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Abstract

Answer set programming (ASP), a well-known declarative logic programming paradigm, has
recently found practical application in Process Mining. In particular, ASP has been used to
model tasks involving declarative specifications of business processes. In this area, Declare stands
out as the most widely adopted declarative process modeling language, offering a means to
model processes through sets of constraints valid traces must satisfy, that can be expressed in
linear temporal logic over finite traces (LTLf). Existing ASP-based solutions encode Declare
constraints by modeling the corresponding LTLf formula or its equivalent automaton which
can be obtained using established techniques. In this paper, we introduce a novel encoding for
Declare constraints that directly models their semantics as ASP rules, eliminating the need for
intermediate representations. We assess the effectiveness of this novel approach on two Process
Mining tasks by comparing it with alternative ASP encodings and a Python library for Declare.

Keywords: answer set programming, process mining

1 Introduction

In the context of Process Mining, a process typically refers to a sequence of events or

activities that are performed in order to accomplish a particular goal within a business

or organizational setting (Van der Aalst and Weijters, 2004). Process Mining (van der

Aalst, 2022) is an interdisciplinary field offering techniques and tools to discover, moni-

tor, and improve real processes by extracting knowledge from event logs readily available

in today’s information systems. One of the main tasks of Process Mining is conformance

checking , assessing the correctness of a specific execution of a process, known as trace,

against a process model . Such a process model is a formal mathematical representation
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enabling various analytical and reasoning tasks related to the underlying process. Process

models adopt either an imperative or a declarative language form, with the former explic-

itly describing all possible process executions, and the latter using logic-based constraints

to define what is not permitted within process executions. Imperative process models are

suitable for well-structured routine processes but often fall short in scenarios involving

complex coordination patterns. Declarative models, conversely, offer a flexible alternative

in such scenarios.

Linear temporal logic over finite traces (LTLf) (De Giacomo and Vardi, 2013) has

emerged has a natural choice for declarative process modeling. However, within real-

world Process Mining scenarios, LTLf formulae that are unrestricted in structure are

rarely used. Rather, a specific collection of predefined patterns, which have their origins

in the domain of system verification (Dwyer et al., 1999), is commonly used. Limiting

declarative modeling languages to a set of predefined patterns has two advantages: first,

it simplifies modeling tasks (Greenman et al., 2023, 2024), and second, it allows for the

development of specialized solutions that may outperform generic LTLf reasoners in terms

of efficiency. Specifically, Declare (van der Aalst et al., 2009) is the declarative process

modeling language most commonly used in Process Mining applications and consists of a

set of patterns, referred to as templates . The semantics of Declare templates is provided

in terms of LTLf, thus enabling logical reasoning and deduction processes within the

Declare framework (Di Ciccio and Montali, 2022).

Recent research proposals suggest that answer set programming (ASP) (Gelfond and

Lifschitz, 1991) can be successfully used for various tasks within declarative Process

Mining (Ielo et al., 2022; Chiariello et al., 2022). Nevertheless, to the best of our knowl-

edge, there has been no prior attempt to encode the Declare LTLf patterns library using

ASP in a direct way. Here, “direct” means an encoding that captures the semantics of

Declare constraints without the need for any intermediary translation. This paper fills

this gap by introducing a direct encoding approach for the main Declare patterns. The

proposed technique is benchmarked against existing ASP-based encodings across vari-

ous logs commonly used in Process Mining (Lopes and Ferreira, 2019). The goal of the

experimental analysis is twofold: first, to assess the performance of ASP-based methods

in tasks related to conformance and query checking; and second, to evaluate the effec-

tiveness of our proposed direct encoding strategy. To facilitate reproducibility, code and

data used in our experiments are openly accessible at https://github.com/ainnoot/

padl-2024.

Related work. ASP (Gelfond and Lifschitz, 1991; Niemelä, 1999; Brewka et al., 2011)

has shown promise in planning to inject domain-dependent knowledge rules, resem-

bling predefined patterns, encoded via an action theory language into ASP (Son et

al., 2006). Researchers additionally explored injecting temporal knowledge, expressed

as LTL formulae, in answer set planning (Son et al., 2006). An extension of ASP with

temporal operators was proposed by (Cabalar et al., 2019); and other applications of

logic programming to solve Process Mining tasks have been developed in earlier works

(Lamma et al., 2007; Chesani et al., 2009). The works in which ASP has been used to

tackle various computational tasks in Declare-based Process Mining (Ielo et al., 2022)

are closer to this paper. In (Chiariello et al., 2022) authors propose a solution based
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on the well-known LTLf-to-automata translation (De Giacomo and Vardi, 2013). In

(Kuhlmann et al., 2023), the authors suggested a method for encoding the semantics

of temporal operators into a logic program, enabling the encoding of arbitrary LTLf for-

mulae, by a reification of their syntax tree. Some other recent studies (Chesani et al.,

2022, 2023) tackle a slightly different objective by using ASP to directly encode Declare

constraints but with the focus of distinguishing between normal and deviant process

traces.

Paper structure. The paper is organized as follows. Section 2 provides preliminaries on

Process Mining, LTLf and ASP; Section 3 adapts automata-based (Chiariello et al.,

2022) and syntax tree-based (Kuhlmann et al., 2023) ASP encodings to Declare; Section

4 introduces our novel direct ASP encoding for Declare; Section 5 reports the results of

the experimental evaluation. Section 6 concludes the paper.

2 Preliminaries

In this section fundamental concepts related to Process Mining, LTLf, the Declare process

modeling language, and ASP are discussed.

2.1 Process mining

Process Mining (van der Aalst, 2022) is a research area at the intersection of Process

Science and Data Science. It leverages data-driven techniques to extract valuable insights

from operational processes by analyzing event data (i.e., event logs) collected during

their execution. A process can be seen as a sequence of activities that collectively allow

to achieve a specific goal. A trace represents a concrete execution of a process recording

the exact sequence of events and decisions taken in a specific instance. Process Mining

plays a significant role in Business Process Management (Weske, 2019), by providing

data-driven approaches for the analysis of events logs directly extracted from enterprise

information systems. Typical Process Mining tasks include: Conformance checking that

aims at verifying if a trace is conformant to a specified model and, for logic-based tech-

niques, Query Checking that evaluates queries (i.e., formulae incorporating variables)

against the event log. Several formalisms can be used in process modeling, with Petri nets

(van der Aalst, 1998) and BPMN (Chinosi and Trombetta, 2012) being among the most

widely used, both following an imperative paradigm. Imperative process models explic-

itly describe all the valid process executions and can be impractical when the process

under consideration is excessively intricate. In such cases, declarative process modeling

(Di Ciccio and Montali, 2022) is a more appropriate choice. Declarative process models

specify the desired properties (in terms of constraints) that each valid process execution

must satisfy, rather than prescribing a step-by-step procedural flow. Using declarative

modeling approaches allows to easily specify the desired behaviors: everything that does

not violate the rules is allowed. Declarative specifications are expressed in Declare (van

der Aalst et al., 2009), LTLf (Finkbeiner and Sipma, 2004), or LTL over process traces

(LTLp) (Fionda and Greco, 2018).
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2.2 Linear temporal logic over finite traces

This section recaps minimal notions of LTLf (De Giacomo and Vardi, 2013). We introduce

finite traces, the logic’s syntax and semantics, then informally describe its temporal

operators, and some Process Mining application-specific notation.

Finite traces. Let A be a set of propositional symbols. A finite trace is a sequence π=

π0 · · · πn−1 of n propositional interpretations πi ⊆A, i= 0, . . . , n− 1, for some n∈N.
The interpretation πi is also called a state, and |π|= n denotes the trace length.

Syntax. LTLf is an extension of propositional logic that can be used to reason about

temporal properties of traces. It shares the same syntax as LTL (Pnueli, 1977), but it

is interpreted over finite traces rather than infinite ones. An LTLf formula ϕ over A is

defined according to the following grammar:

ϕ ::=� | a | ¬ϕ |ϕ∧ϕ |Xϕ |ϕ1Uϕ2,

where a∈A. We assume common propositional (∨, →, ←→, etc.) and temporal logic

shorthands. In particular, for temporal operators, we define the eventually operator Fϕ≡
�Uϕ, the always operator Gϕ≡¬F¬φ, the weak until operator ϕWϕ′ ≡Gϕ∨ϕUϕ′ and
weak next operator Xwϕ≡¬X¬ϕ≡Xϕ ∨¬X�.

Semantics. Let ϕ be an LTLf formula, π a finite trace, 0≤ i < |π| an integer. The

satisfaction relation, denoted by π, i |=ϕ, is defined recursively as follows:

• π, i |=�;
• π, i |= a iff a∈ πi;
• π, i |=¬ϕ iff π, i |=ϕ does not hold;

• π, i |=ϕ1 ∧ϕ2 iff π, i |=ϕ1 and π, i |=ϕ2;

• π, i |=Xϕ iff i < |π| − 1 and π, i+ 1 |=ϕ;

• π, i |=ϕ1Uϕ2 iff ∃j with i≤ j ≤ |π| − 1 s.t. π, j |=ϕ2 and ∀k with i≤ k < j, π, k |=ϕ1.

We say that π is a model for ϕ if π, 0 |=ϕ, denoted as π |=ϕ. Although LTLf and LTL

share the same syntax, interpreting a formula over finite traces results in very different

properties. As an example, consider the fairness constraint of the form GFϕ. In LTL,

this kind of formulae means that it is always true that in the future ϕ holds . However, in

LTLf, this is equivalent to stating that ϕ holds in the last state of the trace. Thus, while

the formula admits only infinite traces as counterexamples when interpreted in LTL, it

admits finite counterexamples when interpreted as LTLf. It holds more generally that,

as stated in (De Giacomo and Vardi, 2013), direct nesting of temporal operators yields

un-interesting formulae in LTLf.

