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The stability and dynamics of solitary waves propagating along the surface of an inviscid
ferrofluid jet in the absence of gravity are investigated analytically and numerically.
For the axisymmetric geometry, the problem is shown to be a conservative system
with total energy as the Hamiltonian; however, one of the canonical variables differs
from those in the classic water-wave problem in the Cartesian coordinate system. The
Dirichlet–Neumann operator appearing in the kinetic energy is then expanded as a Taylor
series, described in homogeneous powers of the surface displacement. Based on the further
analysis of the Dirichlet–Neumann operator, a systematic procedure is proposed to derive
reduced model equations of multiple scales in various asymptotic limits from the full
Euler equations in the Hamiltonian/Lagrangian framework. Particularly, a fully dispersive
model arising from retaining terms valid up to the quartic order in the series expansion
of the kinetic energy, which results in quadratic and cubic algebraic nonlinearities in
Hamilton’s equations and henceforth is abbreviated as the cubic full-dispersion model,
is proposed. By comparing bifurcation curves and wave profiles of various types of
axisymmetric solitary waves among different model equations, the cubic full-dispersion
model is found to agree well with the full Euler equations, even for waves of considerably
large amplitudes. The stability properties of axisymmetric solitary waves subjected to
longitudinal disturbances are verified with the newly proposed model. Our analytical
results, consistent with Saffman’s theory, indicate that in the axisymmetric cylindrical
system, the stability exchange subjected to superharmonic perturbations also occurs at the
stationary point of the speed-energy bifurcation curve. A series of numerical experiments
for the stability and dynamics of solitary waves are performed via the numerical time
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integration of the model equation, and collision interactions between stable solitary waves
show non-elastic features.

Key words: capillary waves, solitary waves

1. Introduction

Ferrofluids are colloidal liquids made of nanoscale ferromagnetic or ferrimagnetic
particles suspended in a carrier fluid that exhibit strong magnetic properties. These
physical properties and behaviour of ferrofluids can be controlled and manipulated
by an external magnetic field. They are fascinating materials with a wide range of
applications, including magnetic resonance imaging, dynamic loudspeakers, magnetooptic
sensors, heat transfer or dissipation, etc. (see Kole & Khandekar (2021) and references
therein). Since the analytic work of Bashtovoi & Krakov (1978) and the experiments
carried out by Arkhipenko et al. (1980), it has been well known that magnetic fields
can stabilize the Rayleigh–Plateau instability when considering a column of ferrofluid.
Motivated by these pioneering works, solitary waves propagating along the surface of
an axisymmetric ferrofluid jet under the action of an external magnetic field have been
found and investigated (Rannacher & Engel 2006; Bourdin, Bacri & Falcon 2010; Blyth
& Părău 2014; Guyenne & Părău 2016; Doak & Vanden-Broeck 2019). In addition to the
aforementioned numerical and experimental results, rigorous mathematical studies have
been established (Groves & Nilsson 2018; Wang & Yang 2019).

Solitary waves were initially discovered in surface water waves, where two types had
ever been found. They are gravity solitary waves in shallow water and gravity-capillary
solitary waves in deep water, whose bifurcation mechanisms are completely different.
Gravity solitary waves in shallow water, which exist above the phase speed maximum,
decay monotonically in the direction of wave propagation (precisely, a symmetric wave
profile with half being monotonic) and can be approximated by the sech-squared solution
of the celebrated Korteweg–de Vries (KdV) equation. However, gravity-capillary solitary
waves in deep water, which exist below the phase speed minimum, feature oscillatory
decaying tails and bifurcate from infinitesimal periodic waves (see Vanden-Broeck & Dias
(1992) for more details). Akylas (1993) elucidated that the envelopes of gravity-capillary
solitary waves can be well described by the cubic nonlinear Schrödinger (NLS) equation.
Therefore, in the literature, these waves are usually called wavepacket solitary waves.

