Let G be a digraph and Q be a path system in G. Suppose that the Q-contracted
subgraph of G contains a 1-factor with ℓ cycles. Then G also contains a 1-factor containing Q with ℓ
cycles. (The new 1-factor is simply the old 1-factor with the paths in Q uncontracted.)

Proposition 5.2. Let G be a digraph on n vertices and let P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺).
LetQ be a path system in G such that 𝑒(Q) < |𝑉𝑖∗ |, |𝑉∗𝑖 | for all 𝑖 ∈ [𝑘]. Let𝐺 ′ andP ′ = {𝑉 ′

𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]}
be the Q-contracted subgraph of G and Q-contracted partition of P , respectively. Then for all 𝑖 ∈ [𝑘],
𝛿(𝐺 ′ [𝑉 ′

𝑖∗, 𝑉
′
∗𝑖]) ≥ 𝛿(𝐺 [𝑉𝑖∗, 𝑉∗𝑖]) − 2𝑒(Q).4

Proposition 5.3. Let P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of a vertex set V and Q be a P-balanced path
system on V. Then the Q-contracted partition of P is balanced.

Proof. Let 𝑄 ∈ Q be a path from 𝑣+ ∈ 𝑉𝑖+ 𝑗+ to 𝑣− ∈ 𝑉𝑖− 𝑗− . For each 𝑖, 𝑗 ∈ [𝑘], let 𝑞𝑖 𝑗 = 𝑒(𝑄𝑖 𝑗 ) (i.e., the
number of edges of Q from 𝑉𝑖∗ to 𝑉∗ 𝑗 .) Let P ′ = {𝑉 ′

𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be the Q-contracted partition of P .
Consider 𝑖 ∈ [𝑘]. Note that

4Note that, in the definition of contraction, the new vertices created are placed in exactly the right parts to ensure the degree
condition in the proposition.
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|𝑉 ′
𝑖∗ | = |𝑉𝑖∗ | − |𝑉𝑖∗ ∩𝑉 (𝑄) | + 1(𝑖 = 𝑖−) = |𝑉𝑖∗ | −

∑
𝑗∈[𝑘 ]

𝑞𝑖 𝑗 ,

|𝑉 ′
∗𝑖 | = |𝑉∗𝑖 | − |𝑉∗𝑖 ∩𝑉 (𝑄) | + 1(𝑖 = 𝑗+) = |𝑉∗𝑖 | −

∑
𝑗∈[𝑘 ]

𝑞 𝑗𝑖 .

Therefore, |𝑉 ′
𝑖∗ | − |𝑉 ′

∗𝑖 | = |𝑉𝑖∗ | − |𝑉∗𝑖 | −
∑

𝑗∈[𝑘 ] (𝑞𝑖 𝑗 − 𝑞 𝑗𝑖) = |𝑉𝑖∗ | − |𝑉∗𝑖 | − (𝑒(𝑄𝑖∗) − 𝑒(𝑄∗𝑖)). A similar
statement holds for the Q-contracted partition P∗ = {𝑉∗

𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} of P , and the result follows as Q
is P-balanced (i.e., for each 𝑖 ∈ [𝑘], |𝑉∗

𝑖∗ | − |𝑉∗
∗𝑖 | = |𝑉𝑖∗ | − |𝑉∗𝑖 | − (𝑒(Q𝑖∗) − 𝑒(Q∗𝑖)) = 0). �

The next lemma says that one can adjust the vertex partition P found in Theorem 3.5 by a small
amount, and find a P-balanced path system Q such that 𝑆(P∗) has few connected components, where
P∗ is the Q-contracted partition of P . It is exactly what we need to prove Theorem 1.3, as we shall see.
In Section 6, we break this lemma down into two further lemmas.

Lemma 5.4. Let 1/𝑛 
 𝛾 
 𝛼, 1/𝑘 . Let G be a d-regular digraph on n vertices with 𝑑 ≥ 𝛼𝑛 and
P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺) such that, for all 𝑖, 𝑗 ∈ [𝑘],

(i) 𝛿(𝐺 [𝑉𝑖∗, 𝑉∗𝑖]) ≥ 𝑑/𝑘;
(ii) | |𝑉𝑖∗ | − |𝑉∗𝑖 | | ≤ 𝛾𝑛;

(iii) |𝑉𝑖∗ |, |𝑉∗𝑖 | ≥ 𝑑 − 𝛾𝑛;
(iv) all but at most 𝛾𝑛 vertices 𝑥 ∈ 𝑉𝑖 𝑗 satisfy 𝑑+(𝑥,𝑉∗𝑖), 𝑑−(𝑥,𝑉 𝑗∗) ≥ 𝑑 − 𝛾𝑛.

Then there exists a partition P ′ = {𝑉 ′
𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} of 𝑉 (𝐺) and a P ′-balanced path system Q in G

such that

(a) for all 𝑖, 𝑗 ∈ [𝑘], |𝑉𝑖 𝑗�𝑉 ′
𝑖 𝑗 | ≤ 𝛾

1/2𝑛;
(b) for all 𝑖 ∈ [𝑘], 𝛿(𝐺 [𝑉 ′

𝑖∗, 𝑉
′
∗𝑖]) ≥ (𝑑/𝑘) − 𝛾1/2𝑛;

(c) 𝑒(Q) ≤ 𝛾1/2𝑛;
(d) 𝑆(P∗) has at most 𝑛/(𝑞𝑑 + 1) connected components, where P∗ is the Q-contracted partition of

P ′, and we set 𝑞 = 2 if G is an oriented graph and 𝑞 = 1 otherwise.

5.1. Proof of Theorem 1.3

We now prove Theorem 1.3 assuming Lemma 5.4.

Proof of Theorem 1.3. Choose a non-decreasing function 𝑔 : (0, 1) → (0, 1) such that the requirements
of Lemmas 4.1 (with 𝑚 = 𝛼𝑛/2) and 5.4 are satisfied whenever 𝑛, 𝛾, 𝜈, 𝜏, 𝛼 satisfy

1/𝑛 
𝑔 𝛾 
𝑔 𝜈 ≤ 𝜏 
𝑔 𝛼,

where we write 𝑎 
𝑔 𝑏 to mean 𝑎 ≤ 𝑔(𝑏). Set 𝑓 (𝑥) := min(𝑥, 𝑔(𝑥2/4)). Fix 𝜏 ≤ 𝑓 (𝛼) and apply
Theorem 3.5 to obtain 𝑛0 such that for any d-regular digraph G on 𝑛 ≥ 𝑛0 vertices with 𝑑 ≥ 𝛼𝑛, there
exists 𝛾 and 𝜈 such that

1/𝑛 
 𝑓 𝛾 
 𝑓 𝜈 ≤ 𝜏 
 𝑓 𝛼

and a partition P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} of 𝑉 (𝐺) satisfying, for all 𝑖, 𝑗 ∈ [𝑘],

(a1) 𝐺 [𝑉𝑖∗, 𝑉∗𝑖] is a bipartite robust (𝜈, 𝜏)-expander with partition 𝑉𝑖∗, 𝑉∗𝑖;
(a2) for all 𝑥 ∈ 𝑉𝑖 𝑗 and 𝑖′, 𝑗 ′ ∈ [𝑘], 𝑑+(𝑥,𝑉∗𝑖) ≥ 𝑑+(𝑥,𝑉∗𝑖′ ) and 𝑑−(𝑥,𝑉 𝑗∗) ≥ 𝑑−(𝑥,𝑉 𝑗′∗), so in

particular, 𝛿(𝐺 [𝑉𝑖∗, 𝑉∗𝑖]) ≥ 𝑑/𝑘;
(a3) | |𝑉𝑖∗ | − |𝑉∗𝑖 | | ≤ 𝛾𝑛;
(a4) all but at most 𝛾𝑛 vertices 𝑥 ∈ 𝑉𝑖 𝑗 satisfy 𝑑+(𝑥,𝑉∗𝑖), 𝑑−(𝑥,𝑉 𝑗∗) ≥ 𝑑 − 𝛾𝑛;
(a5) 𝑘 ≤ 𝑛/(𝑑 − 𝛾𝑛).
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Note that (a5) in particular implies that 𝛾 
 1/𝑘 . Furthermore, (a2) and (a4) together with 𝛾 
 1/𝑘
imply that

(a6) for all 𝑖 ∈ [𝑘], |𝑉𝑖∗ |, |𝑉∗𝑖 | ≥ 𝑑 − 𝛾𝑛.

Let 𝑞 = 2 if G is oriented, and 𝑞 = 1 otherwise. Apply Lemma 5.4 and obtain a partition P ′ = {𝑉 ′
𝑖 𝑗 :

𝑖, 𝑗 ∈ [𝑘]} of 𝑉 (𝐺) and a P ′-balanced path system Q in G such that

(b1) for all 𝑖, 𝑗 ∈ [𝑘], |𝑉𝑖 𝑗�𝑉 ′
𝑖 𝑗 | ≤ 𝛾

1/2𝑛;
(b2) for all 𝑖 ∈ [𝑘], 𝛿(𝐺 [𝑉 ′

𝑖∗, 𝑉
′
∗𝑖]) ≥ (𝑑/𝑘) − 𝛾1/2𝑛;

(b3) 𝑒(Q) ≤ 𝛾1/2𝑛;
(b4) 𝑆(P∗) has at most 𝑛/(𝑞𝑑+1) connected components, whereP∗ is theQ-contracted partition ofP ′.

Let P∗ = {𝑉∗
𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} and let 𝐺∗ be the Q-contracted subgraph of G. We will check that, for all

𝑖, 𝑗 ∈ [𝑘],

(c1) P∗ is balanced;
(c2) |𝑉𝑖 𝑗�𝑉

∗
𝑖 𝑗 | ≤ 5𝛾1/2𝑛;

(c3) |𝑉∗
𝑖∗ |, |𝑉

∗
∗𝑖 | ≥ 𝑑 − 6𝑘𝛾1/2𝑛 ≥ 𝑑/2;

(c4) 𝐺∗ [𝑉∗
𝑖∗, 𝑉

∗
∗𝑖] is a bipartite robust (𝜈/2, 2𝜏)-expander with bipartition 𝑉∗

𝑖∗, 𝑉
∗
∗𝑖;

(c5) 𝛿(𝐺∗ [𝑉∗
𝑖∗, 𝑉

∗
∗𝑖]) ≥ 𝛼

2 |𝑉∗
𝑖∗ |/2.

Note that (c1) holds by Proposition 5.3. Consider 𝑖, 𝑗 ∈ [𝑘]. Note that

|𝑉∗
𝑖 𝑗�𝑉𝑖 𝑗 | ≤ |𝑉∗

𝑖 𝑗�𝑉
′
𝑖 𝑗 | + |𝑉 ′

𝑖 𝑗�𝑉𝑖 𝑗 | ≤ 2|𝑉 (Q) | + |𝑉 ′
𝑖 𝑗�𝑉𝑖 𝑗 |

(b1) , (b3)
≤ 4𝛾1/2𝑛 + 𝛾1/2𝑛 = 5𝛾1/2𝑛

implying (c2). Hence (c3) follows from (a6) and (c2) as 𝛾 
 𝛼, 1/𝑘 . By (a1), (c2), (c3), and 𝛾 
 𝜈,
Lemma 3.1 (applied to the bipartite graph 𝐺∗ [𝑉∗

𝑖∗, 𝑉
∗
∗𝑖] ∪ 𝐺 [𝑉𝑖∗, 𝑉∗𝑖] with 𝑉𝑖∗, 𝑉∗𝑖 , 𝑉∗

𝑖∗, 𝑉
∗
∗𝑖 playing the

roles of 𝐴, 𝐵, 𝐴′, 𝐵′ respectively) implies that (c4) holds. By (𝑎6), (b1), and (b3), we have 𝑒(Q) ≤

𝛾1/2𝑛 < 𝑑 − 𝛾𝑛 − 𝑘𝛾1/2𝑛 ≤ |𝑉 ′
𝑖∗ |, |𝑉

′
∗𝑖 | as 𝛾 
 𝛼, 1/𝑘 . Hence, by Proposition 5.2,

𝛿(𝐺∗ [𝑉∗
𝑖∗, 𝑉

∗
∗𝑖]) ≥ 𝛿(𝐺 [𝑉 ′

𝑖∗, 𝑉
′
∗𝑖]) − 2𝑒(Q)

(b2) , (b3)
≥ (𝑑/𝑘) − 3𝛾1/2𝑛 ≥ 𝛼2 |𝑉∗

𝑖∗ |/2,

where the last inequality holds as 𝛾 
 𝛼, 1/𝑘 and 𝑘 (𝛼 − 𝛾) ≤ 1 by (a5). Hence (c5) holds.
Apply Lemma 4.1 (with𝐺∗, P∗, 𝑑/2, 𝜈/2, 2𝜏, 𝛼2/2 playing the roles of G, P , m, 𝜈, 𝜏, 𝛼, respectively)

to each connected component I in 𝑆(P∗). Thus, by (b4), 𝐺∗ can be covered with at most 𝑛/(𝑞𝑑 + 1)
vertex-disjoint cycles (where we have a cycle on ∪𝑖∈𝐼 (𝑉𝑖∗ ∪𝑉∗𝑖) for each component I of 𝑆(P∗) so that
each cycle has length at least 𝑑/2 by (c3)). By Proposition 5.1, G can be covered with at most 𝑛/(𝑞𝑑 +1)
vertex-disjoint cycles (each of length at least 𝑑/2). �

6. Proof of Lemma 5.4

In the last section we reduced the task of proving Theorem 1.3 to the task of proving Lemma 5.4. In this
section we reduce this further to the task of proving Lemmas 6.1 and 6.3. We start by introducing the
notion of a non-trivial path system, which will help us control the number of connected components of
𝑆(P∗) (as required in the conclusion of Lemma 5.4).

Recall the definitions at the beginning of Sections 4 and 5. Let P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition
of a vertex set V. We call a path system Q on V non-trivial if there exists 𝑖 ≠ 𝑗 such that 𝑉𝑖 𝑗 \𝑉 (Q) ≠ ∅

or Q contains a path from 𝑉∗ 𝑗 to 𝑉𝑖∗. Otherwise, we call Q a trivial path system. Note that if Q is non-
trivial, then the Q-contracted partition P ′ of P has the property that 𝑆(P ′) has at least one edge so that
its number of connected components is strictly less than its number of vertices.

Lemma 6.1 below shows that, under the same hypothesis as Lemma 5.4, there exists a P-balanced
path system with few edges, and moreover that this path system is non-trivial if further assumptions are
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made. We shall see at the end of the section that the existence of such a non-trivial P-balanced path
system is enough to prove Lemma 5.4. In fact, a P-balanced path system alone (without the condition
of being non-trivial) is enough to prove Lemma 5.4 except in the extremal cases when 𝑑 ≈ 𝑛/𝑘 if G is
digraph and when 𝑑 ≈ 𝑛/2𝑘 if G is an oriented graph.
Lemma 6.1. Let 1/𝑛 
 𝛾 
 1/𝑘, 𝛼. Let 𝐺0 be a d-regular digraph on n vertices with 𝑑 ≥ 𝛼𝑛 and
P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺0) such that, for all 𝑖 ∈ [𝑘],

(i) 𝛿(𝐺0 [𝑉𝑖∗, 𝑉∗𝑖]) ≥ 𝑑/𝑘;
(ii) | |𝑉𝑖∗ | − |𝑉∗𝑖 | | ≤ 𝛾𝑛;

(iii) |𝑉𝑖∗ |, |𝑉∗𝑖 | ≥ 𝑑 − 𝛾𝑛.

Then𝐺0 contains a P-balanced path system Q such that 𝑒(Q) ≤ 𝑘2𝛾𝑛. Moreover, if one of the following
holds

(m1)
∑

𝑖, 𝑗∈[𝑘 ] : 𝑖≠ 𝑗 |𝑉𝑖 𝑗 | > 𝑘
2𝛾𝑛, or

(m2) there exists 𝑣0 ∈ 𝑉𝑖0 𝑗0 for some 𝑖0 ≠ 𝑗0 such that 𝑑+(𝑣0, 𝑉∗𝑖0) − 𝑑
−(𝑣0, 𝑉𝑖0∗) ≥ 100𝑘12𝛾1/3𝑑,

then we may assume that Q is non-trivial.