Automaton associated to LTLf formulae. Each LTLf formula ϕ over A can be associated

to a minimal finite-state automaton M(ϕ) over the alphabet 2A such that for any trace π

it holds that π |=ϕ iff π, is accepted by M(ϕ) (De Giacomo and Vardi, 2013; De Giacomo

and Favorito, 2021). A common assumption in LTLf applications to Process Mining,

referred to as Declare assumption (De Giacomo et al., 2014) or simplicity assumption
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Table 1. Some declare templates as LTLp formulae. We slightly edit the definitions
for chainPrecedence(a, b) and alternatePrecedence(a, b), to align their semantics to
the informal description commonly assumed in process mining applications. Changes

w.r.t the original source are highlighted in red. The succession (resp.
alternateSuccession, chainSuccession) template is defined as the conjunction of

(alternate, chain) response and precedence templates

Template LTLp

Choice(a, b) F(a∨ b)
ExclusiveChoice(a, b) Choice(a, b)∧¬(Fa∧ Fb)
RespondedExistence(a, b) Fa→ Fb
Coexistence(a, b) RespondedExistence(a, b)∧ RespondexExistence(b,a)
Response(a, b) G(a→ Fb)
Precedence(a, b) ¬b W a
Alt.Response(a, b) G(a→X(¬aUb))
Alt.Precedence(a, b) Precedence(a, b)∧G(b→XwPrecedence(a, b))
ChainResponse(a, b) G(a→Xb)
ChainPrecedence(a, b) G(Xb→ a)∧¬b

Fig. 1. Left: minimal automaton for the LTLf formula ϕ=G(a→XFb). Models (labeling the
transitions) represent sets of symbols; right: minimal automaton for ϕ interpreted as a LTLp

formula, where ∗ denotes any x∈A \ {a, b}. A comma on edges denotes multiple transitions.

(Chiariello et al., 2023), is that exactly one activity occurs in each state. LTLf with this

additional restriction is known as LTLp (Fionda and Greco, 2018). The assumption has

the following practical implication: given a LTLp formula ϕ, the minimal automaton

M(ϕ) of ϕ can be simplified into a deterministic automaton over A (Chiariello et al.,

2023), as shown in Figure 1.

2.3 Declare modeling language

Declare (van der Aalst et al., 2009) is a declarative process modeling language that

consists of a set of templates that express temporal properties of process execution

traces. The semantics of each Declare template is defined in terms of an underlying LTLp

formula. Table 1 provides the LTLp definition of some Declare templates, as reported

in (De Giacomo et al., 2014). Declare templates can be classified into four distinct

categories, each addressing different aspects of process behavior: existence templates,

specifying the necessity or prohibition of executing a particular activity, potentially

with constraints on the number of occurrences; choice templates, centered around the
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Fig. 2. Subsumption hierarchy between declare relation and existence templates. The arrow
t1 → t2 denotes that π |= t1 =⇒ π |= t2, e.g. t1 is more specific (subsumes) than t2.

concept of execution choices as they model scenarios where there is an option regard-

ing which activities may be executed; relation templates, establishing a dependency

between activities as they dictate that the execution of one activity necessitates the

execution of another, often under specific conditions or requirements; negation tem-

plates, modeling mutual exclusivity or prohibitive conditions in activity execution. In

Table 1, Choice(a, b) and ExclusiveChoice(a, b) are examples of choice templates;

while the others fall under the relation category. A Declare model is a set of con-

straints , where a constraint is a particular instantiation of a template, over specific

activities, called respectively activation and target for binary constraints. Informally,

the activation of a Declare constraint is the activity whose occurrence imposes a

constraint over the occurrence of the target on the rest of the trace. A more for-

mal account of activation-target semantics of Declare constraints can be found in

(Cecconi et al., 2022).

Main declare constraints. Declare constraints are arranged into “chains”, that

strengthen/weaken the basic relation templates Response(a, b) and Precedence(a, b).

The Response(a, b) constraint specifies that whenever a occurs, b must occur after,

while the Precedence(a, b) constraint states that b can occur only if a was exe-

cuted before. The constraints AlternateResponse(a, b) and AlternatePrecedence(a, b)

strengthen respectively the Response(a, b) and Precedence(a, b) constraints, imposing

that involved activities must “alternate”, for example once the activation occurs, the

target must occur before the activation re-occurs. The constraint ChainResponse(a, b)

imposes that the target must immediately follow the activation (i.e.,, πt = a→ πt+1 = b);

the constraint ChainPrecedence(a, b) that the target must immediately precede the acti-

vation (i.e., πt = b→ πt−1 = a). We can also weaken the temporal relation properties: the

Coexistence relation states that two activities must occur together; the ExclusiveChoice

states that exactly one of them must occur; RespondedExistence that one implies the

occurrence of the other. These templates do not specify temporal behavior, but only

co-occurrences of events. Finally, the Succession template family combines, by means

of propositional conjunction, Response and Precedence constraints. This hierarchy of

constraints, graphically represented in Figure 2, suggests a progression from more gen-

eral properties, at the bottom of the hierarchy, to more specific ones, at the top. As an
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example, the ChainResponse(a, b) is the most specific constraint in the Response chain;

it implies AlternateResponse(a, b), which in turn implies Response(a, b), which implies

RespondedExistence(a, b).

The following example showcases the informal semantics of the Response template,

which will serve as a running example in the rest of the paper in the ASP encodings

section.

Example 2.1 (Semantics of the Response template).

The informal semantics for Response(a, b) is that whenever a occurs in the trace, b will

appear in the future. Formally, the template is defined as G(a→ Fb). Thus, if a occurs

at time t in a trace π, for the constraint to be satisfied, b must appear in the trace suffix

πt+1, . . . , πn. In the context of a customer service process, let’s consider the Response

template instantiated with a= customer complains and b= address complain, correspond-

ing to the template instantiation, that is the constraint, Response(customer complains,

address complain). Such constraint imposes that when a customer complaint is received

(activation activity), a follow-up action to address the complaint (target activity), must

be executed. On the other hand, the trace π= (customer complains, logging complain,

address complain, feedback collection) satisfies the above constraint. In contrast, the

trace π′ = customer complains, logging complain, address complain, customer complains,

feedback collection does not since the second occurrence of customer complains is not

followed by any address complain event.

Another example shows how the Response constraint can be further specialized.

Example 2.2 (Semantics of the AlternateResponse and ChainResponse templates).

Consider the execution traces π1 = aaabc, π2 = abacb, π3 = abab. The constraint

Response(a, b) is valid over all these traces, while π1 violates AlternateResponse(a, b)

because a repeats before b occurs after the first occurrence of a; The constraint

ChainResponse(a, b) is valid only on trace π3, since both π1 and π2 have an a that

is not immediately followed by a b.

Conformance and query checking tasks. This paper focuses on the Declare conformance

checking and Declare (template) query checking tasks, as defined below:

Let L be an event log (a multiset of traces) and M a Declare model. The conformance

checking task (L,M) consists in computing the subset of traces L′ ⊆L such that for

each π ∈L′, π |= c for all c∈M. Basically, conformance checking determines whether a

give process execution is compliant with a process model.

Let L be an event log, and c a constraint. The support of c on L, denoted by σ(c,L),

is defined as the fraction of traces π ∈L such that π |= c. High support for a constraint

is usually interpreted as a measure of relevance for the given constraint on the log L.

Given a Declare template t and a support threshold s∈ (0, 1], the query checking task

(t,L, s) consists in computing variable-activity bindings such that the constraint c we

obtain by instantiating t with such bindings has a support greater than s on L. Query

checking enables to discover which instantiation of a given template exhibit high (above

the threshold) support on an event log, and is a valuable tool to explore and analyze

event logs (Räim et al., 2014).
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Example 2.3 (Query checking and conformance checking).

Consider the template Response(a, ?y) (where ?y is a placeholder for an activity) over the

log L= {abab, abac, abadabd}, and with support σ= 0.5. All the possible instantiations

of the “partial template”, which we obtain by substituting the placeholder ?y with an

activity that appears in the event log, are the constraints Response(a, b), Response(a, c),

and Response(a, d), which yield respectively support 1, 13 ,
2
3 over L. The substitution

?y= a, yields an unsatisfiable LTLf formula, hence zero support. Thus, the query checking

task (Response(a, ?y), L, σ= 0.5) admits {Response(a, b), Response(a, d)} as answers.

In fact, if we perform the conformance checking task of the constraint Response(a, c) the

only compliant trace would be abac, with a support below 0.5.

Interested readers can refer to (Di Ciccio and Montali, 2022) as a starting point for

Declare-related literature.

2.4 Answer set programming

ASP (Gelfond and Lifschitz, 1991; Brewka et al., 2011) is a declarative programming

paradigm based on the stable models semantics, which has been used to solve many

complex AI problems (Erdem et al., 2016). We now provide a brief introduction describing

the basic language of ASP. We refer the interested reader to (Gelfond and Lifschitz, 1991;

Brewka et al., 2011; Gebser et al., 2012) for a more comprehensive description of ASP.

The syntax of ASP follows Prolog’s conventions: variable terms are strings starting with

an uppercase letters; constant terms are either strings starting by lowercase letter or are

enclosed in quotation marks, or are integers. An atom of arity n is an expression of the

form p(t1, . . . , tn) where p is a predicate and t1, . . . , tn are terms. A (positive) literal is

an atom a or its negation (negative literal) not a where not denotes negation as failure.