Both types of solitary waves mentioned above have already been discovered in
axisymmetric ferrofluid jets. We consider an irrotational motion of an axisymmetric,
inviscid and incompressible ferrofluid column, coating an electric-current-carrying
metallic rod of radius d mounted along the x-axis. The ferrofluid is surrounded by
a non-magnetizable and immiscible fluid of a similar density to neglect the effect of
gravity, as experimented by Bourdin et al. (2010). The current-carrying rod can induce
an azimuthal magnetic field to resist the Rayleigh–Plateau instability. For the one-layer
problem, i.e. the outer fluid is hydrodynamically passive, Rannacher & Engel (2006)
confirmed via a linear stability analysis that the jet was indeed stabilized and derived
the KdV equation describing axisymmetric weakly nonlinear disturbances in the case
when the radius of the rod was negligible (namely d = 0). They found that the features of
solitary waves depend broadly on the magnetic Bond number (denoted by B), which is a
dimensionless parameter. Specifically, if 1 < B < 3/2, these are the elevation waves with a
hump at the centre of waves, are depression waves with a dip at the centre if 3/2 < B < 9
and are again elevation waves if B > 9. More recently, Blyth & Părău (2014) expanded
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Dynamics of solitary waves on a ferrofluid jet

the problem into the fully nonlinear regime and conducted a numerical investigation of
solitary-wave solutions to the full Euler equations in a more general setting where d /= 0.
Based on the technique of the hodograph transformation, they found numerically that, for
1 < B < B1(d), solitary waves bifurcating from zero amplitude are elevation waves, while
for B1(d) < B � B2(d), these solutions are depression waves. Moreover, the branches
of depression and elevation solitary waves both bifurcating from non-zero amplitude
were found within the region of 1 < B < B1(d) and B1(d) < B < 2, respectively. This
is surprising since such bifurcations cannot be well elucidated by the KdV equation
and have not yet been reported in free-surface water-wave problems. However, for
B > B2(d), wavepacket-type solitary waves can be expected since the minimum phase
speed is attained at a non-zero wavenumber, akin to capillary-gravity waves in deep
water. For typical sets of parameters, two fundamental branches, elevation (a positive
free-surface elevation at the centre) and depression (a negative free-surface elevation at
the centre), were found to bifurcate from the phase speed minimum and terminate at a
limiting configuration: static wave, trapped toroidal-shaped bubble or cusp. In the context
of wavepacket-solitary waves in ferrofluid jets, a rigorous existence theorem has been
established in the small-amplitude regime by Groves & Nilsson (2018). If the surrounding
fluid is considered to be hydrodynamically active, Doak & Vanden-Broeck (2018) modified
the numerical method to accommodate two flow domains and calculated interfacial wave
solutions for the fully nonlinear problem. They discovered various types of progressive
waves, including periodic, solitary and generalized solitary waves.

In contrast to computing solitary waves, which can be viewed as steady solutions
in a co-moving frame of reference, there are relatively fewer studies on the stability
and dynamics of solitary waves in axisymmetric ferrofluid jets. In the shallow water
limit and for the magnetic Bond number less than 9, there were theoretical descriptions
of soliton collisions based on the KdV equation by Rannacher & Engel (2006). For
more general situations, unsteady simulations for ferrofluid jets were considered by
Guyenne & Părău (2016), who derived the convergent Taylor series expansion of the
Dirichlet–Neumann operator (DNO) in the axisymmetric geometry for d = 0. Unlike
the hodograph transformation, their numerical approach reduces the problem to a
lower-dimensional computation involving surface variables only and is easily combined
with the fast Fourier transform. Those authors used the proposed time-dependent
algorithm to simulate head-on and overtaking collisions between two KdV-type solitons
for B ≤ 9. Nevertheless, to the best of our knowledge, the stability properties of solitary
waves on ferrofluid jets, including both monotonic and oscillatory types, have not yet been
known, as well as the dynamics of wavepacket solitary waves (namely when B > B2(d)),
which are one of the focuses of the present work.