In case Lemma 5.4 gives a P-balanced but trivial path system (i.e., when both (m1) and (m2) fail), we
use the next proposition to slightly modify P and Lemma 6.3 to find the desired non-trivial, P-balanced
path system.
Proposition 6.2. Let 1/𝑛 
 𝛾 
 1/𝑘, 𝛼. Let 𝐺0 be a d-regular digraph on n vertices with 𝑑 ≥ 𝛼𝑛 and
P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺0) such that, for all distinct 𝑖, 𝑗 ∈ [𝑘],

(i) 𝛿(𝐺0 [𝑉𝑖∗, 𝑉∗𝑖]) ≥ 𝑑/𝑘;
(ii)

∑
𝑖′, 𝑗′ ∈ [𝑘 ] : 𝑖′≠ 𝑗′ |𝑉𝑖′ 𝑗′ | ≤ 𝛾𝑛;

(iii) for all 𝑣 ∈ 𝑉𝑖 𝑗 , we have 𝑑+(𝑣,𝑉∗𝑖) − 𝑑−(𝑣,𝑉𝑖∗) ≤ 𝛾𝑛.

Then there exists a partition P ′ = {𝑉 ′
𝑖𝑖 : 𝑖 ∈ [𝑘]} of 𝑉 (𝐺0) such that, for all 𝑖 ∈ [𝑘],

(i′) |𝑉𝑖𝑖�𝑉
′
𝑖𝑖 | ≤ 𝛾𝑛;

(ii′) 𝛿0 (𝐺0 [𝑉 ′
𝑖𝑖]) ≥ 𝑑/𝑘 − 𝛾𝑛.

Proof. For each 𝑖 ∈ [𝑘], let 𝑉 ′
𝑖𝑖 = 𝑉𝑖∗. Clearly, P ′ = {𝑉 ′

𝑖𝑖 : 𝑖 ∈ [𝑘]} is a partition of 𝑉 (𝐺0). Note that
(ii) implies (i′). For 𝑣 ∈ 𝑉𝑖 𝑗 (possibly 𝑖 = 𝑗), note that

𝑑+(𝑣,𝑉 ′
𝑖𝑖) = 𝑑

+(𝑣,𝑉𝑖∗) ≥ 𝑑
+(𝑣,𝑉𝑖𝑖)

(ii)
≥ 𝑑+(𝑣,𝑉∗𝑖) − 𝛾𝑛

(i)
≥ 𝑑/𝑘 − 𝛾𝑛.

If 𝑖 ≠ 𝑗 , similarly, we have

𝑑−(𝑣,𝑉 ′
𝑖𝑖) = 𝑑

−(𝑣,𝑉𝑖∗)
(iii)
≥ 𝑑+(𝑣,𝑉∗𝑖) − 𝛾𝑛

(i)
≥ 𝑑/𝑘 − 𝛾𝑛.

Also, for all 𝑣 ∈ 𝑉𝑖𝑖 , (i) implies 𝑑−(𝑣,𝑉 ′
𝑖𝑖) = 𝑑

−(𝑣,𝑉𝑖∗) ≥ 𝑑/𝑘 . Hence (ii′) holds. �

Lemma 6.3. Let 𝑑, 𝑘 ∈ N be such that 𝑘 ≥ 2 and 𝑑 > 165𝑘5. Let G be a d-regular digraph on n vertices
and P = {𝑉𝑖𝑖 : 𝑖 ∈ [𝑘]} be a partition of 𝑉 (𝐺) such that, for all 𝑖 ∈ [𝑘],

(i) |𝑉𝑖𝑖 | ≥ 𝑑/2;
(ii) 𝑛 < (2𝑑 + 1)𝑘 , and 𝑛 < (𝑑 + 1)𝑘 if G is not oriented;

(iii) for all 𝑣 ∈ 𝑉𝑖𝑖 , 𝑑+(𝑣,𝑉𝑖𝑖) + 𝑑−(𝑣,𝑉𝑖𝑖) ≥ 𝑑/𝑘 .

Then G contains a non-trivial P-balanced path system Q with 𝑒(Q) ≤ 𝑘 .

Before we can prove Lemma 5.4, we need a good lower bound in oriented graphs for |
⋃

𝑖∈𝐼 (𝑉𝑖∗ ∪𝑉∗𝑖) |
for any connected component I in 𝑆(P); see Proposition 6.5. For this, we use the following result on
the minimum semi-degree threshold for an oriented graph to be a robust outexpander. Recall that the
definition of robust outexpander is given immediately after Remark 3.3.
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Lemma 6.4 [22, Lemma 13.1]. Let 1/𝑛 
 𝜈 
 𝜏 ≤ 𝜀/2 ≤ 1. Then every oriented graph G on n
vertices with 𝛿0(𝐺) ≥ (3/8 + 𝜀)𝑛 is a robust (𝜈, 𝜏)-outexpander.

Proposition 6.5. Let 1/𝑛 
 𝛾 
 𝛼, 1/𝑘 . Let G be an oriented graph on n vertices with Δ0(𝐺) ≤ 𝑑
where 𝑑 ≥ 𝛼𝑛. Let P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺) such that |𝑉𝑖∗ | ≥ 𝑑/2 for all 𝑖 ∈ [𝑘].
Suppose that, for all 𝑖, 𝑗 ∈ [𝑘], all but at most 𝛾𝑛 vertices 𝑥 ∈ 𝑉𝑖 𝑗 satisfy 𝑑+(𝑥,𝑉∗𝑖), 𝑑−(𝑥,𝑉 𝑗∗) ≥ 𝑑−𝛾𝑛.
Let 𝐼 ⊆ 𝑆(P) be a connected component. Then�����⋃

𝑖∈𝐼

(𝑉𝑖∗ ∪𝑉∗𝑖)

����� ≥
{

2(𝑑 − 𝛾𝑛) if |𝐼 | = 1,
9(𝑑 − 5𝛾𝑛)/4 otherwise.

Proof. Without loss of generality, let 𝐼 = [ℓ]. For each 𝑖 ∈ [ℓ], we can find vertices 𝑣𝑖 ∈ 𝑉𝑖∗ such that
𝑑+(𝑣𝑖 , 𝑉∗𝑖) ≥ 𝑑 − 𝛾𝑛 as 𝛾 
 𝛼, 1/𝑘 , which shows in particular that |𝑉∗𝑖 | ≥ 𝑑 − 𝛾𝑛. Hence, if ℓ ≥ 3,�����⋃

𝑖∈𝐼

(𝑉𝑖∗ ∪𝑉∗𝑖)

����� ≥ ∑
𝑖∈[ℓ ]

|𝑉∗𝑖 | ≥ ℓ(𝑑 − 𝛾𝑛) ≥ 3(𝑑 − 𝛾𝑛) ≥ 9(𝑑 − 5𝛾𝑛)/4.

If ℓ = 1, then𝑉11 = 𝑉1∗ = 𝑉∗1. There exists a vertex 𝑣 ∈ 𝑉11 such that 𝑑+(𝑣,𝑉11), 𝑑
−(𝑣,𝑉11) ≥ 𝑑−𝛾𝑛.

Since G is an oriented graph, we have |𝑉11 | ≥ 𝑑
+(𝑣,𝑉11) + 𝑑

−(𝑣,𝑉11) ≥ 2(𝑑 − 𝛾𝑛).
If ℓ = 2, then

⋃
𝑖∈[2] 𝑉𝑖∗ =

⋃
𝑖∈[2] 𝑉∗𝑖 and 𝑉𝑖 𝑗 = 𝑉 𝑗𝑖 = ∅ for all (𝑖, 𝑗) ∈ [2] × ([𝑘] \ [2]). Let

𝑉𝐼 =
⋃

𝑖∈[2] 𝑉𝑖∗ =
⋃

𝑖∈[2] 𝑉∗𝑖 . There exists a vertex subset𝑊 ⊆ 𝑉𝐼 such that

|𝑊 | ≥ |𝑉𝐼 | − 4𝛾𝑛 ≥ 2(𝑑 − 𝛾𝑛) − 4𝛾𝑛 ≥ 𝛼𝑛,

and such that, writing𝑊𝑖 𝑗 = 𝑊 ∩𝑉𝑖 𝑗 for 𝑖, 𝑗 ∈ [2], we have for all 𝑖, 𝑗 ∈ [2] that

𝑑+(𝑥,𝑊∗𝑖), 𝑑
−(𝑦,𝑊 𝑗∗) ≥ 𝑑 − 5𝛾𝑛 for all 𝑥 ∈ 𝑊𝑖∗ and 𝑦 ∈ 𝑊∗ 𝑗 . (6.1)

Hence 𝛿0 (𝐺 [𝑊]) ≥ 𝑑 − 5𝛾𝑛.
Let 𝜏 be a constant with 𝛾 
 𝜏 
 𝛼. Next we show that 𝐺 [𝑊] is not a robust (𝛾1/3, 𝜏)-outexpander.

For 𝑖 ∈ [2], (6.1) implies that |𝑊𝑖∗ | ≥ 𝑑 − 5𝛾𝑛 ≥ 𝜏𝑛 ≥ 𝜏 |𝑊 | and so 𝜏 |𝑊 | ≤ |𝑊𝑖∗ | ≤ (1 − 𝜏) |𝑊 |. Since
𝑊1∗ ∪ 𝑊2∗ = 𝑊∗1 ∪ 𝑊∗2, we may assume without loss of generality that |𝑊1∗ | ≥ |𝑊∗1 |. Recall that
Δ0 (𝐺) ≤ 𝑑. By (6.1), each vertex in |𝑊1∗ | has at most 5𝛾𝑛 outneighbours in𝑊∗2, so

|RN+
𝛾1/3 (𝑊1∗) ∩𝑊∗2 | ≤

𝑒𝐺 (𝑊1∗,𝑊∗2)

𝛾1/3 |𝑊 |
≤

5𝛾𝑛2

𝛼𝛾1/3𝑛
< 𝛾1/3𝛼𝑛 ≤ 𝛾1/3 |𝑊 |,

where the penultimate inequality holds as 𝛾 
 𝛼. This implies that

|RN+
𝛾1/3 (𝑊1∗) | ≤ |𝑊∗1 | + |RN+

𝛾1/3 (𝑊1∗) ∩𝑊∗2 | < |𝑊1∗ | + 𝛾
1/3 |𝑊 |.

Hence 𝐺 [𝑊] is not a robust (𝛾1/3, 𝜏)-outexpander as claimed. Lemma 6.4 with 𝜀 = 5/72 implies
𝛿0 (𝐺 [𝑊]) ≤ (3/8 + 𝜀) |𝑊 | = 4|𝑊 |/9. Then 4|𝑊 |/9 ≥ 𝑑 − 5𝛾𝑛, and the result follows. �

We now prove Lemma 5.4 assuming Lemmas 6.1 and 6.3.

Proof of Lemma 5.4. Let G and P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be as in the statement of Lemma 5.4. We apply
Lemma 6.1 (with 𝐺0 = 𝐺) and obtain a P-balanced path system Q0 such that 𝑒(Q0) ≤ 𝑘2𝛾𝑛. Let
P0 be the Q0-contracted partition of P . Let 𝑘∗ be the smallest integer larger than 𝑛/(𝑞𝑑 + 1), that is,
𝑘∗ = �𝑛/(𝑞𝑑 + 1)� + 1. If 𝑆(P0) has at most 𝑛/(𝑞𝑑 + 1) connected components, then we are done by
setting P ′ = P and Q = Q0 since 𝑒(Q0) ≤ 𝑘2𝛾𝑛 ≤ 𝛾1/2𝑛. Hence we may assume that 𝑆(P0) has at
least 𝑘∗ connected components.

Claim 6.6. We have 𝑘∗ = 𝑘 and 𝑆(P0) is an empty graph on [𝑘∗].
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Proof of claim. Since 1/𝑛 
 𝛾 
 𝛼 and 𝑑 ≥ 𝛼𝑛, we have that

𝑛

𝑞(𝑑 − 𝛾𝑛)
−

𝑛

𝑞𝑑 + 1
≤

1
10

and so
⌊

𝑛

𝑞(𝑑 − 𝛾𝑛)

⌋
≤

⌊
𝑛

𝑞𝑑 + 1

⌋
+ 1 = 𝑘∗. (6.2)

First suppose that G is not oriented, so 𝑞 = 1. Recall (iii) that |𝑉𝑖∗ | ≥ 𝑑 − 𝛾𝑛 for all 𝑖 ∈ [𝑘], so
𝑛 ≥ 𝑘 (𝑑 − 𝛾𝑛). Together with (6.2), we have 𝑘 ≤ �𝑛/(𝑑 − 𝛾𝑛)� ≤ 𝑘∗. On the other hand, since 𝑆(P0)
has at least 𝑘∗ connected components, we have 𝑘 = |𝑉 (𝑆(P0)) | ≥ 𝑘∗. Thus 𝑘 = 𝑘∗. Furthermore, 𝑆(P0)
is an empty graph on [𝑘∗] (or else 𝑆(P0) would have fewer than 𝑘∗ connected components).

Next, suppose that G is oriented, so 𝑞 = 2. Let 𝐼1, . . . , 𝐼𝑎+𝑏 be connected components of 𝑆(P0)
such that |𝐼 𝑗 | = 1 if and only if 𝑗 ∈ [𝑎]. Note that 𝑎 + 𝑏 ≥ 𝑘∗ and {

⋃
𝑖∈𝐼 𝑗 (𝑉𝑖∗ ∪ 𝑉∗𝑖) : 𝑗 ∈ [𝑎 + 𝑏]}

is a partition of 𝑉 (𝐺). Recall (iv) that for all 𝑖, 𝑗 ∈ [𝑘], all but at most 𝛾𝑛 vertices 𝑥 ∈ 𝑉𝑖 𝑗 satisfy
𝑑+(𝑥,𝑉∗𝑖), 𝑑

−(𝑥,𝑉 𝑗∗) ≥ 𝑑 − 𝛾𝑛. Also, we have that |𝑉𝑖∗ | ≥ 𝑑 − 𝛾𝑛 ≥ 𝑑/2 for all 𝑖 ∈ [𝑘] as 𝛾 
 𝛼. By
Proposition 6.5, we have

𝑛 =
∑

𝑗∈[𝑎+𝑏]

������⋃𝑖∈𝐼 𝑗 (𝑉𝑖∗ ∪𝑉∗𝑖)
������ ≥ 2(𝑑 − 𝛾𝑛)𝑎 +

9(𝑑 − 5𝛾𝑛)
4

𝑏 = 2(𝑑 − 𝛾𝑛) (𝑎 + 𝑏) +
𝑑 − 37𝛾𝑛

4
𝑏.