A rule is an expression of the form h :− b1, . . . , bn where b1, . . . , bn is a conjunction of

literals, called the body , n≥ 0, and h is an atom called the head . All variables in a rule

must occur in some positive literal of the body. A fact is a rule with an empty body

(i.e., n= 0). A program is a finite set of rules. Atoms, rules and programs that do not

contain variables are said to be ground. The Herbrand Universe UP is the collection of

constants in the program P . The Herbrand Base BP is the set of ground atoms that

can be generated by combining predicates from P with the constants in UP . The ground

instantiation of P , denoted by ground(P ), is the union of ground instantiations of rules

in P that are obtained by replacing variables with constants in UP . An interpretation I

is a subset of BP . A positive (resp. negative) literal � is true w.r.t. I, if �∈ I (resp. � /∈ I);
it is false w.r.t. I if � /∈ I (resp. �∈ I). An interpretation I is a model of P if for each

r ∈ ground(P ), the head of r is true whenever the body of r is true. Given a program P

and an interpretation I, the (Gelfond-Lifschitz) reduct (Gelfond and Lifschitz, 1991) P I

is the program obtained from ground(P ) by (i) removing all those rules having in the

body a false negative literal w.r.t. I, and (ii) removing negative literals from the body of

remaining rules. Given a program P , the model I of P is a stable model or answer set if

there is no I ′ ⊂ I such that I ′ is a model of P I .
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In the paper, also use more advanced ASP constructs such as choice rules and function

symbols . A choice rule is an expression of the form

L {h1; . . . ; hk} U :− b1, . . . , bn.

where hi are atoms and bi are literals. Its semantics is that whenever the body of the

rule is satisfied in an interpretation I, then L≤ |I ∩ {h1, . . . , hk}| ≤U . Choice rules can

be rewritten into a set of normal rules (Gebser et al., 2012).

A function symbol is a “composite term” of the form f(t1, . . . , tk) where ti are terms

and f is a predicate name. For what we are concerned in this paper, function symbols

will be essentially used to model the input, acting as syntactic sugar that simplifies the

modeling of records. This presentation choice makes the encodings more readable, since

they allow for a compact notation of records. It is easy to see that function symbols can

be easily replaced by more lengthy standard ASP specifications with additional terms in

the input predicates.

We refer the reader to (Calimeri et al., 2020) for a description of more advanced ASP

constructs. In the rest of the paper, ASP code examples will use Clingo (Gebser et al.,

2019) syntax.

3 Translation-Based ASP Encodings for Declare

This section introduces ASP encodings for conformance checking of Declare models and

query checking of Declare constraints with respect to an input event log, based on the

translation to automata and syntax trees. Both encodings share the same input fact

schema to specify which Declare constraints belong to the model, or which constraint we

are performing query checking against. These encodings are indirect , since they rely on

a translation, but also general in the sense that they can be applied to the evaluation

of arbitrary LTLp formulae. This is achieved, in the case of the syntax tree encoding, by

reifying the syntax tree of a formula and by explicitly modeling the semantics of each

LTLp temporal operator through a logic program, and in the case of the automaton

encoding, by exploiting the well-known LTLp-to-automaton translation (De Giacomo

and Vardi, 2013; Chiariello et al., 2023). Thus, one can use these two encodings to

represent Declare constraints by their LTLp definitions. The automaton-based encod-

ing is adapted from (Chiariello et al., 2022), the syntax tree-based encoding is adapted

from (Kuhlmann et al., 2023; Kuhlmann and Corea, 2024) — integrating changes to

allow for the above-mentioned shared fact schema and evaluation over multiple traces.

A similar encoding has also been used in (Ielo et al., 2023) to learn LTLf formulae

from sets of example traces (using the ASP-based inductive logic programming system

ILASP (Law, 2023)) and to implement an ASP-based LTLf bounded satisfiability solver

(Fionda et al., 2024).

Earlier work in answer set planning (Son et al., 2006) also exploited LTL constraints

using a similar syntax tree-reification approach. We start by defining how event logs

and Declare constraints are encoded into facts, then introduce conformance checking and

query checking encodings with the two approaches.
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3.1 Encoding process traces and declare models

Encoding process traces. For our purposes, an event log L is a multiset of process traces,

thus a multiset of strings over an alphabet of propositional symbols A (representing

activities). We assume that each trace π ∈L is uniquely indexed by an integer, and

we denote that the trace π has index i by id(π) = i. This is a common assumption in

Process Mining, where i is referred to as the trace identifier . Traces are modeled through

the predicate trace/3, where the atom trace(i, t, a) encodes that πt = a, id(π) = i – that

is, the t-th activity in the i-th trace π is a. Given a process trace π, we denote by E(π)

the set of facts that encodes it. Thus, an event log L is encoded as E(L) =
⋃

π∈L E(π).

Example 3.1 (Encoding a process trace).

Consider an event log composed of the two process traces π0 = abc and π1 = xyz, respec-

tively with identifiers 0 and 1, over the propositional alphabet A= {a, b, c, x, y, z}. This
is encoded by the following set of facts:

trace(0,0,a). trace(0,1,b). trace(0,2,c). trace(1,0,x). trace(1,1,y). trace(1,2,z).

In our encoding, activities are represented as constants that appear at least once in a

trace in the event log, for example a such that trace( , , a) is a fact in the input event

log.

Each Declare template, informally, can be understood as a “LTLp formula with vari-

ables”. Substituting these variables with activities yields a Declare constraint. How

templates are instantiated into constraints, and how constraints are evaluated over traces,

depends on the ASP encoding we use. However, all encodings share a common fact schema

where constraints are expressed as templates with bound variable substitutions.

Encoding declare constraints. A Declare constraint is modeled by predicates

constraint/2 and bind/3. The former model which Declare template a given con-

straint is instantiated from and the latter which activity-variable bindings instantiate

the constraint. An atom constraint(cid, template) encodes that the constraint uniquely

identified by cid is an instance of the template template. The atom bind(cid, arg, value)

encodes that the constraint uniquely identified by cid is obtained by binding the argument

arg to the activity value. Given a Declare model M= {c1, . . . , cn}, where the subscript

i uniquely indexes the constraint ci, we denote by E(M) the set of facts that encodes

M, that is E(M) =
⋃

c∈M E(c). Recall that in Declare π |=M if and only if π |= c for all

c∈M, thus there is no notion of “order” among the constraints within M and it does

not matter how indexes are assigned to constraints as long as they are unique.

Example 3.2 (Encoding a Declare model).

Consider the model M composed of the two constraints Response(a1, a2) and

Precedence(a2, a3). M is encoded by the following facts:

constraint(0,"Response").
bind(0,arg_0,a_1). bind(0,arg_1,a_2).

constraint(1,"Precedence").
bind(1,arg_0,a_2). bind(1,arg_1,a_3).
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cur_state(C,TID,S,0) :-
trace(TID,_,_),
initial(Template,S),
constraint(C,Template).

last(TID,T) :-
trace(TID,T,_),
not trace(TID,T+1,_).

sat(TID,C) :-
cur_state(C,TID,S,T+1),
last(TID,T),
template(Template,C),
constraint(C, Template),
accepting(Template,S).

cur_state(C,TID,S2,T+1) :-
cur_state(C,TID,S1,T),
constraint(C,Template),
template(Template,S1,Arg,S2),
trace(TID,T,A),
bind(C,Arg,A).

cur_state(C,TID,S2,T+1) :-
cur_state(C,TID,S1,T),
constraint(C,Template),
template(Template,S1,"*",S2),
trace(TID,T,A),
not bind(C,_,A).

Fig. 3. ASP program to execute a finite state machine corresponding to a constraint, encoded
as template/4 facts, on input strings encoded by trace/3 facts.

3.2 Encoding conformance checking

All the Declare conformance checking encodings we propose consist of a stratified normal

logic program (Lloyd, 1984; Apt et al., 1988) PCF such that given a log L and a Declare

model M we have that for all πi ∈L, πi |= cj ∈M if and only if the unique model of

PCF ∪E(M)∪E(L) contains the atom sat(i, j). The binary template Response will be

our example to showcase the different encodings. Complete encodings for all the templates

in Table 1 are available online.

Automaton encoding. The automaton encoding, reported in Figure 3, models Declare

templates through their corresponding automaton obtained by translating the template’s

LTLp definition (De Giacomo and Favorito, 2021). The automaton’s complete transition

function is reified into a set of facts that defines the template in ASP. The predicates

initial/2, accepting/2 model the initial and accepting states of the automaton, while

template/4 stores the transition function of the template-specific automaton. In partic-

ular, arg 0 refers to the template activation, and arg 1 refers to the template target .

A constraint c instantiated from a template binds its arg 0, arg 1 to specific activi-

ties. The constant ’’∗’’ is used as a placeholder for any activity in A \ {x, y} – where

x and y are the bindings of arg 0 and arg 1. Activities not explicitly mentioned as

within the atomic propositions in an LTLp formula ϕ have the same influence to π |=ϕ.

Consequently, all unbound activities can be denoted by the symbol ’’∗’’ in the automa-

ton transition table. As an example, consider the constraint c= Response(a,b), shown in

Figure 4. Evaluating the trace abwqw is equivalent to evaluating the trace abtts, which

would be equivalent to evaluating the trace ab∗∗∗, since a and b are the only propositional

formulae that appear in the definition of Response(a,b).