To understand the stability properties of solitary waves, the concept of superharmonic
perturbation needs to be invoked. This is because, for solitary waves, all the longitudinal
perturbations have the same horizontal scale as the fundamental waves and, hence,
are superharmonic. In free-surface water waves, it was Longuet-Higgins (1978) who
first considered the superharmonic instability of periodic gravity waves. Subsequently,
Tanaka (1983) found numerically that the superharmonic instability occurs at the first
stationary value of the total wave energy, kinetic plus potential, as a function of wave
speed. He also confirmed that the same principle holds for solitary waves (Tanaka 1986).
However, Saffman (1985) made another significant analytical work based on Zakharov’s
Hamiltonian formulation of water waves, which demonstrated that the stability exchange
of periodic waves in deep water subjected to superharmonic perturbations could only
manifest at stationary points of total energy, a necessary but insufficient condition (a
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similar argument can be found from Zufiria & Saffman (1986) for the finite-depth case).
As pointed out in his original paper, the argument can be easily generalized to include
the surface tension term without essential modifications. However, the results discussed
above pertain to solitary and periodic waves in the classical two-dimensional water-wave
problem. In this paper, we aim to extend Saffman’s theory to include solitary waves on
the surface of an axisymmetric ferrofluid jet. To achieve this, we must first determine the
Hamiltonian of the jet system and identify the corresponding canonical variables.

After obtaining the Hamiltonian structure of the axisymmetric system, as a first step
towards a comprehensive understanding of axisymmetric solitary waves, we derive several
reduced models based on the Hamiltonian/Lagrangian perturbation theory. Among all
the models, the cubic full-dispersion model (see (3.39)–(3.40)) is the most accurate
and efficient. Using the Taylor series expansion of the DNO, the model can be
achieved by truncating the kinetic energy at the fourth-order nonlinearity. It should be
emphasized that to ensure self-adjointness, the DNO is not defined directly by using
the kinematic boundary condition and, hence, differs from that of Guyenne & Părău
(2016). This is ascribed to the particularity of the cylindrical coordinate system (see
§ 2.4 for details). Since the cubic full-dispersion model retains the complete dispersion
relation, it can provide a quantitatively good approximation to both monotonic and
oscillatory solitary waves in the full Euler equations, including wave profiles of small-
and moderate-amplitude solutions and bifurcation diagrams near bifurcation points.
Subsequently, using the cubic full-dispersion model, the analytical verification of the
superharmonic instability for axisymmetric solitary waves is conducted via a perturbation
method for small eigenvalues, achieving the same result as Saffman’s theory. Guided by
these theoretical findings, we then employ a time integration technique to numerically
study the stability and collision of these waves.

The rest of the paper is structured as follows. In § 2, we present the mathematical
formulation of the problem, discuss its Hamiltonian structure and define the axisymmetric
DNO along with the Taylor expansion in recursion form. In § 3, we propose a systematic
procedure based on the Hamiltonian/Lagrangian framework to derive a series of weakly
and strongly nonlinear dispersive models. The numerical results for various types of
solitary waves are presented in § 4, which includes the comparison of bifurcations between
the Euler equations and the models. Building on the cubic full-dispersion model, § 5
employs an asymptotic method to derive a necessary condition for the stability exchange of
axisymmetric travelling waves subjected to superharmonic perturbations. This section also
explores the dynamics of solitary waves, focusing on their long-term evolution to identify
stability properties and the pairwise collisions between stable ones. Finally, § 6 provides
conclusions and further remarks.

2. Mathematical formulation

2.1. Governing equations
We consider an axisymmetric column of ferrofluid with constant density ρ and magnetic
susceptibility χ , coating a metallic rod of radius d. The axisymmetric cylindrical
coordinate system (x, r) is introduced, such that the x-axis coincides with the rod’s central
axis, and r is the radial coordinate (see the sketch of the system in figure 1). In the basic
configuration, the jet surface is a circular cylinder of radius R. An azimuthal magnetic field
is induced by the metallic rod carrying a current I:

B = μ0I
2πr

eθ , (2.1)
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r = S(x, t)

r
x

�φ = 0

r = 0

r = d

r = R

Figure 1. Schematic of the problem in a cylindrical coordinate system.

where μ0 is the magnetic permeability of the vacuum and eθ is the unit vector in the
clockwise azimuthal direction. The assumption of an axisymmetric surface results in the
decoupling of the magnetic problem from the hydrodynamic problem, and therefore, the
effect of the magnetic field appears in the balance of the normal stress at the surface
in an implicit way. The ferrofluid is assumed inviscid and incompressible, which flows
irrotationally; therefore, there exists a velocity potential φ such that the velocity field of
fluid can be expressed as ∇φ, where φ satisfies the axisymmetric Laplace equation:

∂2φ

∂r2 + 1
r
∂φ

∂r
+ ∂2φ

∂x2 = 0. (2.2)

We require no normal flow at the axial rod; that is,

∂φ

∂r
= 0, at r = d. (2.3)