Hence (6.2) implies that

1
10

≥
𝑛

2(𝑑 − 𝛾𝑛)
−

𝑛

2𝑑 + 1
>

𝑛

2(𝑑 − 𝛾𝑛)
− 𝑘∗ ≥ (𝑎 + 𝑏 − 𝑘∗) +

𝑏(𝑑 − 37𝛾𝑛)
8(𝑑 − 𝛾𝑛)

> (𝑎 + 𝑏 − 𝑘∗) +
𝑏

9
,

where the last inequality holds as 𝛾 
 𝛼. Recalling that 𝑎 + 𝑏 ≥ 𝑘∗, this shows that 𝑎 + 𝑏 = 𝑘 and 𝑏 = 0,
and so 𝑎 = 𝑘∗, proving the claim. �

Since 𝑆(P0) is an empty graph on [𝑘∗], we deduce that Q0 is trivial as defined at the start of the
section. By the moreover statement of Lemma 6.1, we have
(m1)

∑
𝑖, 𝑗∈[𝑘 ] : 𝑖≠ 𝑗 |𝑉𝑖 𝑗 | ≤ 𝑘

2𝛾𝑛 ≤ 𝛾1/4𝑛 and
(m2) for all distinct 𝑖, 𝑗 ∈ [𝑘] and 𝑣 ∈ 𝑉𝑖 𝑗 , we have 𝑑+(𝑣,𝑉∗𝑖) − 𝑑−(𝑣,𝑉𝑖∗) ≤ 100𝑘12𝛾1/3𝑑 ≤ 𝛾1/4𝑛.
By Proposition 6.2 (with 𝛾1/4 playing the role of 𝛾), there exists a partition P ′ = {𝑉 ′

𝑖𝑖 : 𝑖 ∈ [𝑘]} of
𝑉 (𝐺) (and we take 𝑉 ′

𝑖 𝑗 = ∅ for 𝑖 ≠ 𝑗) such that, for all 𝑖 ∈ [𝑘],

(i′) |𝑉𝑖𝑖�𝑉
′
𝑖𝑖 | ≤ 𝛾

1/4𝑛;
(ii′) 𝛿0 (𝐺 [𝑉 ′

𝑖𝑖]) ≥ (𝑑/𝑘) − 𝛾1/4𝑛.
Finally, apply Lemma 6.3 (with P ′ playing the role of P) by noting that property (i) of Lemma 6.3
holds by property (iii) of Lemma 5.4 together with (m1) and (i′) above, and properties (ii) and (iii)
of Lemma 6.3 hold by Claim 6.6 and (ii′) above, respectively. Thus, in G, we obtain a non-trivial P ′-
balanced path system Q with 𝑒(Q) ≤ 𝑘 ≤ 𝛾1/2𝑛. Also, if P∗ is the Q-contracted partition of P ′, then by
Claim 6.6, 𝑆(P∗) has at most 𝑘 −1 = 𝑘∗ −1 ≤ 𝑛/(𝑞𝑑 +1) connected components since Q is non-trivial.
This gives (c) and (d) in Lemma 5.4, while (m1) and (i′) imply (a), and (ii′) implies (b). �

7. Proof of Lemma 6.1

Recall that in Lemma 6.1, we are given a d-regular digraph 𝐺0 on n vertices together with a partition
P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} of 𝑉 (𝐺0) satisfying certain size and degree conditions, and we must find a
P-balanced path system Q with few edges. Moreover, we require that Q is non-trivial under certain
circumstances. We begin with a sketch of our proof approach for this lemma (ignoring the moreover
part for now). Recall the definitions at the start of Sections 4 and 5.

Let 𝑉+ and 𝑉− be two disjoint copies of 𝑉 (𝐺0). Let 𝑉+
1∗, . . . , 𝑉

+
𝑘∗ to be the partition of 𝑉+ corre-

sponding to𝑉1∗, . . . , 𝑉𝑘∗ in𝑉 (𝐺0). Similarly, let𝑉−
∗1, . . . , 𝑉

−
∗𝑘 to be the partition of𝑉− corresponding to
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Figure 1. The network F∗.

𝑉∗1, . . . , 𝑉∗𝑘 in 𝑉 (𝐺0). Let H be the bipartite digraph with bipartition 𝑉+, 𝑉− such that for each 𝑥 ∈ 𝑉+
𝑖∗

and 𝑦 ∈ 𝑉−
∗ 𝑗 , we have 𝑥𝑦 ∈ 𝐸 (𝐻) if and only if 𝑥𝑦 ∈ 𝐸 (𝐺0) and 𝑖 ≠ 𝑗 . So there is a bijection between

𝐸 (𝐻) and 𝐸 (B(𝐺0,P)).
A naive approach is to find, for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , a matching 𝑀𝑖 𝑗 in 𝐻 [𝑉+

𝑖∗, 𝑉
−
∗ 𝑗 ] with

𝑒(𝑀𝑖 𝑗 ) = 𝑒(𝐺0
𝑖 𝑗 )/𝑑. If 𝑄𝑖 𝑗 is the subgraph in 𝐺0 corresponding to 𝑀𝑖 𝑗 , then 𝑄 =

⋃
𝑖, 𝑗∈[𝑘 ] 𝑄𝑖 𝑗 is P-

balanced by construction since 𝐺0 is d-regular. It is relatively easy to guarantee Q has few edges by first
passing from 𝐺0 to a suitable subdigraph G (see Proposition 7.6). However, there are three problems
with this approach: (i) Δ0 (𝑄) might be greater than one (meaning that Q is not a path system), (ii)
𝑒(𝐺0

𝑖 𝑗 )/𝑑 may not be an integer, and (iii) Q may contain cycles, even if Δ0 (𝑄) ≤ 1.
To overcome (i) and (ii), we consider a suitable flow problem by converting H to a network

F∗ = (𝐹∗, 𝑤, 𝑠∗, 𝑡∗) as follows (the formal definition of a network and flow are stated in Section
7.1). Starting with the graph H (with all edges of H having capacity 1), we add new vertices
𝑠∗, 𝑠1, . . . , 𝑠𝑘 , 𝑡

∗, 𝑡1, . . . , 𝑡𝑘 , where 𝑠∗ and 𝑡∗ are the source and sink respectively and where the 𝑠𝑖 and 𝑡 𝑗
are viewed as ‘local’ sources and sinks, respectively. For each 𝑖, 𝑗 ∈ [𝑘] and each 𝑥+ ∈ 𝑉+

𝑖∗, 𝑦
− ∈ 𝑉−

∗ 𝑗 ,
we add the edges 𝑠𝑖𝑥+ and 𝑦−𝑡 𝑗 , each of capacity 1. For each 𝑖 ∈ [𝑘], we add the edge 𝑠∗𝑠𝑖 of capacity
max{|𝑉𝑖∗ | − |𝑉∗𝑖 |, 0}, the edge 𝑡𝑖𝑡∗ of capacity max{|𝑉∗𝑖 | − |𝑉𝑖∗ |, 0} and the edge 𝑡𝑖𝑠𝑖 of infinite capacity.
This gives the network F∗; see Figure 1. Consider a maximum integer flow f for F∗. Define Q to be
the subdigraph of B(𝐺0,P) such that 𝑥𝑦 ∈ 𝐸 (𝑄) if and only if 𝑥+𝑦− has a flow of one in f, where 𝑥+
and 𝑦− are the corresponding copies of x and y in 𝑉+ and 𝑉−, respectively. Note that Δ0 (𝑄) ≤ 1 by
construction. Also it is easy to check that Q is P-balanced provided all edges at 𝑠∗ (and hence also at
𝑡∗) are saturated by f.

To guarantee this latter condition on f, it turns out that it is enough to find a fractional flow 𝑓 ∗ such
that 𝑓 ∗𝑖 𝑗 , the total amount of flow in 𝑓 ∗ through the edges in 𝐻 [𝑉𝑖∗, 𝑉∗ 𝑗 ], is roughly 𝑒(𝐺0

𝑖 𝑗 )/𝑑 for all
𝑖 ≠ 𝑗 . Such a fractional flow is almost a maximum flow, and we can use the max-flow min-cut theorem
to convert this fractional flow into an integer flow that saturates the edges at 𝑠∗ (and 𝑡∗); see Claim 7.10.
This also addresses (ii) above.

To deal with (iii), suppose we could find a matching 𝑀0 of𝐺0 such that 𝑒(𝑀0 [𝑉𝑖∗, 𝑉∗ 𝑗 ]) ≥ 𝑒(𝐺
0
𝑖 𝑗 )/𝑑

for all 𝑖, 𝑗 ∈ [𝑘]. Then defining H (and F∗) using 𝑀0 instead of 𝐺0, we could apply the same argument
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as before to obtain a P-balanced subgraph 𝑄 ⊆ 𝑀0 (which is therefore necessarily a path system as
required). However, it is not always possible to find such a matching, so instead, for each 𝑖, 𝑗 , we find a
large ‘extendable matching’ in𝐺0

𝑖 𝑗 which consists of a matching𝑀𝑖 𝑗 ⊆ 𝐺
0
𝑖 𝑗 together with sets of vertices

𝑋+
𝑖 𝑗 ⊆ 𝑉𝑖∗ and 𝑋−

𝑖 𝑗 ⊆ 𝑉∗ 𝑗 where each vertex 𝑣+ ∈ 𝑋+
𝑖 𝑗 has high outdegree in𝐺0

𝑖 𝑗 and each vertex 𝑣− ∈ 𝑋−
𝑖 𝑗

has high indegree in𝐺0
𝑖 𝑗 , and where

⋃
𝑖, 𝑗 𝑀𝑖 𝑗 is a matching (see Lemma 7.8). Here the very large degrees

of vertices in 𝑋𝑖 𝑗 = 𝑋+
𝑖 𝑗 ∪ 𝑋

−
𝑖 𝑗 allow us to greedily extend 𝑀𝑖 𝑗 into a suitably large path system5 (see

Proposition 7.9). These path systems would be disjoint (as required) if the 𝑋𝑖 𝑗 are disjoint, but a priori
the 𝑋𝑖 𝑗 will not be disjoint. Therefore, we must modify the 𝑋𝑖 𝑗 so that each vertex is assigned to at most
one 𝑋+

𝑖 𝑗 and at most one 𝑋−
𝑖 𝑗 . It turns out that this assignment problem is not too hard to incorporate into

the flow problem described earlier (we simply add an edge of capacity 1 from 𝑣+ ∈ 𝑉+ to 𝑡 𝑗 if 𝑣+ ∈ 𝑋+
𝑖 𝑗

and similarly if 𝑣− ∈ 𝑋−
𝑖 𝑗 ). Solving the flow problem gives us the disjoint ‘extendable matchings’ we

seek (meaning the 𝑋𝑖 𝑗 ’s are disjoint), which can greedily be extended to give the desired path system.

7.1. Flows

We recall some common definitions and facts about flow networks. We note that flows are only used in
the proof of Lemma 6.1 (and not in any preliminary results).

A flow network is a tuple F = (𝐹, 𝑤, 𝑆, 𝑇), where F is a digraph, 𝑤 : 𝐸 (𝐹) → R≥0 is the capacity
function, and 𝑆 ⊂ 𝑉 is a set of sources (i.e., each 𝑠 ∈ 𝑆 only has outedges incident to it) and 𝑇 ⊂ 𝑉
is a set of sinks (i.e., each 𝑡 ∈ 𝑇 only has inedges incident to it). A flow for the flow network F is a
function 𝑓 : 𝐸 (𝐹) → R≥0 such that, for all 𝑒 ∈ 𝐸 , we have 𝑓 (𝑒) ≤ 𝑤(𝑒) and, for all 𝑣 ∈ 𝑉 \ (𝑆 ∪ 𝑇),
we have

∑
𝑢∈𝑁 −

𝐹 (𝑣) 𝑓 (𝑢𝑣) =
∑

𝑢∈𝑁 +
𝐹 (𝑣) 𝑓 (𝑣𝑢). We define the value of f as 𝑣𝑎𝑙 ( 𝑓 ) �

∑
𝑠∈𝑆

∑
𝑣 ∈𝑁 +

𝐹 (𝑠)

𝑓 (𝑠𝑣) =
∑

𝑡 ∈𝑇

∑
𝑢∈𝑁 −

𝐹 (𝑡) 𝑓 (𝑢𝑡). A maximum flow in a given flow network is a flow f that maximises
𝑣𝑎𝑙 ( 𝑓 ). We say that f is an integer flow if 𝑓 (𝑒) is an integer for all 𝑒 ∈ 𝐸 , and to emphasize the contrast,
we sometimes refer to a flow that is not necessarily an integer flow as a fractional flow. For any set of
edges 𝐸 ′ ⊆ 𝐸 , we write 𝑓 (𝐸 ′) :=

∑
𝑒∈𝐸′ 𝑓 (𝑒). If 𝑆 = {𝑠} and 𝑇 = {𝑡}, then we simply write (𝐹, 𝑤, 𝑠, 𝑡).

There are variants of the above notions that we will use. In particular, as well as having edge capacities,
a flow network can also have vertex capacities (which restrict the amount of flow that can pass through a
vertex) so that now 𝑤 : 𝐸 (𝐹) ∪𝑉 (𝐹) → R+, and for each 𝑣 ∈ 𝑉 (𝐹) \ (𝑆 ∪𝑇) a flow is defined as before
with the added restriction that 𝑓 (𝑣) ≤ 𝑤(𝑣), where 𝑓 (𝑣) :=

∑
𝑢∈𝑁 −

𝐹 (𝑣) 𝑓 (𝑢𝑣) =
∑

𝑢∈𝑁 +
𝐹 (𝑣) 𝑓 (𝑣𝑢). One

can easily reduce this to the situation of just edge capacities by replacing each vertex v with a directed
edge 𝑣−𝑣+ of capacity 𝑤(𝑣) and each directed edge 𝑢𝑣 (or 𝑣𝑤) with 𝑢𝑣− (or 𝑣+𝑤, respectively) where
new edges inherit the capacities of their old counterparts. We say that a flow f saturates an edge e (or a
vertex v) if 𝑓 (𝑒) = 𝑤(𝑒) (or 𝑓 (𝑣) = 𝑤(𝑣), respectively).

Let (𝐹, 𝑤, 𝑠, 𝑡) be a flow network. For a partition (𝑈,𝑊) of 𝑉 (𝐹) with 𝑠 ∈ 𝑈, 𝑡 ∈ 𝑊 the edge set
𝐸𝐹 (𝑈,𝑊) is called a cut. (Recall that 𝐸𝐹 (𝑈,𝑊) is the set of edges in F from U to W.) The capacity
of a cut 𝐸𝐹 (𝑈,𝑊) is the sum of the capacities of its edges, (i.e., 𝑤(𝐸𝐹 (𝑈,𝑊)) �

∑
𝑒∈𝐸𝐹 (𝑈,𝑊 ) 𝑤(𝑒).)

A minimum cut of the given flow network is a cut of minimum capacity. We make use of the following
well-known theorem.

Theorem 7.1 (Max-flow min-cut [4]). Let (𝐹, 𝑤, 𝑠, 𝑡) be a flow network.

(i) If f is a flow and 𝐸𝐹 (𝑈,𝑊) is a cut then 𝑣𝑎𝑙 ( 𝑓 ) ≤ 𝑤(𝐸𝐹 (𝑈,𝑊)).
(ii) We have that f is a maximum flow and 𝐸𝐹 (𝑈,𝑊) is a minimum cut if and only if 𝑣𝑎𝑙 ( 𝑓 ) =

𝑤(𝐸𝐹 (𝑈,𝑊)) and in that case f saturates every edge in 𝐸𝐹 (𝑈,𝑊).
(iii) If all capacities are non-negative integers, [i.e., 𝑤(𝑒) ∈ Z≥0 for all 𝑒 ∈ 𝐸 (𝐹)], then there exists a

maximum flow f that is an integer flow.

We also use the following whose proof is omitted as it is straightforward.

5When doing the greedy extension we obtain a path system (with paths of length at most 3) rather than a matching because we
allow the start (resp. end) point of an edge in 𝑀𝑖 𝑗 to be in 𝑋−

𝑖 𝑗 (resp. 𝑋+
𝑖 𝑗 ).
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Proposition 7.2. Let F = (𝐹, 𝑤, 𝑠, 𝑡) be a flow network and f a flow for F . Then, for any edge 𝑒 ∈ 𝐸 (𝐹),
there exists a flow 𝑓 ′ for F such that 𝑓 ′(𝑒) = 0 and 𝑣𝑎𝑙 ( 𝑓 ′) ≥ 𝑣𝑎𝑙 ( 𝑓 ) − 𝑓 (𝑒).

7.2. Preliminaries

We will require Vizing’s theorem for multigraphs in the proof of Lemma 7.8. Let H be an (undirected)
multigraph (without loops). The multiplicity 𝜇(𝐻) of H is the maximum number of edges between two
vertices of H, and, as usual, Δ (𝐻) is the maximum degree of H. A proper k-edge-colouring of H is an
assignment of k colours to the edges of H such that incident edges receive different colours.