Syntax tree-based encoding. The syntax tree encoding, shown in Figure 5, reifies the

syntax tree of a LTLp formula into a set of facts, where each node represents a sub-

formula. The semantics of temporal operators and propositional operators is defined in

terms of ASP rules. Analogously to the automaton encoding, templates are defined in
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template("Response",0,"*",0).
template("Response",0,arg_1,0).
template("Response",0,arg_0,1).
template("Response",1,arg_1,0).
template("Response",1,"*",1).
template("Response",1,arg_0,1).
accepting("Response",0).
initial("Response",0).

Fig. 4. Left: facts that encode the response template; right: a minimal finite state machine
whose recognized language is equal to the set of models of response, under LTLp semantics.

terms of reified syntax trees, which are used to evaluate each constraint according to the

template they are instantiated from. The following normal rules define the semantics of

each temporal and propositional operator. We report the rules for operators {U,X,¬,∧}
which are the basic operators of LTLp. The full encoding, that also includes definitions

of derived operators, is available online. In particular, the true/4 predicate tracks which

sub-formula of a constraints’ definition is true at any given time. As an example, the

atom true(c, f, t, i) encodes that at time t the constraint sub-formula f of constraint c

is satisfied on the i-th trace. The terms conjunction/3, negate/2, next/2, until/3

model the topology of the syntax tree of the corresponding formula. The first term refers

to a node identifier, while the other terms (one for unary operators, two for the binary

operators are the node identifiers of its child nodes. The atom/2 predicate models that

a given node (first term) is an atom, bound to a particular argument (second term) by

the bind/3 predicate which is used in encoding of Declare constraints. Figure 6 shows an

example.

3.3 Encoding query checking

The query checking problem takes as input a Declare template T, an event log L and

consists in deciding which constraints c can be instantiated from T such that σ(c,L)≥ k,
where σ(c,L) is the support and denotes the fraction of traces in L that are models of c.

The problem has been formally introduced in (Chan, 2000) for temporal logic formulae,

and in (Räim et al., 2014) it has been framed into a Process Mining setting, in the

context of LTLf. An ASP-based solution to the problem has been provided in

(Chiariello et al., 2022), through the same automaton encoding we have been referring

to throughout the paper, and instead an exhaustive search-based, Declare-specific imple-

mentation is provided in the Declare4Py (Donadello et al., 2022) library. From the ASP

perspective, a conformance checking encoding can be easily adapted to perform query

checking, by searching over possible variable-activities bindings that yield a constraint

above the chosen support threshold. In particular, we adapt the query checking encod-

ing presented in (Fionda et al., 2023) to the LTLf setting. In order to encode the query

checking problem, we slightly change our input model representation, as reported in the

following example.

Example 3.3 (Query checking)

Consider the query checking problem instance over the template Response, with both its

activation and target ranging over A. The var bind/3 predicate, analogously to bind 3,
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last(TID,T) :-
trace(TID,T,_),
not trace(TID,T+1,_).

true(C,F,T,TID) :-
constraint(C,Template),
template(Template,
atom(F,Arg)

),
bind(C,Arg,A),
trace(TID,T,A).

true(C,F,T,TID) :-
constraint(C,Template),
template(Template,
conjunction(F,G,H)

),
trace(TID,T,_),
true(C,G,T,TID),
true(C,H,T,TID).

true(C,F,T,TID) :-
constraint(C,Template),
template(Template,negate(F,G)),
not true(C,G,T,TID),
trace(TID,T,_).

sat(C,TID) :-
true(C,0,0,TID).

true(C,F,Ti,TID) :-
constraint(C,Template),
template(Template,next(F,G)),
trace(TID,Ti,_),
Tj=Ti+1,
Ti<M,
last(TID,M),
true(C,G,Tj,TID).

true(C,F,Ti,TID) :-
constraint(C,Template),
template(Template, until(F,G,H)),
trace(TID,Ti,_),
trace(TID,Tj,_),
Tj>=Ti, Tj<=M,
last(TID,M),
{true(C,G,T,TID): trace(TID,T,_),

T>=Ti, T<Tj} = Tj-Ti,
true(C,H,Tj,TID).

Fig 5. ASP program to evaluate each sub-formula of the LTLp definition of a given template,
encoded as template/2 facts, on input strings encoded by a syntax tree representation through

the conjunction/3, negate/2, until/3, next/2 and atom/2 terms.

template("Response",always(0,1)).
template("Response",implies(1,2,3)).
template("Response",atom(2,arg_0)).
template("Response",eventually(3,4)).
template("Response",atom(4,arg_1)).

Fig. 6. Left: facts that encode the response template; right: syntax tree of the response
template LTLp definition.

models that in a given template a parameter is bound to a variable. For the query checking

problem, we are interested in tuples of activities that, when substituted to the constraints’

variables, yield a constraint whose support is above the threshold over the input log. The

domain/2 predicate can be used to give each variable its own subset of possible values,

but in this case, for both variables, the domain of admissible substitutions spans over

A. The choice rule generates candidate substitutions that are pruned by the constraints

if they are above the maximum number of violations. Given an input support threshold

s∈ (0, 1], the constant max violations is set to the nearest integer above (1− s) · |L|.
constraint(c,"Response"). var_bind(c,arg_0,var(a)). var_bind(c,arg_1,var(b)).
domain(var(a),A) :- trace(_,_,A).
domain(var(b),A) :- trace(_,_,A).
{ bind(C,Arg,Value): domain(Var,Value) } = 1 :- var_bind(C,Arg,Var).
:- #count{X: not sat(C, X), constraint(C,_), trace(X, _, _)} > max_violations.
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Notice the ASP formulation can be easily generalized (by simply adding facts encod-

ing a Declare constraint and slightly modifying the final constraint) to query check

entire Declare models (e.g., multiple constraints, where a variable might occur as activa-

tion/target of distinct constraints), rather than a single constraint at a time, by adding

the following facts:

constraint(c,"Precedence"). var_bind(c,arg_0,var(a)). var_bind(c,arg_1,var(c)).
domain(var(c),A) :- trace(_,_,A).

Here, the variable a is the activation of the Response constraint (as before), as well as

the target of the Precedence constraint.

4 Direct ASP Encoding for Declare

The encodings described in previous section are general techniques that enable reason-

ing over arbitrary LTLp formulae. Both encodings require, respectively, to keep track

of each subformula evaluation on each time-point of a trace in the case of the syntax-

tree encoding, and to keep track of DFA state during the trace traversal, in the case

of the automaton encoding. However, Declare patterns do not involve complex tempo-

ral reasoning, with deep nesting of temporal operators. Hence Declare templates admit

a succinct and direct encoding in ASP that does not keep track of such evaluation at

each time-point of the trace. The encoding discussed in this section exploits this, pro-

viding an ad-hoc, direct translation of the semantics of Declare constraints into ASP

rules.

The general approach we follow in defining the templates, is to model cases in which

constraints fail through a fail/2 predicate. In our encoding, a constraint c over a trace

tid holds true if we are unable to produce the atom fail(c, tid). Due to the activation-

target semantics of Declare templates, sometimes it is required to assert that an activation

condition is matched in the suffix of the trace by a target condition. In the encoding,

this is modeled by the witness/3 predicate. This mirrors the activation and target con-

cepts in the definition of Declare constraints. Note that, this approach is not based on

a systematic, algorithmic rewriting, but on a template-by-template ad hoc analysis. In

the rest of the section, we show the principles behind our ASP encoding for the Declare

templates in Table 1.

Response template. Recall from Table 1 that Response(a, b) is defined as the LTLp for-

mula G(a→ Fb), whose informal meaning is that whenever a happens, b must happen

somewhere in the future. Thus, every time we observe an a at time t, in order for

Response(a, b) to be true, we have to observe b at a time instant t′ ≥ t. The first rule

below encodes this situation. If we observe at least one a that is not matched by any b in

the future, the constraint fails, as encoded in the second rule. The following equivalences

exploit the duality of temporal operators G, and F:

¬G(a→ Fb)≡ F¬(a→ Fb)≡ F¬(¬a∨ Fb)≡ F(a∧¬Fb)
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Thus, we encode Response failure conditions with the following logic program:

witness(C,T,TID) :-
constraint(C, "Response"),
bind(C,arg_0,X),
bind(C,arg_1,Y),
trace(TID,T,X),
trace(TID,T’,Y), T’>=T.

fail(C,TID) :-
constraint(C,"Response"),
bind(C,arg_0,X),
bind(C,arg_1,Y),
trace(TID,T,X),
not witness(C,T,TID).

The rule above on the left yields a witness(c, t, tid) atom whenever trace tid at time t

satisfies a∧ Fb. In the rule on the right, the fail(c, tid) atom models that there exists

some time-point t such that πt = a, but ¬(a∧ Fb) thus (since a∈ πt) that ¬Fb; that is,

there exists a time-point t such that a∧¬Fb. Subsection D.1.1 in the appendix exemplifies

this argument graphically.

Precedence template. Recall from Table 1 that the constraint Precedence(x, y) is defined

as the LTLp formula ¬yWx=G(¬y) ∨ ¬yUx, whose informal meaning is that if y occurs

in the trace, x must have happened before. Notice that in order to witness the failure of

this constraint, it is enough to reason about the trace prefix up to the first occurrence

of y, since in the definition of the template the until operator is not under the scope of

a temporal operator. The following equivalences hold:

¬(¬yWx)≡¬(G(¬y)∨¬yUx)≡¬G(¬y)∧¬(¬yUx)≡ Fy ∧¬(¬yUx)≡ Fy ∧ yR¬x
We model this failure condition with the following logic rules:

fail(C,TID) :-
constraint(C, "Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T’,Y),
T = #min{Q: trace(TID,Q,X)},
trace(TID,T,X),
T’ < T.

fail(C,TID) :-
constraint(C, "Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,_,Y),
not trace(TID,_,X).