At the surface of the jet located at r = S(x, t), the kinematic boundary condition demands

∂S
∂t

= ∂φ

∂r
− ∂S
∂x
∂φ

∂x
. (2.4)

In the considered case when the effect of gravity can be neglected, the surface tension and
magnetic field jointly provide restoring forces for free-surface fluctuations of the ferrofluid.
Thus, under the assumption of a linear magnetization law (see § 5.1 of Rosensweig 1985),
the dynamic boundary condition arises from the Young–Laplace equation, which reads

∂φ

∂t
+ 1

2
|∇φ|2 + σ

ρ
κ − μ0χ I2

4π2ρ

1
2S2 = 0, (2.5)

where σ stands for the surface tension coefficient and κ represents the mean curvature in
the cylindrical coordinates with radial symmetry, namely

κ = 1
S(1 + S2

x)
1/2 − Sxx

(1 + S2
x)

3/2 . (2.6)

Equations (2.2)–(2.5) form a closed system for axisymmetric free-surface motions of a
ferrofluid jet under an externally applied magnetic field. All physical variables in the
system can be non-dimensionalized as

r = Rr̄, x = Rx̄, S = RS̄, t =
(
ρR3

σ

)1/2

t̄, φ =
(
σR
ρ

)1/2

φ̄. (2.7a–e)

Rewriting the system under consideration with the scaling (2.7a–e) and then dropping
bars for ease of notation, we can express the free surface as the perturbation about r = 1,
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namely S = 1 + η, where η is the displacement away from equilibrium. Therefore, the
kinematic and dynamic boundary conditions become

∂η

∂t
= ∂φ

∂r
− ∂η

∂x
∂φ

∂x
(2.8)

and
∂φ

∂t
+ 1

2
|∇φ|2 + κ − 1 − B

2

[
1

(1 + η)2
− 1

]
= 0, (2.9)

where B = μ0χ I2/4π2σR is called the magnetic Bond number and κ can be recast as

κ = 1
(1 + η)(1 + η2

x)
1/2 − ηxx

(1 + η2
x)

3/2 . (2.10)

2.2. Linear theory
To obtain the dispersion relation, we first linearize the whole system around the trivial
uniform stream solution η = φ = 0 and then seek solutions in the form exp(i(kx − ωt))
with wavenumber k and frequency ω. By requiring the solution of the linearized system to
be non-trivial, we obtain, after some algebra, the linear dispersion relation:

c2 = ω2

k2 = 1
|k|

[
K1(|k|d)I1(|k|)− I1(|k|d)K1(|k|)
K1(|k|d)I0(|k|)+ I1(|k|d)K0(|k|)

]
(k2 − 1 + B), (2.11)

where Ij and Kj (j = 0, 1) represent modified Bessel functions of the first and second kind,
respectively, and c is called the phase speed. Note that all solutions are stable if B > 1,
which means a magnetic field of sufficient strength can linearly stabilize the Rayleigh
capillary mode responsible for jet breakup under normal conditions. In the long-wave
limit (k → 0), (2.11) can be approximated by

c = c0

[
1 +

(
1

2(B − 1)
+ A(d)

1 − d2

)
k2 + O(k4)

]
, (2.12)

where

c2
0 = (1 − d2)(B − 1)

2
, A(d) = −1 − 4d2 + 3d4 − 4d4 ln d

16
. (2.13a,b)

The coefficient sign of the quadratic nonlinearity determines whether the curve is concave
or convex. It is also noted that c ∼ √|k| as k → ∞. Due to these asymptotic behaviours,
a critical magnetic Bond number B2(d) can be defined,