Theorem 7.3 ([34]; see e.g., [5]). Any multigraph H has a proper k-edge colouring with 𝑘 = Δ (𝐻)+𝜇(𝐻)
colours. In particular, by taking the largest colour class, there is a matching in H of size at least
𝑒(𝐻)/(Δ (𝐺) + 𝜇(𝐺)).

We will also require the following simple proposition about decomposing acyclic digraphs into paths.

Proposition 7.4 [26, Proposition 2.6]. Let G be an acyclic digraph. Then the edges of G can be
partitioned into

∑
𝑣 ∈𝑉 (𝐺) |𝑑

+(𝑣) − 𝑑−(𝑣) |/2 directed paths.

We will need the following property of regular digraphs; its proof is a simple exercise by considering∑
𝑣 ∈𝑉𝑖∗

𝑑+(𝑣) and
∑

𝑣 ∈𝑉∗𝑖
𝑑−(𝑣).

Proposition 7.5 [27, Proposition 3.2]. Let G be a d-regular digraph, 𝑘 ∈ N, and P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]}
be a partition of 𝑉 (𝐺). Then, for all 𝑖 ∈ [𝑘], we have 𝑑 (|𝑉𝑖∗ | − |𝑉∗𝑖 |) = 𝑒(𝐺𝑖∗) − 𝑒(𝐺∗𝑖).

The next proposition shows that we can consider a simpler subgraph G in B(𝐺0,P).

Proposition 7.6. Let 𝐺0 be a digraph, 𝑘, 𝑑 ∈ N and P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺0) such
that for all 𝑖 ∈ [𝑘], 𝑒(𝐺0

𝑖∗) − 𝑒(𝐺
0
∗𝑖) = 𝑑 (|𝑉𝑖∗ | − |𝑉∗𝑖 |). Then, by reordering [𝑘] if necessary, there exists

a subdigraph G of B(𝐺0,P) such that

𝑒(𝐺) ≤ 𝑑 (𝑘 − 1)
∑
𝑖∈[𝑘 ]

| |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2,

𝑒(𝐺𝑖∗) − 𝑒(𝐺∗𝑖) = 𝑑 (|𝑉𝑖∗ | − |𝑉∗𝑖 |) for all 𝑖 ∈ [𝑘],

and for all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≤ 𝑗 , 𝑒(𝐺 𝑗𝑖) = 0.

Proof. Define an auxiliary multidigraph 𝐻0 on [𝑘] (with loops) such that there are precisely 𝑒(𝐺0
𝑖 𝑗 )

many 𝑖 𝑗 edges in 𝐻0. There is a natural bijection between 𝐸 (𝐺0) and 𝐸 (𝐻0). Let H be an acyclic
subdigraph of 𝐻0 obtained by successively removing all edges of a directed cycle where we treat loops
also as cycles. Note that, for all 𝑖 ∈ [𝑘],

𝑑+𝐻 (𝑖) − 𝑑−𝐻 (𝑖) = 𝑑+
𝐻 0 (𝑖) − 𝑑

−
𝐻 0 (𝑖) = 𝑒(𝐺

0
𝑖∗) − 𝑒(𝐺

0
∗𝑖) = 𝑑 (|𝑉𝑖∗ | − |𝑉∗𝑖 |). (7.1)

Since H is acyclic, by relabelling if necessary, we may assume that there are no edges 𝑗𝑖 with 𝑖 ≤ 𝑗 .
By Proposition 7.4, 𝐸 (𝐻) can be decomposed into

∑
𝑖∈[𝑘 ]

��𝑑+𝐻 (𝑖) − 𝑑−𝐻 (𝑖)
��/2 directed paths. Since each

path can have length at most 𝑘 − 1 (as H has k vertices), we have

𝑒(𝐻) ≤ (𝑘 − 1)
∑
𝑖∈[𝑘 ]

��𝑑+𝐻 (𝑖) − 𝑑−𝐻 (𝑖)
��/2(7.1)= 𝑑 (𝑘 − 1)

∑
𝑖∈[𝑘 ]

| |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2.

The result follows by setting G to be the subdigraph of 𝐺0 corresponding to H. �

We need the following lemma from our previous work [27]. It states that given a set of matchings of
low total maximum degree, one can select a relatively large number of the edges from each matching
so that the union of selected edges is also a matching.
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Lemma 7.7 [27, Lemma 4.2]. Let 𝑘, ℓ ∈ N and 𝑀1, 𝑀2, . . . , 𝑀ℓ be matchings with Δ
(⋃

𝑖∈[ℓ ] 𝑀𝑖
)
≤ 𝑘 .

Suppose 𝑒(𝑀𝑖) > 8𝑘6 ln ℓ for all 𝑖 ∈ [ℓ]. Then, there exists a matching 𝑀 ⊆
⋃

𝑖∈[ℓ ] 𝑀𝑖 with |𝑀 ∩𝑀𝑖 | ≥

𝑒(𝑀𝑖)/2𝑘2 for all 𝑖 ∈ [ℓ].

Any graph (or digraph) either has a large matching or has all its edges incident to a small set of vertices
(so these vertices have relatively large degree). The following lemma allows us to interpolate between
these extremes and moreover does it simultaneously for all 𝐺𝑖 𝑗 . This corresponds to the ‘extendable
matchings’ described in the sketch of proof.

Lemma 7.8. Let G be a digraph, 𝑘, 𝑑 ∈ N, and P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺). Let
𝜃 ∈ (0, 1) with 𝜃𝑑 ≥ 2. For all 𝑖, 𝑗 ∈ [𝑘] and 𝑣 ∈ 𝑉 (𝐺), let 𝑋+

𝑖 𝑗 = {𝑣 ∈ 𝑉 (𝐺) : 𝑑+𝐺𝑖 𝑗
(𝑣) ≥ 𝜃𝑑} and

define 𝑋−
𝑖 𝑗 similarly. Then, for each 𝑖, 𝑗 ∈ [𝑘], there exists a matching 𝑀𝑖 𝑗 of 𝐺𝑖 𝑗 such that

(1) 𝑒(𝐺𝑖 𝑗 ) ≤
∑

𝑥+ ∈𝑋+
𝑖 𝑗
𝑑+𝐺𝑖 𝑗

(𝑥+) +
∑

𝑥−∈𝑋−
𝑖 𝑗
𝑑−𝐺𝑖 𝑗

(𝑥−) + (6𝑘2𝜃𝑑)𝑒(𝑀𝑖 𝑗 ) + 50𝑘10𝜃𝑑;
(2) for all 𝑢𝑣 ∈ 𝑀𝑖 𝑗 , 𝑢 ∉ 𝑋+

𝑖 𝑗 and 𝑣 ∉ 𝑋−
𝑖 𝑗 ;

(3)
⋃

𝑖, 𝑗∈[𝑘 ] 𝑀𝑖 𝑗 is a matching.

Proof. Consider 𝑖, 𝑗 ∈ [𝑘]. Let𝐻𝑖 𝑗 be the multigraph obtained from𝐺𝑖 𝑗 by deleting all the edges 𝑢𝑣with
𝑢 ∈ 𝑋+

𝑖 𝑗 or 𝑣 ∈ 𝑋−
𝑖 𝑗 , and by making all the edges undirected. Note that we haveΔ (𝐻𝑖 𝑗 )+𝜇(𝐻𝑖 𝑗 ) ≤ 2𝜃𝑑+2

and

𝑒(𝐻𝑖 𝑗 ) ≥ 𝑒(𝐺𝑖 𝑗 ) −
�
�

∑
𝑥+ ∈𝑋+

𝑖 𝑗

𝑑+𝐺𝑖 𝑗
(𝑥+) +

∑
𝑥−∈𝑋−

𝑖 𝑗

𝑑−𝐺𝑖 𝑗
(𝑥−)

����. (7.2)

Then, by Vizing’s theorem for multigraphs (Theorem 7.3), there exists a matching 𝑀𝐻
𝑖 𝑗 in 𝐻𝑖 𝑗 of size at

least 𝑒(𝐻𝑖 𝑗 )/(2𝜃𝑑+2) ≥ 𝑒(𝐻𝑖 𝑗 )/3𝜃𝑑. Let𝑀0
𝑖 𝑗 be the corresponding matching in𝐺𝑖 𝑗 . If 𝑒(𝑀0

𝑖 𝑗 ) ≤ 16𝑘10,
then we set 𝑀0

𝑖 𝑗 to be empty. Thus, together with (7.2) we have

𝑒(𝐺𝑖 𝑗 ) ≤
�
�

∑
𝑥+ ∈𝑋+

𝑖 𝑗

𝑑+𝐺𝑖 𝑗
(𝑥+) +

∑
𝑥−∈𝑋−

𝑖 𝑗

𝑑−𝐺𝑖 𝑗
(𝑥−)

���� + (3𝜃𝑑)𝑒(𝑀0
𝑖 𝑗 ) + 50𝑘10𝜃𝑑.

Observe that Δ
(⋃

𝑖, 𝑗∈[𝑘 ] 𝑀
0
𝑖 𝑗

)
≤ 𝑘 . Apply Lemma 7.7 for nonempty matchings 𝑀0

𝑖 𝑗 (with ℓ ≤ 𝑘2) to
obtain 𝑀𝑖 𝑗 ⊆ 𝑀

0
𝑖 𝑗 (set 𝑀𝑖 𝑗 = ∅ if 𝑀0

𝑖 𝑗 = ∅) such that
⋃

𝑖, 𝑗∈[𝑘 ] 𝑀𝑖 𝑗 is a matching and, for all 𝑖, 𝑗 ∈ [𝑘],
𝑒(𝑀𝑖 𝑗 ) ≥ 𝑒(𝑀

0
𝑖 𝑗 )/2𝑘2. The result follows. �

Recall that for any directed matching M,𝑉+(𝑀) and𝑉−(𝑀) are the sets of starting and ending vertices
of the directed edges in M, respectively. Formally, 𝑉+(𝑀) = {𝑣 ∈ 𝑉 (𝑀) : 𝑣𝑤 ∈ 𝐸 (𝑀) for some 𝑤 ∈

𝑉 (𝑀)} and similarly for 𝑉−(𝑀).

Proposition 7.9. Let G be a digraph, 𝑘 ∈ N, and P = {𝑉𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑘]} be a partition of 𝑉 (𝐺). Let
𝑊 ⊆ 𝑉 (𝐺). Suppose that, for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , there exist 𝑌+

𝑖 𝑗 ⊆ 𝑉𝑖∗, 𝑌
−
𝑖 𝑗 ⊆ 𝑉∗ 𝑗 and 𝑀𝑖 𝑗 ⊆ 𝐺𝑖 𝑗

such that

(a) 𝑀 =
⋃

𝑖, 𝑗∈[𝑘 ] 𝑀𝑖 𝑗 is a matching;
(b) both of {𝑌+

𝑖 𝑗 , 𝑉
+(𝑀𝑖 𝑗 ) : 𝑖, 𝑗 ∈ [𝑘]} and {𝑌−

𝑖 𝑗 , 𝑉
−(𝑀𝑖 𝑗 ) : 𝑖, 𝑗 ∈ [𝑘]} are sets of disjoint sets;

(c) for all 𝑦+ ∈ 𝑌+
𝑖 𝑗 and 𝑦− ∈ 𝑌−

𝑖 𝑗 , 𝑑
+
𝐺𝑖 𝑗

(𝑦+), 𝑑−𝐺𝑖 𝑗
(𝑦−) ≥ 2

∑
𝑖, 𝑗∈[𝑘 ] ( |𝑌

+
𝑖 𝑗 | + |𝑌−

𝑖 𝑗 | + 𝑒(𝑀𝑖 𝑗 )) + |𝑊 | + 1.

Then B(𝐺,P) contains a path system Q such that the following hold:

(i) 𝑒(Q𝑖 𝑗 ) = |𝑌+
𝑖 𝑗 | + |𝑌−

𝑖 𝑗 | + 𝑒(𝑀𝑖 𝑗 ) for all 𝑖, 𝑗 ∈ [𝑘], where Q𝑖 𝑗 = Q ∩ 𝐸 (𝐺𝑖 𝑗 );
(ii) 𝑉 (Q) ∩𝑊 ⊆

⋃
𝑖, 𝑗∈[𝑘 ] (𝑌

+
𝑖 𝑗 ∪ 𝑌

−
𝑖 𝑗 ∪𝑉 (𝑀𝑖 𝑗 ));
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(iii) if 𝑦+ ∈ 𝑌+
𝑖 𝑗 \𝑉

−(𝑀), then there exists 𝑢 ∈ 𝑉∗ 𝑗 \𝑊 such that the single edge 𝑦+𝑢 is a path in Q, and
a similar statement for 𝑦− ∈ 𝑌−

𝑖 𝑗 \𝑉
+(𝑀) holds.

Proof. Start by setting Q = 𝑀 and then for each 𝑦 ∈ 𝑌+
𝑖 𝑗 (and 𝑦 ∈ 𝑌−

𝑖 𝑗 ), greedily add an edge 𝑦𝑣 (and 𝑣𝑦,
respectively) in 𝐺𝑖 𝑗 \𝑊 such that v avoids all current vertices in Q and all vertices in

⋃
𝑖, 𝑗 (𝑌

+
𝑖 𝑗 ∪ 𝑌

−
𝑖 𝑗 ),

which is possible by (c). It is clear that we always maintain a path system, and that (i)–(iii) hold by
construction. �

7.3. Proof of Lemma 6.1

We now prove Lemma 6.1.

Proof of Lemma 6.1. We split the proof into several steps.
Step 1: Defining 𝑮. By Proposition 7.5, 𝑒(𝐺0

𝑖∗) − 𝑒(𝐺
0
∗𝑖) = 𝑑 (|𝑉𝑖∗ | − |𝑉∗𝑖 |) for all 𝑖 ∈ [𝑘]. Apply

Proposition 7.6 and, without loss of generality, obtain a subdigraph G of B(𝐺0,P) such that

𝑒(𝐺) ≤ (𝑘 − 1)𝑑
∑
𝑖∈[𝑘 ]

| |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2
(ii)
≤ 𝑘2𝛾𝑑𝑛. (7.3)

𝑒(𝐺𝑖∗) − 𝑒(𝐺∗𝑖) = 𝑑 (|𝑉𝑖∗ | − |𝑉∗𝑖 |) for all 𝑖 ∈ [𝑘], (7.4)

and, for all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≤ 𝑗 , 𝑒(𝐺 𝑗𝑖) = 0.
Step 2: Finding X+

ij, X−
ij and Mij. For all 𝑖, 𝑗 ∈ [𝑘], let

𝑋+
𝑖 𝑗 = {𝑣 ∈ 𝑉 (𝐺) : 𝑑+𝐺𝑖 𝑗

(𝑣) ≥ 𝛾1/3𝑑} and 𝑋−
𝑖 𝑗 = {𝑣 ∈ 𝑉 (𝐺) : 𝑑−𝐺𝑖 𝑗

(𝑣) ≥ 𝛾1/3𝑑}. (7.5)

Observe that 𝑋+
𝑖 𝑗 ⊆ 𝑉𝑖∗ and 𝑋−

𝑖 𝑗 ⊆ 𝑉∗ 𝑗 for all 𝑖, 𝑗 ∈ [𝑘]. Note that 𝛾1/3𝑑 ≥ 𝛾1/3𝛼𝑛 ≥ 2 as 1/𝑛 
 𝛾 
 𝛼.
Apply Lemma 7.8 to G (with 𝜃 = 𝛾1/3) and obtain a matching 𝑀𝑖 𝑗 of 𝐺𝑖 𝑗 for 𝑖, 𝑗 ∈ [𝑘], such that

(i′) 𝑒(𝐺𝑖 𝑗 ) ≤
∑

𝑥+ ∈𝑋+
𝑖 𝑗
𝑑+𝐺𝑖 𝑗

(𝑥+) +
∑

𝑥−∈𝑋−
𝑖 𝑗
𝑑−𝐺𝑖 𝑗

(𝑥−) + (6𝑘2𝛾1/3𝑑)𝑒(𝑀𝑖 𝑗 ) + 50𝑘10𝛾1/3𝑑;
(ii′) for all 𝑢𝑣 ∈ 𝑀𝑖 𝑗 , 𝑢 ∉ 𝑋+

𝑖 𝑗 and 𝑣 ∉ 𝑋−
𝑖 𝑗 ;

(iii′)
⋃

𝑖, 𝑗∈[𝑘 ] 𝑀𝑖 𝑗 is a matching.