The rule on the left models the formula (yR¬x), that is satisfied by traces where x does

not occur up to the point where y first becomes true. The rule on the right models traces

where x does not occur at all, but y does. We model this separately to be compliant with

clingo’s behavior where #min would yield the special term #sup over an empty set of

literals. Subsection D.2.1 in the appendix exemplifies how the rules model the constraint

graphically.

Next we consider the AlternateResponse and AlternatePrecedence templates.

Differently from the previous cases, mapping out failure from the LTLp formula is less

intuitive, due to temporal operator nesting in the template definitions, and requires more

care.

AlternateResponse template. Recall from Table 1 that AlternateResponse(a, b) is defined

as the LTLp formula G(a→X(¬aUb)), whose informal meaning is that whenever a hap-

pens, b must happen somewhere in the future and, up to that point, a must not happen.

Failure conditions follow from the this chain of equivalences:

¬G(a→X(¬aUb)≡ F(a∧¬X(¬aUb))≡ F(a∧Xw¬(¬aUb))≡ F(a∧Xw(aR¬b))
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Thus, the failure condition is to observe an a at time t, such that Xw(aR¬b) holds, that
is an occurrence of a at time t′ > t with b �∈ πk for all t < k < t′. To model the constraint,

we ensure at least one b appears in-between the a occurrences. We model this by the

following rules:

witness(C,T,TID) :-
constraint(C, "Alternate Response"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T,X),
T’’ = #min{Q:
trace(TID,Q,X), Q > T

},
trace(TID,T’,Y),
T’’ > T’,
T’ > T.

fail(C,TID) :-
constraint(C, "Alternate Response"),
bind(C, arg_0, X),
trace(TID,T,X),
not witness(C,T,TID).

A witness here is observing an a at time t such that the next occurrence of a at time t′,
with at least one b in-between. To get this succinct encoding, we rely on clingo #min

behavior: #min of an empty term set is the constant #sup, so the arithmetic literal T’’

>T’ will always be true when there’s no occurrence of a following the one at time T –

this deals with the “last” occurence of a in the trace. If two “adjacent” occurrences of

a do not have a b in-between, that does not count as a witness (as by the constraint’s

semantics). Subsection D.1.2 in the appendix exemplifies this argument graphically.

AlternatePrecedence template. Recall from Table 1 that the constraint

AlternatePrecedence(x, y) is defined as the LTLp formula

(¬yWx)∧G(b→Xw(¬yWx)) = Precedence(a, b)∧G(b→XwPrecdence(a, b))

whose informal meaning is that every time y occurs in the trace, it has been preceded

by x and no y happens in-between. To map its failure conditions, we build this chain of

equivalences, where α= Precedence(a, b):

¬(α∧G(y→Xwα))≡¬α∨ F(y ∧¬Xwα)

Above we described the encoding of Precedence(x, y), thus, now we focus on the second

term:

F(y ∧¬Xwα)≡ F(y ∧¬last∧¬Xα)≡ F(y ∧¬last∧Xw¬α)≡ F(y ∧X¬α)
where last is a propositional symbol that is true only in the last state of the trace (that is,

last≡Xw¬�). Finally, by substituting ¬α with the failure condition of Precedence(x, y):

F(y ∧X¬α)≡ F(y ∧X(Fy ∧ yR¬x))
Thus, AlternatePrecedence(x, y) admits the same failure conditions as Precedence(a, b),

that are reported in the rules on the left below. Furthermore, from the second term we

derive the failure condition which regards the occurrence of a b that is followed by a trace

suffix where Precedence(a, b) does not hold; that is, the b is followed by another b with

no a in between. This is modeled by the rule on the right:
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fail(C,TID) :-
constraint(C, "Alternate

Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T’,Y),
T = #min{Q: trace(TID,Q,X)},
trace(TID,T,X),
T’ < T.

fail(C,TID) :-
constraint(C, "Alternate

Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,_,Y),
not trace(TID,_,X).

fail(C,TID) :-
constraint(C, "Alternate

Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, T0, Y),
trace(TID, T2, Y),
#count{Q:
trace(TID,Q,X),
Q >= T0, Q <= T2

} = 0,
T2 > T0.

Subsection D.2.2 in the appendix exemplifies this argument graphically.

ChainResponse template. Recall that from Table 1 that the constraint

ChainResponse(x, y) is defined as the LTLp formula G(x→Xy), whose informal

meaning is that whenever x occurs, it must be immediately followed by y. The failure

conditions follow from the following chain of equivalences:

¬(G(x→Xy))≡ F¬(x→Xy)≡ F¬(¬x∨Xy)≡ F(x∧¬Xy)≡ F(x∧Xw¬y)
That is, an x occurs that is not followed by a y – either because x occurs as the last

activity of the trace or that x is followed by a different activity. We can model this by

the following rule:

fail(C,TID) :-
constraint(C, "Chain Response"),
bind(C, arg_0, X), bind(C, arg_1, Y),
trace(TID,T,X), not trace(TID,T+1,Y).

Subsection D.1.3 in the appendix exemplifies this argument graphically.

ChainPrecedence template. Recall that from Table 1 that the constraint

ChainResponse(x, y) is defined as the LTLp formula G(Xy→ x)∧¬b, whose informal

meaning is that whenver y occurs, it must have been immediately preceded by x. The

failure conditions follow from the following chain of equivalences:

¬(G(Xy→ x)∧¬y)≡ (F¬(Xy→ x)∨ y≡ F(Xy ∧¬x)∨ y
In this case, ChainPrecedence fails if the predecessor of y is not x, or if y occurs in

the first instant of the trace. This is modeled by the following rules:

fail(C, TID) :-
constraint(C, "Chain Precedence"),
bind(C, arg_0, X), bind(C, arg_1, Y),
trace(TID,T+1,Y), trace(TID,T,_),
not trace(TID,T,X).

fail(C, TID) :-
constraint(C, "Chain Precedence"),
bind(C, arg_1, Y), trace(TID, 0, Y).
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Subsection D.2.3 in the appendix exemplifies this argument graphically.

Modeling the succession hierarchy. Templates in the Succession chain are defined as

the conjunction of the respective Precedence, Response templates at the same “level

of the subsumption hierarchy (see Figure 2); thus, it is possible to encode them in the

fail/2, witness/3 schema, since ¬(ϕ∧ ψ) =¬ϕ∨¬ψ. Hence, the failure conditions for

Succession-based templates are the union of the failure conditions of its sub-formulae

(all the cases were thoroughly described above in this section).

Modeling non-temporal templates. Choice (i.e., Choice, ExclusiveChoice) and

Existential templates (i.e., RespondedExistence, Coexistence) are defined only in terms

of conjunction and disjunction of atomic formulae (e.g., activity occurrences in the

trace). Thus, they are easy to implement using normal rules whose body contains

trace/3 literals to model that a∈ πi, a �∈ πi. As an example, consider the constraint

RespondedExistence(a, b) that states that whenever a occurs in the trace, b must occur

as well . Its LTLp definition is F(a)→ F(b), its failure conditions follow from the following

chain of equivalences:

¬(F(a)→ F(b))≡¬(¬F(a)∨ F(b)≡ F(a)∧¬F(b)

fail(C,TID) :- constraint(C, "Responded Existence"),
bind(C, arg_0, X), bind(C, arg_1, Y), trace(TID,_,X), not trace(TID,_,Y).

All the encodings for the Declare constraints in Table 1 are available in the repository.1

5 Experiments

In this section, we report the results of our experiments comparing different methods

to perform conformance checking and query checking of Declare models, using the ASP-

based representations outlined in the previous sections and Declare4Py, a recent Python

library for Declare-based Process mining tasks which also implements – among other

tasks, such as log generation and process discovery – conformance checking and query

checking functionalities. While the approaches discussed here are declarative in nature,

Declare4Py implements Declare semantics by imperative procedures, based on the algo-

rithms in (Burattin et al., 2016), that scan the input traces. Declare4Py supports also

other tasks, and most importantly, supports a data-aware variant of Declare, that take

into account data attributes associated to events in a trace, while here we deal with stan-

dard, control-flow only Declare. Methods will be referred to as ASPD, ASPA, ASPS and

D4Py — denoting respectively our direct encoding, the automata and syntax tree-based

translation methods and Declare4Py. We start by describing datasets (logs and Declare

models), and execution environment to conclude by discussing experimental results.

Subsection 5.2 encompass further experimental analysis about memory consumption and

behavior on longer traces for our ASP encoding.

1 https://github.com/ainnoot/padl-2024.
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Table 2. Log statistics: |A| is the number of activities; average |π| is the average trace
length; |L| is the number of traces; |CIV| is the number of declare constraints above

50% support

Log name |A| Average |π| Max |π| Min |π| |L| |CIV|

Sepsis Cases (SC) 16 14.5 185 3 1050 76
Permit Log (PL) 51 12.3 90 3 7065 26
BPI Challenge 2012 (BC) 23 12.6 96 3 13087 10
Prepaid Travel Cost (PC) 29 8.7 21 1 2099 52
Request For Payment (RP) 19 5.4 20 1 6886 52
International Declarations (ID) 34 11.2 27 3 6449 152
Domestic Declarations (DD) 17 5.4 24 1 10500 52

Data. We validate our approach on real-life event logs from past BPI Challenges (Lopes

and Ferreira, 2019). These event logs are well-known and actively used in Process Mining

literature. For each event log Li, we use D4Py to mine the set of Declare constraints

Ci whose support on Li is above 50%. Then, we define four models, CI
i,C

II
i ,C

III
i ,CIV

i ,

containing respectively the first 25%, 50%, 75%, and 100% of the constraints in a random

shuffling of Ci, such that CI
i ⊂CII

i ⊂CIII
i ⊂CIV

i . Table 2 summarizes some statistics about

the logs and the Declare models we mined over the logs. All resource measurements take

into account the fact that ASP encodings require an additional translation step from the

XML-based format of event logs to a set of facts. The translation time is included in the

measurement times and is comparable with the time taken by D4Py.