B2(d) = 9 − 12d2 + 3d4 − 4d4 ln d
1 − 4d2 + 3d4 − 4d4 ln d

, (2.14)

such that the phase speed is a monotonically increasing function of the wavenumber for
1 < B < B2(d), while the phase speed minimum occurs at a non-zero wavenumber when
B > B2(d). This threshold, also given by Doak & Vanden-Broeck (2019), distinguishes
the KdV- and wavepacket-type solitary waves in the weakly nonlinear theory. This
phenomenon is similar to capillary-gravity waves, where the Bond number is defined to
measure the importance of surface tension to gravity, and its critical value is 1/3 (see
Hunter & Vanden-Broeck (1983) for more details). For small d, B2(d) = 9 + 24d2 +
O(d4 ln d), coincident with the results given by Rannacher & Engel (2006) and Blyth &
Părău (2014).
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2.3. Hamiltonian formulation
The classic water-wave problem can be written in a canonical form in the sense of
Zakharov (1968), who showed that the Hamiltonian is simply the total energy with the
surface displacement and surface velocity potential being canonical conjugates. In the
subsequent analyses, we demonstrate that for the ferrofluid jet problem studied here, the
Hamiltonian functional is also the total energy; however, the canonical pair differs from
that of the classical water-wave problem. For axisymmetric ferrofluid jets, the total energy
reads

H = 1
2

∫ ∫ 1+η

d
|∇φ|2r dr dx + B

2

∫ [
1
2
(2η + η2)− ln(1 + η)

]
dx

+
∫ [

(1 + η)

√
1 + η2

x − 1
2
(2 + 2η + η2)

]
dx, (2.15)

where the first term on the right-hand side of the equals sign is the kinetic energy, and
the next two terms are responsible for the potential energy due to the magnetic field
and surface tension, respectively. Next, we will show that the two canonical variables are
ζ = (1 + η)2/2 and ξ = φ(x, 1 + η, t). Further details regarding the rationale behind our
selection of canonical variables can be found in Appendix A. We perturb the Hamiltonian
by δξ /= 0 and δζ = 0. It follows from

δξ = δφ|r=1+η + ∂φ

∂r
δη and 0 = δζ = (1 + η)δη (2.16a,b)

that δξ = δφ|r=1+η. Obviously, the variation in φ contributes only to the variation of the
kinetic energy, denoted by EK . The variation of EK with respect to ξ is then calculated as

δEK = δ

(
1
2

∫ ∫ 1+η

d
∇φ · r∇φ dr dx

)

=
∫ (

rδφ
∂φ

∂n

)
r=1+η

√
1 + η2

x dx =
∫
δξ(1 + η)

(
∂φ

∂n

)
r=1+η

√
1 + η2

x dx,

(2.17)

where n = (−ηx, 1)�/
√

1 + η2
x is the exterior unit normal vector to the free surface and

the divergence theorem in the cylindrical coordinate system has been used. It follows
immediately that, at r = 1 + η,

∂φ

∂n

√
1 + η2

x = ∂φ

∂r
− ∂η

∂x
∂φ

∂x
. (2.18)

Hence,
δH
δξ

= δEK

δξ
= (1 + η)

(
∂φ

∂r
− ∂η

∂x
∂φ

∂x

)
= ζt, (2.19)

equivalent to the kinematic boundary condition at the free surface. Then, we fix ξ and vary
ζ . The relation between ζ and η gives δζ = (1 + η)δη. Meanwhile, it can be noticed that

0 = δξ = δφ|r=1+η + ∂φ

∂r
δη ⇒ δφ|r=1+η = −∂φ

∂r
δη. (2.20)
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Thus, the variation of the kinetic energy reads

δEK = 1
2

∫ (
r|∇φ|2

)∣∣∣
r=1+η

δη dx +
∫ (

δφr
∂φ

∂n

)∣∣∣∣
r=1+η

√
1 + η2

x dx

= 1
2

∫ (
|∇φ|2

)
r=1+η

δζ dx +
∫
(δφ)r=1+η (1 + η)ηt dx

=
∫ (

1
2
|∇φ|2 − ∂φ

∂r
ηt

)
r=1+η

δζ dx. (2.21)

However, the variation of the potential energy (denoted by EP) can be expressed as

δEP = B
2

∫ [
(1 + η)δη − δη

1 + η

]
dx +

∫ [√
1 + η2

x −
(
(1 + η)ηx√

1 + η2
x

)
x

− (1 + η)

]
δη dx

= B
2

∫ [
1 − 1

(1 + η)2

]
δζ dx +

∫ [
1

(1 + η)
√

1 + η2
x

− ηxx

(1 + η2
x)

3/2 − 1

]
δζ dx.