By deleting vertices in 𝑋+
𝑖 𝑗 ∪ 𝑋

−
𝑖 𝑗 and edges of 𝑀𝑖 𝑗 if necessary, we may assume that the RHS of (i′) is

bounded above by 𝑒(𝐺𝑖 𝑗 ) + 𝑑. Hence

𝛾1/3𝑑 (|𝑋+
𝑖 𝑗 | + |𝑋−

𝑖 𝑗 | + 𝑒(𝑀𝑖 𝑗 )) ≤
∑

𝑥+ ∈𝑋+
𝑖 𝑗

𝑑+𝐺𝑖 𝑗
(𝑥+) +

∑
𝑥−∈𝑋−

𝑖 𝑗

𝑑−𝐺𝑖 𝑗
(𝑥−) + (6𝑘2𝛾1/3𝑑)𝑒(𝑀𝑖 𝑗 ) + 50𝑘10𝛾1/3𝑑

≤ 𝑒(𝐺𝑖 𝑗 ) + 𝑑
(7.3)
≤ 𝑘2𝛾𝑑𝑛 + 𝑑 ≤ 𝛾2/3𝑘−2𝑑2/3,

where the last inequality holds as 𝑑 ≥ 𝛼𝑛 and 1/𝑛 
 𝛾 
 𝛼, 1/𝑘 . Therefore,

(iv′)
∑

𝑖, 𝑗∈[𝑘 ]

(
|𝑋+

𝑖 𝑗 | + |𝑋−
𝑖 𝑗 | + 𝑒(𝑀𝑖 𝑗 )

)
≤ 𝛾1/3𝑑/3.

Step 3: Defining flow networks. For 𝑖, 𝑗 ∈ [𝑘], let

𝑀 =
⋃

𝑖, 𝑗∈[𝑘 ]

𝑀𝑖 𝑗 , 𝑋+
𝑖∗ =

⋃
𝑗∈[𝑘 ]

(
𝑋+
𝑖 𝑗 ∪𝑉

+(𝑀𝑖 𝑗 )
)
, and 𝑋−

∗ 𝑗 =
⋃
𝑖∈[𝑘 ]

(
𝑋−
𝑖 𝑗 ∪𝑉

−(𝑀𝑖 𝑗 )
)
.

Note that 𝑋+
𝑖∗ ⊆ 𝑉𝑖∗ and 𝑋−

∗ 𝑗 ⊆ 𝑉∗ 𝑗 . Let 𝑋+ =
⋃

𝑖∈[𝑘 ] 𝑋
+
𝑖∗ and 𝑋− =

⋃
𝑗∈[𝑘 ] 𝑋

−
∗ 𝑗 .

We now define a flow network F = (𝐹, 𝑤, 𝑆, 𝑇) with multiple sources and sinks as follows. Let
𝑆 = {𝑠𝑖 : 𝑖 ∈ [𝑘]} and 𝑇 = {𝑡𝑖 : 𝑖 ∈ [𝑘]}. Let 𝑉 (𝐹) = 𝑆 ∪ 𝑇 ∪ 𝑋+ ∪ 𝑋−. Here we treat 𝑋+ and 𝑋− as
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disjoint (i.e., both 𝑋+ and 𝑋− contain a distinct copy of v for any vertex 𝑣 ∈ 𝑋+ ∩ 𝑋−). For 𝑣 ∈ 𝑉 (𝐺),
we write 𝑣+ (and 𝑣−) for the copy of v belonging to 𝑋+ (and 𝑋−, respectively). We define 𝐸 (𝐹) as the
union of edge-disjoint paths as follows: for each 𝑖, 𝑗 ∈ [𝑘] with 𝑖 < 𝑗 ,

◦ for each 𝑥+ ∈ 𝑋+
𝑖 𝑗 , we add the directed path 𝑠𝑖𝑥+𝑡 𝑗 ;

◦ for each 𝑥− ∈ 𝑋−
𝑖 𝑗 , we add the directed path 𝑠𝑖𝑥−𝑡 𝑗 ;

◦ for each 𝑒 = 𝑢𝑣 ∈ 𝑀𝑖 𝑗 , we add the directed path 𝑠𝑖𝑢+𝑣−𝑡 𝑗 ;
◦ every edge and vertex has capacity 1 (i.e., 𝑤(𝑒) = 1 for all 𝑒 ∈ 𝐸 (𝐹) and 𝑤(𝑣) = 1 for all
𝑣 ∈ 𝑉 (𝐹) \ (𝑆 ∪ 𝑇) = 𝑋+ ∪ 𝑋−).

We modify the flow network slightly if (m1) or (m2) holds. Let

𝐹0 =

{
𝐹 − {𝑣+0} − {𝑠𝑖0𝑣

−
0 } − 𝐸𝐹 (𝑋

+, 𝑣−0 ) if 𝑣0 ∈ 𝑉𝑖0 𝑗0 exists satisfying (m2),
𝐹 otherwise.

We further remove 𝑣−0 from 𝐹0 if 𝑣−0 has no inneighbour in 𝐹0. Write 𝑤0 for the capacities on 𝐹0
inherited from F and define F0 = (𝐹0, 𝑤0, 𝑆, 𝑇). By the definition of F0, note for later that

if there is any flow through 𝑣−0 , then it must be via some edge 𝑠𝑖𝑣−0 with 𝑖 ≠ 𝑖0. (7.6)

Given a flow f on F or F0, for each 𝑖, 𝑗 ∈ [𝑘], let 𝑓𝑖 𝑗 be the sum of flow over all edges from 𝑠𝑖 ∪ 𝑋
+
𝑖∗

to 𝑡 𝑗 ∪ 𝑋−
∗ 𝑗 , that is,

𝑓𝑖 𝑗 =
∑

𝑒∈𝐸𝐹 (𝑠𝑖∪𝑋
+
𝑖∗ ,𝑡 𝑗∪𝑋

−
∗ 𝑗 )

𝑓 (𝑒). (7.7)

Note that the total amount of flow going out of 𝑠𝑖 (all going to 𝑋+) is
∑

𝑗∈[𝑘 ] 𝑓𝑖 𝑗 , and the total amount
of flow into 𝑡 𝑗 is

∑
𝑖∈[𝑘 ] 𝑓𝑖 𝑗 . We now reduce the lemma to the following claim about fractional flows.

Claim 7.10. To prove the lemma, it suffices to find a fractional flow f on F0 such that∑
𝑖, 𝑗∈[𝑘 ]

max{𝑒(𝐺𝑖 𝑗 )/𝑑 − 𝑓𝑖 𝑗 , 0} < 1. (7.8)

Proof of claim. Assume f is as given in the claim and we wish to prove the lemma. We may assume
that 𝑓𝑖 𝑗 ≤ 𝑒(𝐺𝑖 𝑗 )/𝑑 for all 𝑖, 𝑗 ∈ [𝑘].6 We define a new flow network F∗ = (𝐹∗, 𝑤∗, 𝑠∗, 𝑡∗) with a single
source 𝑠∗ and sink 𝑡∗ as follows. We obtain F∗ from F0 by adding the new vertices 𝑠∗ and 𝑡∗ to 𝑉 (𝐹0)
and, for each 𝑖 ∈ [𝑘],

◦ adding the edge 𝑠∗𝑠𝑖 of capacity max{|𝑉𝑖∗ | − |𝑉∗𝑖 |, 0};
◦ adding the edge 𝑡𝑖𝑡∗ of capacity max{|𝑉∗𝑖 | − |𝑉𝑖∗ |, 0};
◦ adding an edge 𝑡𝑖𝑠𝑖 of infinite capacity;
◦ giving the vertices in 𝑆 ∪ 𝑇 infinite capacity.

We will use f to find an integer flow in F∗ of value
∑

𝑖∈[𝑘 ] | |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2. Then, by looking at the
vertices through which there is non-zero flow, we will define the sets 𝑌+

𝑖 𝑗 , 𝑌
+
𝑖 𝑗 , and 𝑀∗

𝑖 𝑗 satisfying the
properties for Proposition 7.9, which will give the desired path system Q.

First we find a fractional flow on F∗ as follows. Let F+ = (𝐹+, 𝑤+, 𝑠∗, 𝑡∗) be obtained from F∗ by
adding, for each 𝑖, 𝑗 ∈ [𝑘], an edge 𝑠𝑖𝑡 𝑗 with edge capacity 1. Define a flow 𝑓 + on F+ such that, for all
𝑖, 𝑗 ∈ [𝑘],

6Otherwise we could suitably decrease flow along paths P with positive flow from any source to any sink that uses an edge
from 𝐸𝐹 (𝑠𝑖 ∪ 𝑋+

𝑖∗, 𝑡 𝑗 ∪ 𝑋−
∗ 𝑗 ) , and this can be done independently for each 𝑖, 𝑗 ∈ [𝑘 ], since the 𝐸𝐹 (𝑠𝑖 ∪ 𝑋+

𝑖∗ , 𝑡 𝑗 ∪ 𝑋−
∗ 𝑗 ) are

disjoint over all 𝑖, 𝑗 ∈ [𝑘 ].
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◦ 𝑓 +(𝑒) = 𝑓 (𝑒) for all 𝑒 ∈ 𝐸 (𝐹0);
◦ 𝑓 +(𝑠∗𝑠𝑖) = max{|𝑉𝑖∗ | − |𝑉∗𝑖 |, 0};
◦ 𝑓 +(𝑡 𝑗 𝑡

∗) = max{|𝑉∗ 𝑗 | − |𝑉 𝑗∗ |, 0};
◦ 𝑓 +(𝑡𝑖𝑠𝑖) = min{𝑒(𝐺𝑖∗)/𝑑, 𝑒(𝐺∗𝑖)/𝑑};
◦ 𝑓 +(𝑠𝑖𝑡 𝑗 ) = 𝑒(𝐺𝑖 𝑗 )/𝑑 − 𝑓𝑖 𝑗 ≥ 0.
One can check that 𝑓 + is indeed a fractional flow7 on F+ with value

∑
𝑖∈[𝑘 ] | |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2. By applying

Proposition 7.2 to reduce the flow in 𝑠𝑖𝑡 𝑗 to 0 for all 𝑖, 𝑗 ∈ [𝑘], we obtain a fractional flow on F∗ of value

𝑟 ≥
1
2

∑
𝑖∈[𝑘 ]

| |𝑉𝑖∗ | − |𝑉∗𝑖 | | −
∑

𝑖, 𝑗∈[𝑘 ]

𝑓 +(𝑠𝑖𝑡 𝑗 ) =
1
2

∑
𝑖∈[𝑘 ]

| |𝑉𝑖∗ | − |𝑉∗𝑖 | | −
∑

𝑖, 𝑗∈[𝑘 ]

(
𝑒(𝐺𝑖 𝑗 )

𝑑
− 𝑓𝑖 𝑗

)
(7.8)
>

1
2
�
�
∑
𝑖∈[𝑘 ]

| |𝑉𝑖∗ | − |𝑉∗𝑖 | |
��� − 1.

Note that all edge capacities are integral, so Theorem 7.1 implies there exists an integral flow 𝑓 ∗ on
F∗ of value at least �𝑟� =

∑
𝑖∈[𝑘 ] | |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2. Moreover, since the cuts 𝐸𝐹 ∗ (𝑠∗, 𝑉 (𝐹∗) \ {𝑠∗}) and

𝐸𝐹 ∗ (𝑉 (𝐹∗) \ {𝑡∗}, 𝑡∗) have capacity
∑

𝑖∈[𝑘 ] | |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2, Theorem 7.1 implies that 𝑓 ∗ saturates all
the edges 𝑠∗𝑠𝑖 and 𝑡 𝑗 𝑡∗ for all 𝑖, 𝑗 ∈ [𝑘].

We now define 𝑌+
𝑖 𝑗 ⊆ 𝑋+

𝑖 𝑗 , 𝑌
−
𝑖 𝑗 ⊆ 𝑋−

𝑖 𝑗 and 𝑀∗
𝑖 𝑗 ⊆ 𝑀𝑖 𝑗 as follows. Initially, set 𝑌+

𝑖 𝑗 = 𝑌
−
𝑖 𝑗 = 𝑀𝑖 𝑗 = ∅

for all 𝑖, 𝑗 ∈ [𝑘]. For each 𝑥+ ∈ 𝑋+ with 𝑓 ∗(𝑥+) = 1, since 𝑓 ∗ is an integral flow, there exist unique
𝑖, 𝑗 ∈ [𝑘] such that either 𝑓 ∗(𝑠𝑖𝑥+) = 𝑓 ∗(𝑥+𝑡 𝑗 ) = 1 or 𝑓 ∗(𝑠𝑖𝑥+) = 𝑓 ∗(𝑥+𝑧) = 𝑓 ∗(𝑧𝑡 𝑗 ) = 1 for some
(unique) 𝑧 ∈ 𝑋−. In the former case we add 𝑥+ to𝑌+

𝑖 𝑗 while we add 𝑥+𝑧 into 𝑀∗
𝑖 𝑗 for the latter. In a similar

way, for 𝑥− ∈ 𝑋− with 𝑓 ∗(𝑥−) = 1, we either add 𝑥− to the set 𝑌−
𝑖 𝑗 or add an edge ending at 𝑥− into 𝑀∗

𝑖 𝑗 .
Note that

|𝑌+
𝑖 𝑗 | + |𝑌−

𝑖 𝑗 | + 𝑒(𝑀
∗
𝑖 𝑗 ) =

∑
𝑒∈𝐸𝐹∗ (𝑠𝑖∪𝑋

+
𝑖∗ ,𝑡 𝑗∪𝑋

−
∗ 𝑗 )

𝑓 ∗(𝑒) � 𝑓 ∗𝑖 𝑗 . (7.9)

Clearly 𝑀∗ :=
⋃

𝑖, 𝑗∈[𝑘 ] 𝑀
∗
𝑖 𝑗 ⊆ 𝑀 is a matching by (iii′). Both of {𝑌+

𝑖 𝑗 , 𝑉
+(𝑀∗

𝑖 𝑗 ) : 𝑖, 𝑗 ∈ [𝑘]} and
{𝑌−

𝑖 𝑗 , 𝑉
−(𝑀∗

𝑖 𝑗 ) : 𝑖, 𝑗 ∈ [𝑘]} are sets of disjoint sets as each 𝑥 ∈ 𝑋+ ∪ 𝑋− has vertex capacity of one. Set

𝑊 =

{⋃
𝑖, 𝑗∈[𝑘 ] : 𝑖≠ 𝑗 𝑉𝑖 𝑗 if

∑
𝑖, 𝑗∈[𝑘 ] : 𝑖≠ 𝑗 |𝑉𝑖 𝑗 | ≤ 𝑘

2𝛾𝑛,

∅ otherwise.

For all 𝑦+ ∈ 𝑌+
𝑖 𝑗 ⊆ 𝑋

+
𝑖 𝑗 , we have

𝑑+𝐺𝑖 𝑗
(𝑦+)

(7.5)
≥ 𝛾1/3𝑑

(iv′)
≥ 2

∑
𝑖, 𝑗∈[𝑘 ]

(
|𝑋+

𝑖 𝑗 | + |𝑋−
𝑖 𝑗 | + 𝑒(𝑀𝑖 𝑗 )

)
+ 𝛾1/3𝑑/3

≥ 2
∑

𝑖, 𝑗∈[𝑘 ]

(
|𝑌+
𝑖 𝑗 | + |𝑌−

𝑖 𝑗 | + 𝑒(𝑀
∗
𝑖 𝑗 )

)
+ |𝑊 | + 1

since 𝑘2𝛾𝑛 + 1 ≤ 2𝑘2𝛾𝑛 ≤ 𝛾1/3𝑑/3 as 𝛾 
 𝛼 ≤ 𝑑/𝑛, and a similar inequality holds for all 𝑦− ∈ 𝑌−
𝑖 𝑗 .