Execution environment. The experiments in this section were executed on an Intel(R)

Xeon(R) Gold 5118 CPU @ 2.30GHz, 512GB RAM machine, using Clingo version 5.4.0,

Python 3.10, D4Py 1.0 and pyrunlim2 to measure resources usage. Experiments were

run sequentially. All data and scripts to reproduce our experiments are available in

the repository.

5.1 Conformance checking and query checking on real-world logs

Conformance checking. We consider the conformance checking tasks (Li,M), with M∈
{CI

i,C
II
i ,C

III
i ,CIV

i }, over the considered logs and its Declare models. Figure 7 reports the

solving times for each method in a cactus plot. Recall that a point (x, y) in a cactus plot

represents the fact that a given method solves the x-th instance, ordered by increasing

execution times, in y seconds. Table 3 reports the same data aggregated by the event log

dimension, best run-time in bold. Overall, our direct encoding approach is faster than

the other ASP-based encodings as well as D4Py on considered tasks. ASPA and D4Py

perform similarly, whereas ASPS is less efficient. It must also be noticed that D4Py,

beyond computing whether a trace is compliant or not with a given constraint, also

stores additional information such as the number of times a constraint is violated, or

activate, while the ASP encodings do not. However, the automata and direct encoding

2 https://github.com/alviano/python/tree/master/pyrunlim
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Table 3. Runtime in seconds for conformance checking on CIV

Log ASPD D4Py ASPA ASPS

ID 23.3 39.5 124.9 4621.7
RP 10.8 16.3 25.8 409.8
PT 5.2 8.5 12.6 121.6
SC 4.3 11.6 13.4 141.2
PL 10.8 35.6 20.7 624.1
DD 14.2 22.4 40.1 963.2
BC 14.1 23.7 20.5 796.6

Table 4. Cumulative runtime in seconds for query checking tasks

Log ASPD D4Py ASPA ASPS

ID 817.2 1624.5 1654.0 3522.4
RP 884.2 565.8 318.2 1179.4
PT 223.6 451.1 236.1 427.9
SC 163.8 267.0 173.1 665.1
PL 1614.0 4227.7 3926.8 5397.5
DD 407.7 698.2 479.2 2436.2
BC 2304.8 2467.7 6636.0 27445.3

Fig. 7. Conformance checking cactus.

can be straightforwardly extended in such sense; in particular, similar “book-keeping” in

the direct encoding is performed by the fail/3 and witness/3 atoms.

Query checking. We consider the query checking instances (t,Li, s) where t is a Declare

template, from the ones defined in Table 1, s∈ {0.50, 0.75, 1.00} is a support threshold,

and Li is a log. Figure 8 summarizes the results in a cactus plot, and Table 4 aggregates

the same data on the log dimension, best runtime in bold. ASPD is again the best method

overall, outperforming other ASP-based methods with the exception of ASPA on the RP

log tasks. Again, ASPA and D4Py perform similarly and ASPS is the worst.
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Table 5. Max memory usage (MB) over all the conformance checking and query
checking tasks, aggregated by log, for all the considered methods. Lowest value in

boldface

Conformance Checking Query Checking

Log ASPD D4Py ASPA ASPS ASPD D4Py ASPA ASPS

BC 323.6 566.3 546.0 8757.9 3157.0 580.7 1450.8 18866.5
DD 536.6 386.0 927.2 14473.8 728.1 336.4 513.0 2706.0
ID 837.1 578.4 2338.9 55435.2 1498.5 583.5 763.6 5029.8
PL 312.8 2062.2 579.5 11388.3 2434.2 2071.0 1023.3 7006.2
PC 222.2 281.9 341.2 5211.2 435.3 283.4 282.8 1209.3
RP 372.3 347.6 610.8 9706.0 574.8 312.3 396.9 1843.3
SC 195.0 245.6 336.4 5786.5 480.4 244.6 247.2 2146.7

Discussion. In the comparative evaluation of the different methods for conformance and

query checking tasks, our direct encoding approach ASPD showed better performance

compared to both D4Py and other ASP-based methods, as reported in Table 3 and

Table 4 (and in Figures 7 and 8). As shown in our experiments, ASPD not only outper-

formed in terms of runtime the other methods but also offers a valuable alternative when

considering overall efficiency. Notably, ASPA and D4Py showed similar performances,

with ASPA slightly outperforming in certain instances, particularly in the RP log, but

ASPS exhibited less efficiency in nearly all the logs.

From the point of view of memory consumption (Table 5), D4Py proved to be the most

efficient in query checking tasks. This can be attributed to its imperative implementation

that allows for an “iterate and discard” approach to candidate assignments, avoiding

the need for their explicit grounding required by ASP-based techniques. ASPS is the

least efficient method regarding memory usage, consistently across both types of tasks

and all logs. We conjecture the significant increase in maximum memory usage is the

primary factor contributing to the runtime performance degradation in both tasks, that

might make the encodings an interesting benchmark for compilation-based ASP systems

(Mazzotta et al., 2022; Cuteri et al., 2023; Dodaro et al., 2024; Cuteri et al., 2023).

In fact, ASPS proved to be the less efficient in both memory consumption and running

time. Furthermore, we observe that in conformance checking ASPD is more efficient w.r.t.

memory consumption when compared to D4Py, and, when combined, these two methods

collectively show better memory efficiency when compared to other ASP-based methods,

translating in lower running times.

The obtained results clearly indicates the lower memory requirements of D4Py, demon-

strating its applicability in resource-constrained environments. However, the compact and

declarative nature of ASP provides an efficient means to implement Declare constraints, as

demonstrated by the performance of ASPD, which is especially suitable in environments

where memory is less of a constraint and execution speed is a key factor. Furthermore,

the ASP-based approaches can be more readily extended, in a pure declarative way, to

perform, for example, query-checking of multiple Declare constraints in a matter of few

extra rules.
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Fig. 8. Query checking cactus plot.

An intuitive reason for such a memory usage gap in the conformance checking tasks is

the following. As noted in the encodings section, both the automata encoding and the syn-

tax tree encoding rely on a 4-ary predicate (true(TID, C, X, T ), cur state(TID, C, X, T )

respectively), that keeps track of subformulae evaluation on each instant of the trace and

current state in the constraint DFA for each instant of the trace. In the case of the

automaton encoding, X does not index subtrees but states of the automaton – all the

other terms have the same meaning. During the grounding of the logic programs, this

yields a number of symbolic atoms that scales linearly w.r.t. the total number of events

in the log (i.e.,, the sum of lenghts of the traces in the log) and linearly in the num-

ber of nodes in the syntax tree/states in the automaton. The gap between the formula

encoding and the automata encoding is explained by the fact that the LTLf to symbolic

automaton translation, albeit 2-EXP in the worst case, results usually in more compact

automatons in the case of the Declare patterns. For example, considering the Response

template: its formula definition is G(a→Xb), with a size (number of subformulae) of 5,

while its automaton as 2 states. Furthermore, since Declare assumes simplciity, (e.g., has

|πi|= 1), the symbolic automaton can be further simplified for some constraints. This

yields, overall, less states w.r.t the number of nodes in the parse tree – that reduces

the number of ground symbols. Total number of events is the same for both encod-

ings, since both encodings share the same input fact schema. On the other hand, as we

sketched in Section 3, the direct encoding explicitly models how constraints are violated ,

thus for most templates, it produces less atoms, since we yield at most one witness/3

atom for each occurrence of the constraint activation, and at most one fail/2 atom for

each constraint and each trace. Table 6 reports the number of generated symbols on the

three different encodings to conformance check CIV on the Sepsis Cases event log, where

(see Table 3) conformance checking shows a noticeable wide gap in runtime between the

encodings, although remaining manageable runtime-wise for all the three ASP encodings.

This confirms our intuitive explanation. In the case of the query checking task, being a

classic guess & check ASP encoding, the performance depends on many factors, and it is

difficult to pinpoint – size of the search space (quadratic in |A|), order of branching while

searching the model, number of constraints grounded, the nature itself of traces in the

log. In this context, trade-offs between runtime and memory consumption are expected.
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Table 6. Metrics comparison for conformance checking of CIV over the
sepsis cases event log, with ASP encodings ASPD, ASPS, and ASPA.
Execution times do not take into account XES input parsing and output

parsing (as in Table 3, but are performed directly on facts
representation of the input. Thus, reported times slightly differ from

Table 3, although being executed on the same log

Method

Metric ASPD ASPS ASPA

Symbols 117176 4593770 1329322
Rules 143106 5953435 1345738
Execution time (s) 0.59 123.55 10.75
Max Memory (MB) 60.94 5756.16 300.81

5.2 Behavior on longer traces

Lastly, we analyze how the automata-based and direct ASP encodings scale w.r.t the

length of the traces. We generate synthetic event logs (details in the appendix) of 1000

traces of fixed length (up to 1000 events) for each constraint, and we perform confor-

mance checking with respect to a single constraint, chosen among the Response and

Precedence hierarchies. Table 7 reports the result of our experiment. We compare only

automata and direct encodings, since the previous analysis make it evident the syntax

tree encoding is subpar due to memory consumption. The direct encoding yields a slight,

but consistent, advantage time-wise w.r.t the automata encoding, and about half of peak

memory consumption. Recall this is for a single constraint, and usually Declare mod-

els are composed of multiple Declare constraints, so this gap is expected to widen even

more in conformance checking real Declare models. This is consistent with our previous

experiments, see Table 3.