(2.22)

Using the chain rule when necessary, a direct calculation yields

−δH
δζ

= −1
2
|∇φ|2 + ∂φ

∂r
ηt + B

2

[
1

(1 + η)2
− 1

]

−
[

1

(1 + η)
√

1 + η2
x

− ηxx

(1 + η2
x)

3/2 − 1

]
= ξt. (2.23)

Equations (2.19) and (2.23) confirm that ζ and ξ are the canonical variables satisfying
Hamilton’s equations:

ζt = δH
δξ
, ξt = −δH

δζ
, (2.24a,b)

equivalent to the kinematic and dynamic boundary conditions on the free surface.

2.4. Dirichlet–Neumann operator
The Dirichlet–Neuamnn operator (DNO), which connects the Dirichlet data and Neumann
data on the boundary, plays an essential role in boundary problems of potential theory. It
was initially proved by Coifman & Meyer (1985) that if the Lipschitz-norm of the surface
displacement is smaller than a certain constant, then the DNO is an analytic operator with
a convergent Taylor series. The Taylor expansion was obtained by Craig & Sulem (1993)
from a recursion formula for the two-dimensional water-wave problem and extended to the
three-dimensional case by Craig, Schanz & Sulem (1997). This description of the DNO,
involving only the variables on the free surface, achieves a dimension reduction and, hence,
is numerically efficient for spatially periodic water waves.

Guyenne & Părău (2016) first introduced the DNO in the problem of axisymmetric
ferrofluid jets, assuming a thin current-carrying rod (d = 0) to simplify the derivation
of its Taylor series expansion. They defined the operator by directly using the kinematic
boundary condition. We should point out that in the axisymmetric case, the traditional
definition of the DNO is not a self-adjoint operator. Indeed, this definition is acceptable
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for numerical simulations, especially when we directly substitute the expansion into the
kinematic and dynamic boundary conditions; however, it may cause inconvenience while
using the Hamiltonian structure of the problem for investigations. This can be understood
from the kinetic energy in (2.15), where the determinant introduced by the polar coordinate
transformation needs to be carefully considered to ensure some ‘symmetry’ of the operator.
In the present paper, we derive the Taylor expansion of the DNO for a more general case,
namely d /= 0, and therefore, both the first and second kinds of Bessel functions need
to be invoked. However, more importantly, we define the DNO in a self-adjoint manner,
differing from that of Guyenne & Părău (2016).

In the axisymmetric geometry, the DNO for the velocity potential, denoted by G, can be
defined by solving the following boundary value problem:

∂2φ

∂r2 + 1
r
∂φ

∂r
+ ∂2φ

∂x2 = 0 for d < r < 1 + η,

∂φ

∂r
= 0, at r = d,

φ = ξ, at r = 1 + η,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.25)

and then returning

G(η)ξ = r(φr − ηxφx) (2.26)

at the surface r = 1 + η. Applying the separation of variables to the radial Laplace
equation with the form φ(x, r) = f (r)eikx yields

k̄2f ′′ + k̄f ′ − k̄2f = 0, (2.27)

where k̄ = |k|r and the primes represent the derivations with respect to k̄. Equation (2.27)
is the modified Bessel differential equation of order zero, whose solution is the linear
combination of the modified Bessel functions of the first and second kinds, namely

f (|k|r) = c1I0(|k|r)+ c2K0(|k|r) for k /= 0, (2.28)

where c1 and c2 are arbitrary constants determined by boundary conditions. It is noted
that for k = 0, the Bessel equation reduces to f ′′ + f ′/r = 0, and the solution reads f (r) =
c1 + c2 ln r. The impermeability condition at r = d gives

f (|k|r) = c3 [K1(|k|d)I0(|k|r)+ I1(|k|d)K0(|k|r)] , (2.29)

where c3 is an arbitrary constant, and I′0 = I1 and K′
0 = −K1 have been used in the

calculation. We assume the DNO can be expanded as a convergent Taylor series

G(η, d) =
∞∑

j=0

Gj(η, d), (2.30)

where Gj is homogeneous of degree j in η. We suppress the dependence of G and Gj on
d for simplicity of notation. Ignoring the constant in (2.29) and recalling the definition of
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G. Xu and Z. Wang

the pseudo-differential operator, one obtains, at the free surface,

G(η)
{

[K1(|k|d)I0(|k|r)+ I1(|k|d)K0(|k|r)] eikx
}

= r (∂r − ηx∂x)
{

[K1(|k|d)I0(|k|r)+ I1(|k|d)K0(|k|r)] eikx
}
. (2.31)

Substituting r = 1 + η into identity (2.31) and expanding it around η = 0 yields⎛⎝ ∞∑
j=0

Gj(η)

⎞⎠{ ∞∑
n=0

(|k|η)n
n!