We apply Proposition 7.9 and obtain a path system Q of G such that

(i′′) 𝑒(Q𝑖 𝑗 ) = |𝑌+
𝑖 𝑗 | + |𝑌−

𝑖 𝑗 | + 𝑒(𝑀
∗
𝑖 𝑗 )

(7.9)
= 𝑓 ∗𝑖 𝑗 for all 𝑖, 𝑗 ∈ [𝑘];

(ii′′) 𝑉 (Q) ∩𝑊 ⊆
⋃

𝑖, 𝑗∈[𝑘 ] (𝑌
+
𝑖 𝑗 ∪ 𝑌

−
𝑖 𝑗 ∪𝑉 (𝑀

∗
𝑖 𝑗 ));

7Since f is a fractional flow on F0, it suffices to examine only 𝑠𝑖 and 𝑡𝑖 for 𝑖 ∈ [𝑘 ]. For 𝑠𝑖 , the amount of flow going out of 𝑠𝑖 is∑
𝑗∈[𝑘 ] 𝑓𝑖 𝑗 (from 𝑠𝑖 to 𝑋+) and

∑
𝑗∈[𝑘 ]

(
𝑒 (𝐺𝑖 𝑗 )/𝑑 − 𝑓𝑖 𝑗

)
(from 𝑠𝑖 to T), and the flow going into 𝑠𝑖 is min{𝑒 (𝐺𝑖∗)/𝑑, 𝑒 (𝐺∗𝑖)/𝑑 }

(from 𝑡𝑖 to 𝑠𝑖) and max{ |𝑉𝑖∗ | − |𝑉∗𝑖 |, 0} (from 𝑠∗ to 𝑠𝑖). By noting that (7.4) gives 𝑒 (𝐺𝑖∗)/𝑑 − 𝑒 (𝐺∗𝑖)/𝑑 = |𝑉𝑖∗ | − |𝑉∗𝑖 |, the
total contribution is 0. For 𝑡𝑖 , the calculation is similar.
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(iii′′) if 𝑦+ ∈ 𝑌+
𝑖 𝑗 \ 𝑉

−(𝑀∗), then there exists 𝑢 ∈ 𝑉∗ 𝑗 \𝑊 such that the single edge 𝑦+𝑢 is a path in Q,
and a similar statement for 𝑦− ∈ 𝑌−

𝑖 𝑗 \𝑉
+(𝑀∗) holds.

Consider 𝑖 ∈ [𝑘]. Recall that 𝑁−
𝐹 ∗ (𝑠𝑖) = {𝑠∗, 𝑡𝑖}, 𝑁+

𝐹 ∗ (𝑠𝑖) ⊆ 𝑋+
𝑖∗ ∪ 𝑋

−, and each vertex in 𝑋+ has
capacity one. We have

𝑓 ∗(𝑠∗𝑠𝑖) + 𝑓
∗(𝑡𝑖𝑠𝑖) =

∑
𝑢∈𝑁 −

𝐹∗ (𝑠𝑖)

𝑓 ∗(𝑢𝑠𝑖) =
∑

𝑣 ∈𝑁 +
𝐹∗ (𝑠𝑖)

𝑓 ∗(𝑠𝑖𝑣)

=
∑

𝑣 ∈𝑋+
𝑖∗∪𝑋

−

𝑓 ∗(𝑠𝑖𝑣) =
∑
𝑗∈[𝑘 ]

∑
𝑒∈𝐸𝐹∗ (𝑠𝑖∪𝑋

+
𝑖∗ ,𝑡 𝑗∪𝑋

−
∗ 𝑗 )

𝑓 ∗(𝑒) =
∑
𝑗∈[𝑘 ]

𝑓 ∗𝑖 𝑗
(i′′)
=

∑
𝑗∈[𝑘 ]

𝑒(Q𝑖 𝑗 )

and similarly we have 𝑓 ∗(𝑡𝑖𝑡∗) + 𝑓 ∗(𝑡𝑖𝑠𝑖) =
∑

𝑗∈[𝑘 ] 𝑒(Q 𝑗𝑖). Since 𝑓 ∗ saturates the edges 𝑠∗𝑠𝑖 and 𝑡𝑖𝑡∗,
we deduce that,∑

𝑗∈[𝑘 ]

𝑒(Q𝑖 𝑗 ) −
∑
𝑗∈[𝑘 ]

𝑒(Q 𝑗𝑖) = 𝑓 ∗(𝑠∗𝑠𝑖) − 𝑓 ∗(𝑡𝑖𝑡
∗) = 𝑤∗(𝑠∗𝑠𝑖) − 𝑤

∗(𝑡𝑖𝑡
∗)

= max{|𝑉𝑖∗ | − |𝑉∗𝑖 |, 0} − max{|𝑉∗𝑖 | − |𝑉𝑖∗ |, 0} = |𝑉𝑖∗ | − |𝑉∗𝑖 |

implying that Q is P-balanced, as required. By applying Proposition 7.6 (with 𝑑 = 1 and 𝐺0 = Q), we
may further assume that

𝑒(Q) ≤ (𝑘 − 1)
∑
𝑖∈[𝑘 ]

| |𝑉𝑖∗ | − |𝑉∗𝑖 | |/2
(ii)
≤ 𝑘2𝛾𝑛. (7.10)

We now check the moreover statement of the Lemma 6.1. If
∑

𝑖, 𝑗∈[𝑘 ] : 𝑖≠ 𝑗 |𝑉𝑖 𝑗 | > 𝑘2𝛾𝑛 (that is,
(m1) holds), then (7.10) implies that

⋃
𝑖, 𝑗∈[𝑘 ] : 𝑖≠ 𝑗 𝑉𝑖 𝑗 \ 𝑉 (Q) ≠ ∅, so Q is non-trivial. Suppose that∑

𝑖, 𝑗∈[𝑘 ] : 𝑖≠ 𝑗 |𝑉𝑖 𝑗 | ≤ 𝑘
2𝛾𝑛 and there exists 𝑣0 ∈ 𝑉𝑖0 𝑗0 satisfying (m2). If 𝑣0 ∉ 𝑉 (Q), thenQ is non-trivial.

So suppose that 𝑣0 ∈ 𝑉 (Q). Since 𝑣0 ∈ 𝑊 , by (ii′′) we must have 𝑣0 ∈ 𝑌+
𝑖 𝑗 ∪ 𝑌

−
𝑖 𝑗 ∪ 𝑉 (𝑀

∗
𝑖 𝑗 ) for some

𝑖, 𝑗 ∈ [𝑘]. This means that there is a flow through 𝑣−0 as 𝑣+0 ∉ 𝑉 (𝐹∗). By (7.6), 𝑣0 ∈ 𝑌−
𝑖 𝑗0

for some 𝑖 ≠ 𝑖0.
Also, 𝑣+0 ∉ 𝑉 (𝐹∗) implies that 𝑣0 ∉ 𝑉+(𝑀∗). By (iii′′), we deduce that there exists 𝑢 ∈ 𝑉𝑖∗ \𝑊 = 𝑉𝑖𝑖
such that 𝑢𝑣0 is a path in Q. Note that 𝑢𝑣0 is a path from𝑉𝑖𝑖 ⊆ 𝑉∗𝑖 to𝑉𝑖0 𝑗0 ⊆ 𝑉𝑖0∗. Hence Q is non-trivial,
as required. �

Step 4: Define a distribution function on X+ ∪ X−. For each 𝑖 ∈ [𝑘], 𝑥+ ∈ 𝑋+
𝑖∗ and 𝑥− ∈ 𝑋−

∗𝑖 ,
𝑗 ∈ [𝑘] \ {𝑖}, we set

𝑝 𝑗 (𝑥
+) = max{𝑑+𝐺𝑖 𝑗

(𝑥+)/𝑑, 6𝑘2𝛾1/3} and 𝑝 𝑗 (𝑥
−) = max{𝑑−𝐺 𝑗𝑖

(𝑥−)/𝑑, 6𝑘2𝛾1/3}.

Given 𝑥+ ∈ 𝑋+
𝑖∗, we ‘view’ 𝑝 𝑗 (𝑥

+) to be flow through 𝑥+ from 𝑠𝑖 to 𝑡 𝑗 , and similarly for 𝑝 𝑗 (𝑥
−).

Claim 7.11. For each 𝑖 ∈ [𝑘] and 𝑥+ ∈ 𝑋+
𝑖∗,∑

𝑗∈[𝑘 ]\{𝑖 }

𝑝 𝑗 (𝑥
+) ≤ 1 −

𝑑+
𝐺0 (𝑥,𝑉∗𝑖)

𝑑
+ 6𝑘3𝛾1/3 < 1

and a similar statement holds for each 𝑗 ∈ [𝑘] and 𝑥− ∈ 𝑋−
∗ 𝑗 .

Proof of claim. We will only consider the case when 𝑥+ ∈ 𝑋+
𝑖∗ as the other case when 𝑥− ∈ 𝑋−

∗ 𝑗 can be
proved similarly. Since G is a subgraph of 𝐺0, we have∑

𝑗∈[𝑘 ]\{𝑖 }

𝑑+𝐺𝑖 𝑗
(𝑥+) ≤

∑
𝑗∈[𝑘 ]\{𝑖 }

𝑑+
𝐺0

𝑖 𝑗

(𝑥+) = 𝑑 − 𝑑+
𝐺0 (𝑥,𝑉∗𝑖).
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Hence ∑
𝑗∈[𝑘 ]\{𝑖 }

𝑝 𝑗 (𝑥
+) ≤

∑
𝑗∈[𝑘 ]\{𝑖 }

(
𝑑+𝐺𝑖 𝑗

(𝑥+)

𝑑
+ 6𝑘2𝛾1/3

)
≤

∑
𝑗∈[𝑘 ]\{𝑖 } 𝑑

+
𝐺𝑖 𝑗

(𝑥+)

𝑑
+ 6𝑘3𝛾1/3

≤ 1 −
𝑑+
𝐺0 (𝑥,𝑉∗𝑖)

𝑑
+ 6𝑘3𝛾1/3 < 1,

where the last inequality holds as 𝑑+
𝐺0 (𝑥,𝑉∗𝑖) ≥ 𝑑/𝑘 by (i) and 𝛾 
 1/𝑘 . �

Step 5: Defining fractional flow on F0. We first define the fractional flow f on F as follows. For
each 𝑖, 𝑗 ∈ [𝑘], we do the following

◦ for each 𝑥+ ∈ 𝑋+
𝑖 𝑗 ⊆ 𝑉𝑖∗, add a flow through 𝑠𝑖𝑥+𝑡 𝑗 of value 𝑝 𝑗 (𝑥

+);
◦ for each 𝑥− ∈ 𝑋−

𝑖 𝑗 ⊆ 𝑉∗ 𝑗 , add a flow through 𝑠𝑖𝑥−𝑡 𝑗 of value 𝑝𝑖 (𝑥−);
◦ for each edge 𝑒 = 𝑢𝑣 ∈ 𝑀𝑖 𝑗 , add a flow through 𝑠𝑖𝑢+𝑣−𝑡 𝑗 of value 6𝑘2𝛾1/3.

Our construction and Claim 7.11 imply that each vertex 𝑣 ∈ 𝑋+ ∪ 𝑋− has a flow of value at most 1
through it. Thus f is indeed a fractional flow on F . For each 𝑖, 𝑗 ∈ [𝑘],

𝑑𝑓𝑖 𝑗
(7.7)
= 𝑑

�
�
∑

𝑥+ ∈𝑋+
𝑖 𝑗

𝑝 𝑗 (𝑥
+) +

∑
𝑥−∈𝑋−

𝑖 𝑗

𝑝𝑖 (𝑥
−) +

∑
𝑢𝑣 ∈𝑀𝑖 𝑗

6𝑘2𝛾1/3����
≥

∑
𝑥+ ∈𝑋+

𝑖 𝑗

𝑑+𝐺𝑖 𝑗
(𝑥+) +

∑
𝑥−∈𝑋−

𝑖 𝑗

𝑑−𝐺𝑖 𝑗
(𝑥−) + (6𝑘2𝛾1/3𝑑)𝑒(𝑀𝑖 𝑗 )

(i′)
≥ 𝑒(𝐺𝑖 𝑗 ) − 50𝑘10𝛾1/3𝑑.

Therefore, ∑
𝑖, 𝑗∈[𝑘 ]

max{𝑒(𝐺𝑖 𝑗 )/𝑑 − 𝑓𝑖 𝑗 , 0} ≤ 50𝑘12𝛾1/3 < 1.

If there is no 𝑣0 satisfying (m2), then F0 = F and we are done by Claim 7.10. If such a 𝑣0 exists, then
recall that 𝐹0 is obtained from F removing the vertex 𝑣+0 , the edge 𝑠𝑖0𝑣−0 and edges in 𝐸𝐹 (𝑋

+, 𝑣−0 ). By
repeated application of Proposition 7.2, we obtain a flow in F0 whose value is lower than that of f by at
most ∑

𝑗∈[𝑘 ]\{𝑖0 }

𝑝 𝑗 (𝑣
+
0) + 𝑝𝑖0 (𝑣

−
0 ) + 2 · 6𝑘2𝛾1/3

Claim 7.11
≤ 1 −

𝑑+
𝐺0 (𝑣0, 𝑉∗𝑖0)

𝑑
+ 6𝑘3𝛾1/3 +

(
𝑑−𝐺𝑖0 𝑗0

(𝑣0)

𝑑
+ 6𝑘2𝛾1/3

)
+ 12𝑘2𝛾1/3

≤ 1 −
𝑑+
𝐺0 (𝑣0, 𝑉∗𝑖0)

𝑑
+
𝑑−
𝐺0 (𝑣0, 𝑉𝑖0∗)

𝑑
+ 24𝑘3𝛾1/3

(m2)
≤ 1 − 100𝑘12𝛾1/3 + 24𝑘3𝛾1/3 < 1 − 50𝑘12𝛾1/3.

Therefore,
∑

𝑖, 𝑗∈[𝑘 ] max{𝑒(𝐺𝑖 𝑗 )/𝑑 − 𝑓𝑖 𝑗 , 0} is still less than 1. Hence we are done by Claim 7.10. �

8. Proof of Lemma 6.3

We begin with an outline of the proof of the Lemma 6.3. Let G and P be the digraph and vertex
partition as in the statement of Lemma 6.3. Suppose, contrary to the lemma, that there is no non-trivial
P-balanced path system.

https://doi.org/10.1017/fms.2025.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.28


Forum of Mathematics, Sigma 25

Consider distinct 𝑖, 𝑗 ∈ [𝑘]. Note that if there exist two vertex-disjoint edges 𝑒1 ∈ 𝐸 (𝐺𝑖 𝑗 ) and
𝑒2 ∈ 𝐸 (𝐺 𝑗𝑖), then {𝑒1, 𝑒2} forms a non-trivial P-balanced path system. Thus, if 𝑒(𝐺𝑖 𝑗 ), 𝑒(𝐺 𝑗𝑖) ≥ 3,
then we may assume that there exists a vertex 𝑤𝑖 𝑗 ∈ 𝑉𝑖𝑖 ∪𝑉 𝑗 𝑗 that is contained in all edges of 𝐺𝑖 𝑗 ∪𝐺 𝑗𝑖 .
Let H be the oriented graph on [𝑘] where 𝑖 𝑗 ∈ 𝐸 (𝐻) if 𝑒(𝐺𝑖 𝑗 ), 𝑒(𝐺 𝑗𝑖) ≥ 3 and 𝑤𝑖 𝑗 ∈ 𝑉 𝑗 𝑗 ; we
give weight 𝑤(𝑖 𝑗) := |𝐸 (𝐺𝑖 𝑗 ∪ 𝐺 𝑗𝑖) | to 𝑖 𝑗 .8 It turns out that the underlying undirected graph of H is
acyclic (see Claim 8.1) and that total weight of edges in H is almost equal to |B(𝐺,P) | (see (8.6)). Set
𝑤(𝑖) =

∑
𝑗∈[𝑘 ] (𝑤(𝑖 𝑗) − 𝑤( 𝑗𝑖)).