Moreover, we include a comparison between the direct encoding and D4Py over the

same synthetic logs. For each synthetic log in Table 7, a point (x, y) in the scatter plot of

Figure 9 means that the conformance checking task is solved in x seconds using the direct

encoding and y seconds using D4Py.3 Again, these results are consistent with observed

behavior over real-world event logs.

6 Conclusion

Declare is a declarative process modeling language, which describes processes by sets of

temporal constraints. Declare specifications can be expressed as LTLp formulae, and

traditionally have been evaluated by executing the equivalent automata (Di Ciccio

and Montali, 2022), regular expressions (Di Ciccio and Mecella, 2015), or procedu-

ral approaches (de Leoni and van der Aalst, 2013). Translation-based approaches (on

automata, or syntax trees) are at the foundation of existing ASP-based solutions

(Chiariello et al., 2022; Kuhlmann et al., 2023). This paper proposes a novel direct

3 Note that time measurements of Figure 9 and Table 7 are not directly comparable, since in Table 7
input logs were stored as ASP facts, while in Figure 9 input logs were XES files.
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Table 7. Comparing metrics between different ASP encodings, with increasing trace lenghts. An entry is an ordered pair (t, m) where
t is the runtime (seconds), m the memory peak (MBs)

Response Precedence

|π| ASPD ASPA ASPD ASPA

50 (0.898 s, 175.922MB) (1.603 s, 463.297MB) (1.055 s, 69.926MB) (1.186 s, 316.082MB)
100 (1.877 s, 103.254MB) (2.429 s, 326.863MB) (1.660 s, 110.941MB) (2.458 s, 318.984MB)
250 (4.249 s, 216.777MB) (7.589 s, 573.191MB) (4.263 s, 316.070MB) (6.489 s, 660.438MB)
500 (9.111 s, 401.844MB) (15.604 s, 871.145MB) (8.701 s, 385.801MB) (16.096 s, 845.754MB)
750 (13.121 s, 505.500MB) (29.809 s, 1427.172MB) (12.873 s, 497.191MB) (28.641 s, 1409.781MB)
1000 (18.693 s, 784.520MB) (40.228 s, 1725.414MB) (17.416 s, 764.488MB) (39.589 s, 1717.375MB)

Alt. Response Alt. Precedence

|π| ASPD ASPA ASPD ASPA

50 (1.397 s, 215.266MB) (1.679 s, 461.453MB) (1.016 s, 635.871MB) (1.751 s, 741.715MB)
100 (2.101 s, 164.242MB) (2.476 s, 461.355MB) (6.232 s, 635.867MB) (3.045 s, 741.715MB)
250 (4.636 s, 207.594MB) (7.735 s, 562.719MB) (4.653 s, 207.570MB) (8.123 s, 855.000MB)
500 (9.419 s, 404.379MB) (16.354 s, 869.719MB) (9.121 s, 401.465MB) (17.967 s, 995.680MB)
750 (14.057 s, 503.562MB) (30.529 s, 1429.836MB) (14.646 s, 737.258MB) (31.910 s, 1577.168MB)
1000 (19.415 s, 783.363MB) (43.013 s, 1726.945MB) (20.054 s, 823.027MB) (49.133 s, 1714.512MB)

Chain Response Chain Precedence

|π| ASPD ASPA ASPD ASPA

50 (1.116 s, 69.902MB) (1.245 s, 349.805MB) (0.922 s, 166.375MB) (1.245 s, 452.973MB)
100 (1.818 s, 349.098MB) (2.563 s, 587.199MB) (1.798 s, 166.371MB) (2.610 s, 452.969MB)
250 (4.972 s, 349.805MB) (6.891 s, 655.785MB) (4.678 s, 206.789MB) (7.862 s, 559.523MB)
500 (9.527 s, 378.543MB) (16.778 s, 859.781MB) (9.882 s, 405.285MB) (16.104 s, 850.094MB)
750 (13.120 s, 720.094MB) (27.913 s, 1539.625MB) (13.165 s, 744.195MB) (28.160 s, 1605.547MB)
1000 (17.960 s, 772.133MB) (40.541 s, 1731.586MB) (17.837 s, 794.250MB) (41.960 s, 1739.156MB)
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Fig. 9. Comparison of runtime (upper) and peak memory usage (lower) for the ASP direct
encoding and D4Py, on synthetic logs used in Table 7.

encoding of Declare in ASP that is not based on translations. Moreover, for the first

time, we put on common ground (regarding input fact schema) and compare available

ASP solutions for conformance checking and query checking. Our experimental evalua-

tion over well-known event logs provides the first aggregate picture of the performance

of the methods considered. The results show that our direct encoding, albeit limited

to Declare, outperforms other ASP-based methods in terms of execution time and peak

memory consumption and compares favourably with dedicated libraries. Thus, ASP pro-

vides a compact, declarative, and efficient way to implement Declare constraints in the

considered tasks. Interesting future avenues of research are to investigate whether this

approach can be extended to data-aware (de Leoni and van der Aalst, 2013) variants of
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Declare that take into account data attributes associated to events in a trace, to prob-

abilistic extensions of Declare (Alman et al., 2022; Alviano et al., 2024; Vespa et al.,

2024) that associate uncertainty (in terms of probabilities) to constraints in a declarative

process model, as well as other Declare-based Process Mining tasks.
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Appendix A Validation

In this paper, we do not investigate whether there exists an automatic translation from

arbitrary LTLf or LTLp into ASP rules (beyond indirect techniques), but we focus solely

on the Declare constraints, providing ad-hoc encodings written by hand w.r.t their infor-

mal semantics. To validate the correctness of these encodings, in our use case, we applied

a bounded model checking-like approach, searching for a “behavioral counterexample”

between our encoding of each particular constraint and a ground truth logic program -

which corresponds to the logic program that captures the behavior of the state machine

which is equivalent to the LTLp definition of the constriant at hand. That is, given a

Declare constraint c, we consider its LTLp definition ϕc and its corresponding DFA Mϕc
,

and its direct encoding Pc. In particular, if we are able to find a trace π such that π |= Pc,
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but π �∈L(π) - or viceversa, π �|= Pc but π ∈L(π) - then π is a witness of the fact that

our direct encoding Pc for the Declare constraint c encodes a wrong behavior (accepting a

trace it should not accept, or rejecting a trace it should accept). We tested our encodings

for counterexamples of length up to 20 over the {a, b, ∗} alphabet, where a plays the role

of the constraint activation, b its target, and ∗ a placeholder for “other characters”. As

discussed in the automata encoding section, if two propositional symbols do not appear

in a LTLp formula, they are interchangeable in a trace and won’t alter the satisfaction

of the trace.

#const t=20.
time(0..t-1).
activity("*").
activity(A) :- bind(_,_,A).
1 { trace(1,T,A): activity(A) } 1 :- time(T).
:- #count{M: sat(M,C,_)} != 1, constraint(C, _).

We adapt the conformance checking encoding, adding a (constant) extra term to

sat/2 predicate (in each encoding involved in the check procedure), to distinguish which

evaluation method yields the sat(·, ·) atom. That is, instead of sat(c, tid) to model

that constraint c holds true over trace tid, we use the atoms sat(automata, c, tid),

sat(adhoc, c, tid) and sat(ltlf, c, tid) to distinguish satisfiability of the constraint c

expressed in the automaton encoding, direct and syntax-tree encoding respectively.

The above program is to be evaluated together with two distinct conformance check-

ing encoding from Section 3, 4. The choice generates the search space for a LTLp

trace. The constraint discards answer sets (e.g., LTLp traces) that are evaluated in

the same way by two distinct encodings encodings. That is, it discards traces that

are accepted by both encodings or rejected by boths encodings. This logic program

yields a model if and only if two LTLp semantics’ encoding are inconsistent with each

other. We tested our direct encoding, searching for counterexamples of length up to 20

over the {a, b, ∗} against the automaton encoding, and we didn’t find any behavioral

counterexample.

Appendix B Synthetic Log Generation

To generate synthetic traces for our experiment, we use the following logic program. Each

stable model corresponds to a unique trace. For each constraint in Table 1, we generate

a log of 1000 traces (half positive, half negative) over an alphabet of 15 activities. To

generate positive traces, we set the external atom negative to false, to generate negative

traces we set the negative external atom to true using the Clingo Python API. The

constant t represents the length of each trace, it is set as runtime as well. The input facts

are the encoding of a Declare constraint, along with the logic program which encodes the

semantics (either the automata, syntax tree or direct one). In our experiments, synthetic

logs are generated with the direct encoding. To avoid uninteresting traces, were constraint

https://doi.org/10.1017/S1471068424000486 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000486


F. Chiariello et al.122

are vacuously true due to absence of activation/target, we impose that both activation

and target should appear at least once.

activity("a_0"; ...; "a_14").
#external negative.
#const t=-1.
:- t < 0.
time(0..t-1).

{ trace(0,T,A): activity(A) } = 1 :- time(T).
:- not trace(0,_,A), bind(0, arg_0, A).
:- not trace(0,_,A), bind(0, arg_1, A).
positive :- not negative.
:- not sat(_,0,0), positive.
:- sat(_,0,0), negative.
#show.
#show trace/3.

Appendix C An example use case for Declare-based process mining

This is an example application of Declare, regarding the Sepsis Cases Event Log

(Mannhardt and Blinde, 2017). The log contains events logged by the information system

of a dutch hopsital, concerning patients with a diagnosis/suspected diagnosis of sepsis.