[
K1(|k|d)I(n)0 (|k|)+ I1(|k|d)K(n)0 (|k|)

]}
eikx

= (1 + η)

{ ∞∑
n=0

(|k|η)n|k|
n!

[
K1(|k|d)I(n+1)

0 (|k|)+ I1(|k|d)K(n+1)
0 (|k|)

]

−
∞∑

n=0

iηx(|k|η)nk
n!

[
K1(|k|d)I(n)0 (|k|)+ I1(|k|d)K(n)0 (|k|)

]}
eikx, (2.32)

where the superscript with parentheses stands for the derivative. By identifying terms of
the same degree in η, we can obtain an expansion of the operator G(η), with each term in
the series defined recursively. The first term reads

G0eikx = |k| [K1(|k|d)I1(|k|)− I1(|k|d)K1(|k|)]
K1(|k|d)I0(|k|)+ I1(|k|d)K0(|k|) eikx, (2.33)

and therefore, we can write G0 as a pseudo-differential operator as

G0 = |P| [K1(|P|d)I1(|P|)− I1(|P|d)K1(|P|)]
K1(|P|d)I0(|P|)+ I1(|P|d)K0(|P|) , (2.34)

where P = −i∂x. Based on the properties of the modified Bessel functions of the first and
second kinds (see Abramowitz & Stegun 1964), it is not difficult to show that (2.33) is
well defined for arbitrary wavenumber k. It is remarked that if we consider a very thin
current-carrying rod as the limiting configuration (i.e. d → 0), then G0 reduces to

G0 = |P|I1(|P|)
I0(|P|) , (2.35)

due to the fact that I1(|k|d) ∼ |k|d/2 for small d, which is exactly the same as derived by
Guyenne & Părău (2016). For j = 1,

G1(η)+ G0ηG0 = η|k|2 K1(|k|d)I(2)0 (|k|)+ I1(|k|d)K(2)0 (|k|)
K1(|k|d)I0(|k|)+ I1(|k|d)K0(|k|) + ηG0 − iηxk. (2.36)

By using the fundamental relations of the modified Bessel functions, one obtains

I(2)0 (|k|) = I(1)1 (|k|) = I0(|k|)− |k|−1I1(|k|),
K(2)0 (|k|) = −K(1)1 (|k|) = K0(|k|)+ |k|−1K1(|k|).

}
(2.37)

Therefore, (2.36) can be simplified to

G1(η) = −G0ηG0 − ∂xη∂x, (2.38)
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Dynamics of solitary waves on a ferrofluid jet

which is of the same form as that in the classical two-dimensional water-wave problem.
For j � 2, Gj can be obtained by a recursive formula as follows:

Gj(η) = −
j−1∑
n=0

Gn(η)
(|k|η)j−n

( j − n)!
M( j−n) + (|k|η) j|k|

j!
M( j+1) + (|k|η) j

( j − 1)!
M( j)

− (iηx)(|k|η)j−1k
( j − 1)!

M( j−1) − (iηηx)(|k|η)j−2k
( j − 2)!

M( j−2), (2.39)

where M( j) is defined as

M( j) = K1(|k|d)I( j)
0 (|k|)+ I1(|k|d)K( j)

0 (|k|)
K1(|k|d)I0(|k|)+ I1(|k|d)K0(|k|) , (2.40)

and the dependence of M( j) on |k| and d has been suppressed for simplicity. Direct
corollaries include

M(0) = 1, M(1) = |k|−1G0, M(2) = 1 − |k|−1M(1) = 1 − |k|−2G0. (2.41a–c)

After rearrangement, (2.39) can be rewritten, in terms of P, as

Gj(η) = 1
j!

Pη jP|P|j−1M( j−1) + η j

j!
|P| j

[
|P|M( j+1) − |P|M( j−1) + jM( j)

]
− ηj−1ηx

( j − 2)!
∂x|P|j−2M( j−2) −

j−1∑
n=0

1
( j − n)!