We focus on the 𝑉𝑖𝑖 that are relatively small: let 𝑐𝑖 = 𝑞𝑑 + 1 − |𝑉𝑖𝑖 | (where we set 𝑞 = 2 if G is an
oriented graph and 𝑞 = 1 otherwise) and after relabelling indices assume |{𝑖 ∈ [𝑘] : 𝑐𝑖 ≥ 0}| = [𝑘0].
We will lower and upper bound

∑
𝑖∈[𝑘0 ] 𝑤(𝑖). For the lower bound, we note that if 𝑐𝑖 > 0 then every

vertex of 𝑉𝑖𝑖 has at least one edge from outside 𝑉𝑖𝑖 , and so we can lower bound 𝑤(𝑖) in terms of 𝑐𝑖 for
each 𝑖 ∈ [𝑘0] (see (8.12)). For the upper bound, we note that 𝑤(𝑖 𝑗) can be upper bounded using (iii) (see
(8.2)). Then, as H is acyclic (so has few edges), we are able to find a good upper bound for

∑
𝑖∈[𝑘0 ] 𝑤(𝑖)

by considering connected components (i.e., trees) in 𝐻 [[𝑘0]]. Combining the lower and upper bounds,
we obtain

∑
𝑖∈[𝑘0 ] 𝑐𝑖 ≤ 𝑘 − 𝑘0 − 1 (see (8.15)) whereas (ii) implies

∑
𝑖∈[𝑘0 ] 𝑐𝑖 > 𝑘 − 𝑘0, a contradiction.

Recall that for a digraph G and 𝐴, 𝐵 ⊆ 𝑉 (𝐺) not necessarily disjoint, we write 𝐸𝐺 (𝐴, 𝐵) := {𝑎𝑏 ∈

𝐸 (𝐺) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} and 𝑒𝐺 (𝐴, 𝐵) := |𝐸𝐺 (𝐴, 𝐵) |. We write 𝐸𝐺 (𝐴) and 𝑒𝐺 (𝐴) for 𝐸𝐺 (𝐴, 𝐴) and
𝑒𝐺 (𝐴, 𝐴), respectively.

Proof of Lemma 6.3. Assume G and P satisfy (i)–(iii) in the statement of Lemma 6.3. Let 𝑞 = 2 if G
is an oriented graph and 𝑞 = 1 otherwise, so (ii) says that 𝑛 < (𝑞𝑑 + 1)𝑘 . We write 𝑉𝑖 instead of 𝑉𝑖𝑖
for 𝑖 ∈ [𝑘], so that, for all distinct 𝑖, 𝑗 ∈ [𝑘], 𝐺𝑖 𝑗 becomes the bipartite digraph with vertex classes 𝑉𝑖
and 𝑉 𝑗 and edges given by the edges of G from 𝑉𝑖 to 𝑉 𝑗 . In this context (where 𝑉𝑖 𝑗 = ∅ for all distinct
𝑖, 𝑗 ∈ [𝑘]), Q is a P-balanced path system if, for each 𝑖 ∈ [𝑘], the number of edges of Q going into
𝑉𝑖 is equal to the number of edges of Q leaving 𝑉𝑖 . Also, a P-balanced path system is non-trivial if
it has at least one path whose endpoints lie in distinct parts of the partition P = {𝑉𝑖 : 𝑖 ∈ [𝑘]}. Now
suppose for a contradiction that G does not contain any non-trivial P-balanced path system with at most
k edges.

Claim 8.1. Let 𝐻0 be a digraph on [𝑘] such that 𝑖 𝑗 ∈ 𝐸 (𝐻0) if 𝑒(𝐺𝑖 𝑗 ) ≥ 3 and 𝑖 ≠ 𝑗 . Then 𝐻0 does not
have any directed cycle of length at least 3.

Proof of claim. Suppose to the contrary that C is such a cycle in 𝐻0. For each 𝑖 𝑗 ∈ 𝐸 (𝐶), we pick an
edge 𝑒𝑖 𝑗 ∈ 𝐸 (𝐺𝑖 𝑗 ) with 𝑖 𝑗 ∈ 𝐸 (𝐶) and call the resulting subdigraph 𝐺 ′. Note that 𝐺 ′ is P-balanced
and has at most k edges; moreover it is either a cycle or a path system. If 𝐺 ′ is a cycle, then pick an
𝑖 𝑗 ∈ 𝐸 (𝐶), and find 𝑒′𝑖 𝑗 ∈ 𝐸 (𝐺𝑖 𝑗 ) with 𝑒′𝑖 𝑗 ≠ 𝑒𝑖 𝑗 . Write 𝐺 ′′ = (𝐺 ′ − {𝑒𝑖 𝑗 }) ∪ {𝑒′𝑖 𝑗 } if 𝐺 ′ is a cycle
and 𝐺 ′′ = 𝐺 ′ otherwise. Note that 𝐺 ′′ is a P-balanced path system. If 𝐺 ′′ is a single path, then there
exists 𝑡 ∈ [𝑘] such that the endpoints of 𝐺 ′′ lies in 𝑉𝑡 . Then, pick an 𝑖′ 𝑗 ′ ∈ 𝐸 (𝐶) with 𝑖′, 𝑗 ′ ≠ 𝑡, and
find 𝑒′𝑖′ 𝑗′ ∈ 𝐸 (𝐺𝑖′ 𝑗′ ) with 𝑒′𝑖′ 𝑗′ ≠ 𝑒𝑖 𝑗 , 𝑒𝑖′ 𝑗′ . Write 𝐺 ′′′ = (𝐺 ′′ − {𝑒𝑖′ 𝑗′ }) ∪ {𝑒′𝑖′ 𝑗′ } if 𝐺 ′′ is a single path
and 𝐺 ′′′ = 𝐺 ′′ otherwise. Note that 𝐺 ′′′ consists of at least two vertex-disjoint paths and that for any
path in 𝐺 ′′′, the endpoints lie in distinct parts of the partition P = {𝑉𝑖 : 𝑖 ∈ [𝑘]}, so 𝐺 ′′′ is a non-trivial
P-balanced path system with at most k edges, a contradiction. �

Claim 8.2. For all distinct 𝑖, 𝑗 ∈ [𝑘], if 𝑒(𝐺𝑖 𝑗 ) ≤ 2, then 𝑒(𝐺 𝑗𝑖) ≤ 2𝑘2.

Proof of claim. Suppose to the contrary and without loss of generality that 𝑒(𝐺21) ≤ 2 and 𝑒(𝐺12) ≥
2𝑘2 + 1. Let 𝐻0 be as defined in Claim 8.1, so 12 ∈ 𝐸 (𝐻0) and 21 ∉ 𝐸 (𝐻0). Let A be the set of 𝑖 ∈ [𝑘]
such that 𝐻0 contains a directed path from 1 to i starting with the edge 12, where we a priori allow
1 ∈ 𝐴 (i.e., resulting from a closed path). Let 𝐵 = [𝑘] \ 𝐴. It is clear from the definition that 2 ∈ 𝐴, and

8Note that it is convenient to introduce the weight 𝑤 (𝑖 𝑗) (and later 𝑤 (𝑖)) for the sketch of proof; these are not used in the
actual proof.
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by Claim 8.1 and since 21 ∉ 𝐸 (𝐻0) we have 1 ∈ 𝐵. Note that by the definition of A, there are no edges
in 𝐸𝐻0 (𝐴, 𝐵) so that 𝑒(𝐺𝑖 𝑗 ) ≤ 2 for all 𝑖 𝑗 ∈ 𝐴 × 𝐵. Together with the regularity of G, we have

2𝑘2 ≥
∑

𝑖 𝑗∈𝐴×𝐵

𝑒(𝐺𝑖 𝑗 ) =
∑

𝑖 𝑗∈𝐵×𝐴

𝑒(𝐺𝑖 𝑗 ) ≥ 𝑒(𝐺12) ≥ 2𝑘2 + 1,

which is a contradiction. �

Let 𝐻∗ be the graph on [𝑘] such that 𝑖 𝑗 ∈ 𝐸 (𝐻∗) if 𝑒(𝐺𝑖 𝑗 ), 𝑒(𝐺 𝑗𝑖) ≥ 3 (i.e., 𝐻∗ is the graph obtained
from 𝐻0 by deleting all the edges which do not lie in a directed 2-cycle and by making each directed
2-cycle into an undirected edge). By Claim 8.1, 𝐻∗ is acyclic. Consider distinct 𝑖, 𝑗 ∈ [𝑘]. Note that
there do not exist disjoint edges 𝑒1, 𝑒2 with 𝑒1 ∈ 𝐸 (𝐺𝑖 𝑗 ) and 𝑒2 ∈ 𝐸 (𝐺 𝑗𝑖) because otherwise {𝑒1, 𝑒2}
would form a non-trivial P-balanced path system. Thus if 𝑖 𝑗 ∈ 𝐸 (𝐻∗) (that is, 𝑒(𝐺𝑖 𝑗 ), 𝑒(𝐺 𝑗𝑖) ≥ 3),
then there exists a vertex 𝑤𝑖 𝑗 ∈ 𝑉𝑖 ∪𝑉 𝑗 that is contained in all edges of 𝐺𝑖 𝑗 ∪ 𝐺 𝑗𝑖 . So, we have

𝑒(𝐺𝑖 𝑗 ) + 𝑒(𝐺 𝑗𝑖) = 𝑑
+
𝐺𝑖 𝑗∪𝐺 𝑗𝑖

(𝑤𝑖 𝑗 ) + 𝑑
−
𝐺𝑖 𝑗∪𝐺 𝑗𝑖

(𝑤𝑖 𝑗 )
(iii)
≤ (2 − 1/𝑘)𝑑.

If 𝑖 𝑗 ∉ 𝐸 (𝐻∗), then min{𝑒(𝐺𝑖 𝑗 ), 𝑒(𝐺 𝑗𝑖)} ≤ 2 and by Claim 8.2, we obtain

𝑒(𝐺𝑖 𝑗 ) + 𝑒(𝐺 𝑗𝑖) ≤ 2𝑘2 + 2 ≤ (2 − 1/𝑘)𝑑 (8.1)

as 𝑘 ≥ 2 and 𝑑 > 165𝑘5. Hence we have

𝑒(𝐺𝑖 𝑗 ) + 𝑒(𝐺 𝑗𝑖) ≤ (2 − 1/𝑘)𝑑 for all distinct 𝑖, 𝑗 ∈ [𝑘] . (8.2)

Recall that 𝑞 = 2 if G is an oriented graph, and 𝑞 = 1 otherwise. Note that, if |𝑉𝑖 | ≤ 𝑞𝑑 + 1 for some
𝑖 ∈ [𝑘], then

2𝑘𝑑
(8.2)
≥

∑
𝑗∈[𝑘 ]\{𝑖 }

𝑒(𝐺𝑖 𝑗 ) = 𝑑 |𝑉𝑖 | − 𝑒(𝐺𝑖𝑖) ≥ 𝑑 |𝑉𝑖 | −
|𝑉𝑖 | ( |𝑉𝑖 | − 1)

𝑞

=
𝑞𝑑 + 1 − |𝑉𝑖 |

𝑞
|𝑉𝑖 |

(i)
≥
𝑑 (𝑞𝑑 + 1 − |𝑉𝑖 |)

2𝑞
≥
𝑑 (𝑞𝑑 + 1 − |𝑉𝑖 |)

4
.

Hence, for all 𝑖 ∈ [𝑘],

|𝑉𝑖 | ≥ 𝑞𝑑 + 1 − 8𝑘. (8.3)

We now orient 𝐻∗ to obtain an oriented graph H on [𝑘] as follows. Recall that if 𝑖 𝑗 ∈ 𝐸 (𝐻∗), then
there exists a vertex 𝑤𝑖 𝑗 ∈ 𝑉𝑖 ∪ 𝑉 𝑗 contained in all edges of 𝐸 (𝐺𝑖 𝑗 ) ∪ 𝐸 (𝐺 𝑗𝑖). We orient from i to j if
𝑤𝑖 𝑗 ∈ 𝑉 𝑗 .

Let W be the set of 𝑤𝑖 𝑗 and𝑊𝑖 = 𝑊 ∩𝑉𝑖 for all 𝑖 ∈ [𝑘]. Let 𝑉 ′
𝑖 = 𝑉𝑖 \𝑊𝑖 . Note that

|𝑊𝑖 | ≤ 𝑘 − 1 and so |𝑉 ′
𝑖 | = |𝑉𝑖 | − |𝑊𝑖 |

(8.3)
≥ 𝑞𝑑 − 9𝑘. (8.4)

Recall that B(𝐺,P) =
⋃

𝑖, 𝑗∈[𝑘 ]: 𝑖≠ 𝑗 𝐺𝑖 𝑗 . Let𝐺∗ =
⋃

𝑖, 𝑗∈[𝑘 ] 𝐺
∗
𝑖 𝑗 where𝐺∗

𝑖 𝑗 is the subdigraph of B(𝐺,P)

consisting of the edges (in both directions) between 𝑉 ′
𝑖 and 𝑤𝑖 𝑗 if 𝑖 𝑗 ∈ 𝐸 (𝐻) and 𝐺∗

𝑖 𝑗 = ∅ otherwise.9
Note that 𝐺∗

𝑖 𝑗 is a subdigraph of 𝐺𝑖 𝑗 ∪ 𝐺 𝑗𝑖 whenever 𝑖 𝑗 ∈ 𝐸 (𝐻) and 𝐺∗
𝑖 𝑗 = ∅ otherwise. Therefore,

𝑒(𝐺∗
𝑖 𝑗 )

{
≤ 𝑒(𝐺𝑖 𝑗 ∪ 𝐺 𝑗𝑖) if 𝑖 𝑗 ∈ 𝐸 (𝐻);
= 0 if 𝑖 𝑗 ∉ 𝐸 (𝐻).