Here is the official description of the event log: This real-life event log contains events

of sepsis cases from a hospital. Sepsis is a life threatening condition typically caused

by an infection. One case represents the pathway through the hospital. The events were

recorded by the ERP (Enterprise Resource Planning) system of the hospital. There are

about 1000 cases with in total 15,000 events that were recorded for 16 different activities.

Moreover, 39 data attributes are recorded, for example the group responsible for the activ-

ity, the results of tests and information from checklists. Events and attribute values have

been anonymized. The time stamps of events have been randomized, but the time between

events within a trace has not been altered. Suppose we are interested in conformance

checking the log traces against the Declare model containing the constraints:

• Precedence(Antibiotics, IV Liquid)

• ExclusiveChoice(ReleaseA, ReleaseB)

• ChainPrecedence(ERTriage, AdmissionIC)

The model states that the activities ReleaseA, ReleaseB (e.g., releasing a patient from

the hospital with different types of diagnosis) are mutually exclusive. Admission in

the intensive care unit (AdmissionIC) should be immediately preceded by a triage

(ERTriage); The IV Liquid (IV Liquid) exam should not be performed before patients

undergo Antibiotics. A Declare model could be either designed by a domain expert,

according to for example its clinical practice, or clinical guidelines, or discovered auto-

matically from data. Conformance checking allows to identify which traces are compliant,

or non-compliant, with the given model, and understand which constraints are violated.

To run this example:

clingo example 1/*
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Suppose instead we are interested in all the activities that immediately follow the admis-

sion in intensive care (AdmissionIC) in at most 30% of the log. This could be useful

for clinicians to analyze if clinical practices are correctly being followed. This amounts

to performing the query checking task ChainResponse(AdmissionIC, ?x). To run this

example:

clingo example 2/*

Its output is variable bindings that satisfiy the query checking task. In both commands,

the filter.lp file contains only projection rules onto the “output atoms”. All the ∗.lp
files are written according to the descriptions in Section 3 and are available at our repos-

itory. More details about the log and other process mining techniques on this log are

showcased in (Mannhardt and Blinde, 2017), although they do not make use of Declare,

but non-declarative process mining techniques based on Petri Nets. A detailed applica-

tion of Declare-based process mining techniques in the healthcare domain is available in

(Rovani et al., 2015), showcasing a case study concerning gastric cancer clinical guidelines

and practice.

Appendix D Encodings

All the encodings are available under the folders ltlf base (syntax tree encoding),

automata (automata encoding), and asp native (direct encoding) in our repository.

Each folder contains a templates.lp file, which are the set of facts that encode

the Declare templates as sketched in Section 3 (e.g., automata transition tables and

syntax tree reification - notice this file is empty for the direct encoding), and a

semantics.lp file which encode logic programs to evaluate automata runs over traces

(for the automata encoding), temporal logic operators’ semantics as normal rules (for

the syntax tree encoding) and the direct translation of Declare into ASP rules for

the direct encoding. For completeness, we report here the contents of asp native

semantics.lp, along with pictures that map each constraints’ failure conditions to ASP

rules.

For all constraints, a constraint c holds over a trace tid if we derive the sat(c, tid)

atom, that is, if we are unable to show a failure condition for c over tid:

sat(C, TID) :- constraint(C,_), trace(TID,_,_), not fail(C,TID).
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D.1 response-based templates

D.1.1 response

Listing 1. Response template.

witness(C,T,TID) :-
constraint(C, "Response"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, T, X), trace(TID, T’, Y), T’ > T.

fail(C,TID) :-
constraint(C, "Response"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, T, X),
not witness(C,T,TID).

F(x∧¬Fy)

D.1.2 alternate response

Listing 2. AlternateResponse template.

witness(C,T,TID) :-
constraint(C, "Alternate Response"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T,X),
T’’ = #min{Q: trace(TID,Q,X), Q > T},
trace(TID,T’,Y), T’’ > T’, T’ > T.

fail(C,TID) :-
constraint(C, "Alternate Response"),
bind(C, arg_0, X),
trace(TID,T,X),
not witness(C,T,TID).

F(x∧Xw(xR¬y))
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Notice that the case where the x does not occur is covered by the #min behavior

in clingo, which yields the term #sup when x does not occur in the trace, hence the

arithmetic literal T’’ >T’ always evaluates to true in this case.

D.1.3 chain response

Listing 3. ChainResponse template.

fail(C,TID) :-
constraint(C, "Chain Response"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T,X),
not trace(TID,T+1,Y).

F(x∧Xw¬y)

Here, a single rule covers both failure cases, as not trace(tid, t+ 1, y) literal is true both

when the t+ 1 time instant in the trace does not exist, as well as when the πi+1 �= y.
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D.2 precedence-based templates

D.2.1 precedence

Listing 4. Precedence template.

fail(C,TID) :-
constraint(C, "Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T’,Y),
T = #min{Q: trace(TID,Q,X)},
trace(TID,T,X),
T’ < T.

fail(C,TID) :-
constraint(C, "Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, ,Y),
not trace(TID, ,X).

We use a dedicated rule to model that x never occurs, when it does not exist, the #min

aggregate would yield the term #sup.

Fy ∧ yR¬x

D.2.2 alternate precedence

Listing 5. AlternatePrecedence template.

fail(C,TID) :-
constraint(C, "Alternate Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T’,Y),
T = #min{Q: trace(TID,Q,X)},
trace(TID,T,X),
T’ < T.

fail(C,TID) :-
constraint(C, "Alternate Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, ,Y),
not trace(TID, ,X).

fail(C,TID) :-
constraint(C, "Alternate Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, T0, Y),
trace(TID, T2, Y),
T2 > T0,
#count{Q: trace(TID,Q,X), Q >= T0, Q <= T2} = 0.
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(Fy ∧ yR¬x)∨ F(y ∧X(Fy ∧ yR¬x))

D.2.3 chain precedence

Listing 6. ChainPrecedence template.

fail(C, TID) :-
constraint(C, "Chain Precedence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T+1,Y),
trace(TID,T,_),
not trace(TID,T,X).

fail(C, TID) :-
constraint(C, "Chain Precedence"),
bind(C, arg_1, Y),
trace(TID, 0, Y).

F(Xy ∧¬x)∨ y
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D.3 succession-based templates

Recall that Succession templates are defined as the conjunction of the corresponding

Precedence, Response templates at the same level of the subsumption hierarchy (see

Figure 2). Hence, its failure conditions are the union of the failure conditions of its

subformulae.

D.3.1 succession

Listing 7. Succession template. Same failure conditions as Response, Precedence.

fail(C,TID) :-
constraint(C, "Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T’,Y),
T = #min{Q: trace(TID,Q,X)},
trace(TID,T,X),
T’ < T.

fail(C,TID) :-
constraint(C, "Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,_,Y),
not trace(TID,_,X).

witness(C,T,TID) :-
constraint(C, "Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, T, X), trace(TID, T’, Y), T’ > T.

fail(C,TID) :-
constraint(C, "Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, T, X),
not witness(C,T,TID).
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D.3.2 alternate succession

Listing 8. AlternateSuccession template. Same failure conditions as
AlternateResponse, AlternatePrecedence.

witness(C,T,TID) :-
constraint(C, "Alternate Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T,X),
T’’ = #min{Q: trace(TID,Q,X), Q > T},
trace(TID,T’,Y), T’’ > T’, T’ > T.

fail(C,TID) :-
constraint(C, "Alternate Succession"),
bind(C, arg_0, X),
trace(TID,T,X),
not witness(C,T,TID).

witness(C, T2, TID) :-
trace(TID, T2, Y),
T0 = #max{T: trace(TID, T, Y), T2> T},
trace(TID, T1, X),
T2 > T1, T1 > T0,
constraint(C, "Alternate Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y).

fail(C, TID) :-
constraint(C, "Alternate Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, T, Y),
not witness(C, T, TID).

fail(C, TID) :-
constraint(C, "Alternate Succession"),
last(TID, T),
bind(C, arg_1, Y),
trace(TID, T, Y).
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D.3.3 chain succession

Listing 9. ChainSuccession template. Same failure conditions as ChainResponse,
ChainPrecedence.

fail(C,TID) :-
constraint(C, "Chain Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T,X),
not trace(TID,T+1,Y).

fail(C, TID) :-
constraint(C, "Chain Succession"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,T+1,Y),
trace(TID,T,_),
not trace(TID,T,X).

D.4 choice, existence templates

This set of templates, the most general ones in Declare, at the bottom of the subsump-

tion hierarchy, do not involve temporal operators in their LTLp definition, but only

atomic operators (e.g., activity occurrences in the whole trace). They are easily seen as

projections on the trace/3 predicate.

Listing 10. Choice template.

fail(C, TID) :-
constraint(C, "Choice"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, _, _),
not trace(TID, _, X),
not trace(TID, _, Y).
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Listing 11. ExclusiveChoice template.

fail(C, TID) :-
constraint(C, "Exclusive Choice"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,_,X),
trace(TID,_,Y).

fail(C, TID) :-
constraint(C, "Exclusive Choice"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID, _, _),
not trace(TID, _, X),
not trace(TID, _, Y).

Listing 12. RespondedExistence template.

fail(C,TID) :-
constraint(C, "Responded Existence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,_,X),
not trace(TID,_,Y).

Listing 13. Coexistence template.

fail(C,TID) :-
constraint(C, "Co-Existence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,_,_),
trace(TID,_,X),
not trace(TID,_,Y).

fail(C,TID) :-
constraint(C, "Co-Existence"),
bind(C, arg_0, X),
bind(C, arg_1, Y),
trace(TID,_,_),
trace(TID,_,Y),
not trace(TID,_,X).
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