(8.5)

9i.e. 𝐺∗
𝑖 𝑗 = 𝐺𝑖 𝑗 [𝑉

′
𝑖 ∪ 𝑤𝑖 𝑗 ] ∪𝐺 𝑗𝑖 [𝑉

′
𝑖 ∪ 𝑤𝑖 𝑗 ] if 𝑖 𝑗 ∈ 𝐸 (𝐻 ) and 𝐺∗

𝑖 𝑗 = ∅ otherwise.
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Hence, we deduce that

𝑒(B(𝐺,P)) − 𝑒(𝐺∗) ≤
∑

𝑖 𝑗∉𝐸 (𝐻 ∗)

(
𝑒(𝐺𝑖 𝑗 ) + 𝑒(𝐺 𝑗𝑖)

)
+

∑
𝑖, 𝑗∈[𝑘 ]:𝑖≠ 𝑗

|𝑊𝑖 | |𝑊 𝑗 |

(8.1) , (8.4)
≤

(
𝑘

2

)
(2𝑘2 + 2) + 𝑘 (𝑘 − 1)3 < 3𝑘4. (8.6)

For 𝑖 ∈ [𝑘], let 𝑉𝑖 = 𝑉 (𝐺) \𝑉𝑖 . Since all edges in 𝐺∗ contain a vertex in W and 𝐺∗ [𝑊] ∪
⋃

𝑖∈[𝑘 ] 𝐺
∗
𝑖𝑖

is empty, we have for all 𝑖 ∈ [𝑘],∑
𝑗∈[𝑘 ]

𝑒(𝐺∗
𝑖 𝑗 ) =

∑
𝑗∈[𝑘 ], 𝑖 𝑗∈𝐸 (𝐻 )

(
𝑒𝐺∗ (𝑉 ′

𝑖 , 𝑤𝑖 𝑗 ) + 𝑒𝐺∗ (𝑤𝑖 𝑗 , 𝑉
′
𝑖 )

)
= 𝑒𝐺∗ (𝑉 ′

𝑖 , 𝑉𝑖) + 𝑒𝐺∗ (𝑉𝑖 , 𝑉
′
𝑖 ) (8.7)

and, for all 𝑗 ∈ [𝑘],∑
𝑖∈[𝑘 ]

𝑒(𝐺∗
𝑖 𝑗 ) =

∑
𝑖∈[𝑘 ], 𝑖 𝑗∈𝐸 (𝐻 )

(
𝑒𝐺∗ (𝑉 ′

𝑖 , 𝑤𝑖 𝑗 ) + 𝑒𝐺∗ (𝑤𝑖 𝑗 , 𝑉
′
𝑖 )

)
= 𝑒𝐺∗ (𝑉 𝑗 ,𝑊 𝑗 ) + 𝑒𝐺∗ (𝑊 𝑗 , 𝑉 𝑗 ). (8.8)

We also need the following inequality

𝑒𝐺 (𝑉 ′
𝑖 , 𝑉𝑖) = 𝑒𝐺 (𝑉 ′

𝑖 ) +
∑
𝑤 ∈𝑊𝑖

𝑑−𝐺 (𝑤,𝑉 ′
𝑖 ) ≤ 𝑒𝐺 (𝑉 ′

𝑖 ) +
∑
𝑤 ∈𝑊𝑖

𝑑−𝐺 (𝑤,𝑉𝑖). (8.9)

Now, let 𝑘0 = |{𝑖 ∈ [𝑘] : |𝑉𝑖 | ≤ 𝑞𝑑 + 1}|. Note that 𝑘0 > 0 since 𝑛 < (𝑞𝑑 + 1)𝑘 by (ii). Without loss
of generality,

|𝑉𝑖 | ≤ 𝑞𝑑 + 1 if and only if 𝑖 ∈ [𝑘0] . (8.10)

For 𝑖 ∈ [𝑘0],

𝑑 |𝑉 ′
𝑖 | − 𝑒𝐺 (𝑉 ′

𝑖 ) ≥ 𝑑 |𝑉
′
𝑖 | −

|𝑉 ′
𝑖 | ( |𝑉

′
𝑖 | − 1)
𝑞

=
|𝑉 ′

𝑖 |

𝑞

(
𝑞𝑑 + 1 − |𝑉 ′

𝑖 |
)
=

|𝑉 ′
𝑖 |

𝑞
(𝑞𝑑 + 1 − |𝑉𝑖 |) +

|𝑉 ′
𝑖 | |𝑊𝑖 |

𝑞

(8.4)
≥
𝑞𝑑 − 9𝑘
𝑞

(𝑞𝑑 + 1 − |𝑉𝑖 |) +
|𝑉 ′

𝑖 | |𝑊𝑖 |

𝑞

= 𝑑 (𝑞𝑑 + 1 − |𝑉𝑖 |) −
9𝑘 (𝑞𝑑 + 1 − |𝑉𝑖 |)

𝑞
+
|𝑉 ′

𝑖 | |𝑊𝑖 |

𝑞

(8.3)
≥ 𝑑 (𝑞𝑑 + 1 − |𝑉𝑖 |) − 72𝑘2 +

|𝑉 ′
𝑖 | |𝑊𝑖 |

𝑞
. (8.11)

Then,

𝑒𝐺 (𝑉 ′
𝑖 , 𝑉𝑖) =

∑
𝑣 ∈𝑉 ′

𝑖

𝑑+𝐺 (𝑣,𝑉𝑖) =
∑
𝑣 ∈𝑉 ′

𝑖

(
𝑑 − 𝑑+𝐺 (𝑣,𝑉𝑖)

)
= 𝑑 |𝑉 ′

𝑖 | − 𝑒𝐺 (𝑉 ′
𝑖 , 𝑉𝑖)

(8.9)
≥ 𝑑 |𝑉 ′

𝑖 | − 𝑒𝐺 (𝑉 ′
𝑖 ) −

∑
𝑤 ∈𝑊𝑖

𝑑−𝐺 (𝑤,𝑉𝑖) = 𝑑 |𝑉
′
𝑖 | − 𝑒𝐺 (𝑉 ′

𝑖 ) −
∑
𝑤 ∈𝑊𝑖

(
𝑑 − 𝑑−𝐺 (𝑤,𝑉𝑖)

)
= 𝑑 |𝑉 ′

𝑖 | − 𝑒𝐺 (𝑉 ′
𝑖 ) − 𝑑 |𝑊𝑖 | + 𝑒𝐺 (𝑉𝑖 ,𝑊𝑖)

(8.11)
≥ 𝑑 (𝑞𝑑 + 1 − |𝑉𝑖 |) − 72𝑘2 −

|𝑊𝑖 |

𝑞
(𝑞𝑑 − |𝑉 ′

𝑖 |) + 𝑒𝐺 (𝑉𝑖 ,𝑊𝑖)

(8.4)
≥ 𝑑 (𝑞𝑑 + 1 − |𝑉𝑖 |) − 81𝑘2 + 𝑒𝐺 (𝑉𝑖 ,𝑊𝑖)
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and a similar inequality holds for 𝑒𝐺 (𝑉𝑖 , 𝑉
′
𝑖 ). Hence, for 𝑖 ∈ [𝑘0],

𝑒𝐺 (𝑉 ′
𝑖 , 𝑉𝑖) + 𝑒𝐺 (𝑉𝑖 , 𝑉

′
𝑖 ) ≥ 2𝑑 (𝑞𝑑 + 1 − |𝑉𝑖 |) − 162𝑘2 + 𝑒𝐺 (𝑉𝑖 ,𝑊𝑖) + 𝑒𝐺 (𝑊𝑖 , 𝑉𝑖). (8.12)

Let I be the set of all connected components I in 𝐻∗ [[𝑘0]] with
∑

𝑖∈𝐼 (𝑞𝑑 + 1 − |𝑉𝑖 |) > 0.10 Such I
is non empty as 𝑛 < (𝑞𝑑 + 1)𝑘 by (ii). We have that∑

𝑖∈[𝑘0 ]

(𝑞𝑑 + 1 − |𝑉𝑖 |) =
∑
𝐼 ∈I

∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |). (8.13)

Recall that 𝐻∗ is acyclic and H is an orientation of 𝐻∗. Note that for each 𝐼 ∈ I, 𝐻 [𝐼] is an oriented
tree and 𝐸𝐻 (𝐼, [𝑘] \ [𝑘0]) = 𝐸𝐻 (𝐼, [𝑘]) \ 𝐸𝐻 (𝐼). Therefore, for each 𝐼 ∈ I,

(2 − 1/𝑘)𝑑 · 𝑒𝐻 (𝐼, [𝑘] \ [𝑘0]) = (2 − 1/𝑘)𝑑 · |𝐸𝐻 (𝐼, [𝑘]) \ 𝐸𝐻 (𝐼) |

(8.2)
≥

∑
𝑖 𝑗∈𝐸 (𝐻 ) : 𝑖∈𝐼 , 𝑗∈[𝑘 ]\𝐼

𝑒(𝐺𝑖 𝑗 ∪ 𝐺 𝑗𝑖)
(8.5)
≥

∑
𝑖 𝑗∈𝐸 (𝐻 ) : 𝑖∈𝐼 , 𝑗∈[𝑘 ]\𝐼

𝑒(𝐺∗
𝑖 𝑗 )

=
∑

𝑖 𝑗∈𝐸 (𝐻 ) : 𝑖∈𝐼 , 𝑗∈[𝑘 ]
𝑒(𝐺∗

𝑖 𝑗 ) −
∑

𝑖 𝑗∈𝐸 (𝐻 ) : 𝑖, 𝑗∈𝐼 , 𝑖≠ 𝑗

𝑒(𝐺∗
𝑖 𝑗 )

(8.5)
≥

∑
𝑖 𝑗∈𝐼×[𝑘 ]

𝑒(𝐺∗
𝑖 𝑗 ) −

∑
𝑖 𝑗∈[𝑘 ]×𝐼

𝑒(𝐺∗
𝑖 𝑗 )

(8.7) , (8.8)
=

∑
𝑖∈𝐼

(
𝑒𝐺∗ (𝑉 ′

𝑖 , 𝑉𝑖) + 𝑒𝐺∗ (𝑉𝑖 , 𝑉
′
𝑖 )

)
−

∑
𝑗∈𝐼

(
𝑒𝐺∗ (𝑉 𝑗 ,𝑊 𝑗 ) + 𝑒𝐺∗ (𝑊 𝑗 , 𝑉 𝑗 )

)
(8.6)
≥

∑
𝑖∈𝐼

(
𝑒𝐺 (𝑉 ′

𝑖 , 𝑉𝑖) + 𝑒𝐺 (𝑉𝑖 , 𝑉
′
𝑖 )

)
−

∑
𝑗∈𝐼

(
𝑒𝐺 (𝑉 𝑗 ,𝑊 𝑗 ) + 𝑒𝐺 (𝑊 𝑗 , 𝑉 𝑗 )

)
− 3𝑘4

=
∑
𝑖∈𝐼

((
𝑒𝐺 (𝑉 ′

𝑖 , 𝑉𝑖) + 𝑒𝐺 (𝑉𝑖 , 𝑉
′
𝑖 )

)
−

(
𝑒𝐺 (𝑉𝑖 ,𝑊𝑖) + 𝑒𝐺 (𝑊𝑖 , 𝑉𝑖)

))
− 3𝑘4

(8.12)
≥ 2𝑑

∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |) − 162|𝐼 |𝑘2 − 3𝑘4 ≥ 2𝑑
∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |) − 165𝑘4.

After rearranging, for each 𝐼 ∈ I, we have

𝑒𝐻 (𝐼, [𝑘] \ [𝑘0]) ≥
2

2 − 1/𝑘

∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |) −
165𝑘4

(2 − 1/𝑘)𝑑

=
∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |) +
1

2𝑘 − 1

∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |) −
165𝑘5

(2𝑘 − 1)𝑑

≥
∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |) +
1

2𝑘 − 1
−

165𝑘5

(2𝑘 − 1)𝑑
>

∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |)

10Here we identify the connected component with its vertex set.
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as
∑

𝑖∈𝐼 (𝑞𝑑 + 1 − |𝑉𝑖 |) ≥ 1 and 𝑑 > 165𝑘5. Hence, we have∑
𝐼 ∈I

𝑒𝐻 (𝐼, [𝑘] \ [𝑘0]) ≥
∑
𝐼 ∈I

(
1 +

∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |)

)
= |I | +

∑
𝐼 ∈I

∑
𝑖∈𝐼

(𝑞𝑑 + 1 − |𝑉𝑖 |)

(8.13)
= |I | +

∑
𝑖∈[𝑘0 ]

(𝑞𝑑 + 1 − |𝑉𝑖 |). (8.14)

Recall that H is an oriented forest and so 𝐻 [𝐼] is an oriented tree for all 𝐼 ∈ I. Then,∑
𝐼 ∈I

𝑒𝐻 (𝐼, [𝑘] \ [𝑘0]) ≤ 𝑒𝐻

(
([𝑘] \ [𝑘0]) ∪

⋃
𝐼 ∈I

𝐼

)
−

∑
𝐼 ∈I

𝑒𝐻 (𝐼)

≤

((
𝑘 − 𝑘0 +

∑
𝐼 ∈I

|𝐼 |

)
− 1

)
−

∑
𝐼 ∈I

(|𝐼 | − 1) = 𝑘 − 𝑘0 + |I | − 1.

Together with (8.14), we have ∑
𝑖∈[𝑘0 ]

(𝑞𝑑 + 1 − |𝑉𝑖 |) ≤ 𝑘 − 𝑘0 − 1. (8.15)

Finally

𝑛 =
∑
𝑖∈[𝑘 ]

|𝑉𝑖 |
(8.10)
≥

∑
𝑖∈[𝑘0 ]

|𝑉𝑖 | + (𝑞𝑑 + 2) (𝑘 − 𝑘0)

= (𝑞𝑑 + 1)𝑘 + (𝑘 − 𝑘0) −
∑

𝑖∈[𝑘0 ]

(𝑞𝑑 + 1 − |𝑉𝑖 |)
(8.15)
≥ (𝑞𝑑 + 1)𝑘 + 1,

a contradiction to property (ii) of Lemma 6.3. This completes the proof of the lemma. �

9. Conclusion

9.1. Path cover for (non-regular) graphs

Magnant, Wang and Yuan [29] gave a stronger version of Conjecture 1.5. Recall that 𝜋(𝐺) is the
minimum number of vertex-disjoint paths needed to cover G.

Conjecture 9.1 (Magnant, Wang and Yuan [29]). If G is a graph on n vertices with Δ (𝐺) = Δ and
𝛿(𝐺) = 𝛿, then 𝜋(𝐺) ≤ max{𝑛/(𝛿 + 1), (Δ − 𝛿)𝑛/(Δ + 𝛿)}.

The bound is tight by considering a disjoint union of 𝐾𝛿+1 or a disjoint union of 𝐾𝛿,Δ . The conjecture
holds if 𝛿 ≤ 2 [29] and when Δ ≥ 2𝛿 [20]. Naturally, one can ask for the directed or oriented analogues.

9.2. Edge-disjoint cycles

In a weaker version of the problem that we have considered, one is interested in finding edge-disjoint
cycles whose union covers all the vertices. As a generalization of Dirac’s theorem, it was conjectured
by Enomoto, Kaneko and Tuza [8] that if a graph G on n vertices has minimum degree at least 𝑛/𝑘 ,
then 𝑉 (𝐺) can be covered by 𝑘 − 1 edge-disjoint cycles. The case 𝑘 = 3 was also proved in [8]. The
conjecture was proved for 2-connected graphs [18], and has been completely resolved in [19]. Later,
Balogh, Mousset and Skokan [3] obtained a stability result, showing that every graph on n vertices with
minimum degree nearly 𝑛/𝑘 has a special structure if it does not have 𝑘 −1 edge-disjoint cycles covering
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all vertices. One can ask the same question for digraphs as a generalization of Ghoulia-Houri’s theorem
[12], and Theorem 1.3 answers it affirmatively for regular digraphs:

Conjecture 9.2. Let 𝑘 ∈ N with 𝑘 ≥ 2. If G is a digraph on n vertices with minimum semi-degree at
least 𝑛/𝑘 , then 𝑉 (𝐺) can be covered by 𝑘 − 1 edge-disjoint cycles.

9.3. Connectivity and regularity

Jackson’s conjecture states that imposing regularity on an oriented graph reduces the degree threshold
for Hamiltonicity. One might hope that imposing connectivity on regular oriented graphs can reduce
the degree threshold for Hamiltonicity. We refer the reader to [27, Sections 1 and 7] for history and
conjectures on Hamiltonicity in regular (directed or oriented) graphs with given connectivity.

Similarly, in the setting of cycle partitions, one might hope that connectivity in addition to regularity
might reduce the upper bound in Conjecture 1.5. In the sparse setting, Reed [31] proved that every 3-
regular connected n-vertex graph can be covered by at most �𝑛/9� vertex-disjoint paths, and conjectured
that it suffices to use �𝑛/10� paths if connectivity is replaced by 2-connectivity. Recall that Conjecture 1.5
gives the upper bound of 𝑛/4 for 3-regular graphs (that are not necessarily connected). Yu [36] recently
verified Reed’s conjecture and gave an example of a (2-connected) d-regular graph on n vertices which
requires at least≈ 𝑛/(𝑑+4) paths for 𝑑 ≥ 13. It would be interesting to investigate the general relationship
between the degree and connectivity of a regular (di)graph or oriented graph that guarantees a small
number of vertex-disjoint cycles that cover all the vertices.
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