Gn(η)η
j−n|P|j−nM( j−n). (2.42)

For the convenience of later discussion, we show the expression of G2(η) as follows. Since

I(2)1 (|k|) =
(

1 + 2|k|−2
)

I1(|k|)− |k|−1I0(|k|),

K(2)1 (|k|) =
(

1 + 2|k|−2
)

K1(|k|)+ |k|−1K0(|k|),

⎫⎪⎬⎪⎭ (2.43)

one immediately obtains

M(3) = K1(|k|d)I(2)1 (|k|)− I1(|k|d)K(2)1 (|k|)
K1(|k|d)I0(|k|)+ I1(|k|d)K0(|k|) =

(
1 + 2|k|−2

)
M(1) − |k|−1. (2.44)

A direct calculation yields

η2

2
|k|2

[
|k|M(3) − |k|M(1) + 2M(2)

]
= η2

2
|k|2, (2.45)

and then it follows that

G2(η) = 1
2 G0η

2∂xx + 1
2∂xxη

2G0 + G0ηG0ηG0 + 1
2 G0η

2G0 − 1
2∂xη

2∂x. (2.46)

The expression of the pseudo-differential operator G2(η) is formally different from that
of Craig & Sulem (1993), and the difference lies in the last two items on the right-hand
side of (2.46), which are not present in the classical water-wave problem. Nevertheless,
G1 and G2 have more symmetrical structures compared with those of Guyenne & Părău
(2016). For higher-order terms (Gj for j � 3), the procedure continues to be consistent and
straightforward, although more tedious calculations have been omitted for brevity.
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G. Xu and Z. Wang

Using the DNO, the Hamiltonian formulation (2.15) can be rewritten explicitly with the
canonical variables as

H[ζ, ξ ] = 1
2

∫
ξGξ dx + B

2

∫ [
1
2
(2η + η2)− ln(1 + η)

]
dx

+
∫ [

(1 + η)

√
1 + η2

x − 1
2
(2 + 2η + η2)

]
dx. (2.47)

The system has a physical conserved quantity, mass, which can be expressed as

M =
∫ ∞

−∞

(
η2 + 2η

)
dx. (2.48)

This conservation law can be verified as follows:

dM
dt

=
∫ ∞

−∞
∂t

(
η2 + 2η

)
dx = 2

∫ ∞

−∞
G(η)ξ dx = 2

∫ ∞

−∞
ξG(η)1 dx = 0, (2.49)

where the definitions of the DNO and its self-adjoint property have been used during the
derivation. The conserved quantities, mass (2.48) and energy (2.47), can be further used
to monitor the global accuracy of numerical computations.

3. Asymptotic models

In this section, a systematic procedure for deriving various nonlinear dispersive models
is presented by taking advantage of the Hamiltonian structure of the problem and the
analyticity property of the DNO. First of all, it is noticed that Hamilton’s equations
(2.24a,b) realize an extremum of the action

∫
L dt with the Lagrangian,

L =
∫ {

ξζt − 1
2
ξGξ − B

2

[
1
2

(
2η + η2

)
− ln(1 + η)

]}
dx

−
∫ [

(1 + η)

√
1 + η2

x − 1
2

(
2 + 2η + η2

)]
dx. (3.1)

We can construct reduced models by applying the variational principle to an approximated
Lagrangian, called the Lagrangian perturbation method. This can be achieved by
truncating either the Taylor series expansion of the DNO due to its analytical property
or the Lagrangian expansion about a small parameter induced by a multi-scale analysis.
We should note that the Lagrangian perturbation method differs slightly from the
Hamiltonian perturbation method detailed in, e.g. Craig, Guyenne & Kalisch (2005); as
will be shown below, it directly accommodates the use of non-canonical variables when
taking variational derivatives.

3.1. Long-wave modelling
To showcase the operation routine of the suggested approach, we first consider the
classical situation, addressing the problem with d /= 0 within the Boussinesq regime. The
Boussinesq scaling indicates that the free-surface wave varies on temporal and horizontal
spatial scales of 1/ε, and the amplitude of the surface displacement scales by ε2, where
ε 
 1 is the ratio of the mean depth of fluid to typical wavelength, a small parameter
characterizing the long-wave approximation. The magnetic Bond number is assumed to
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Dynamics of solitary waves on a ferrofluid jet

be of order ε0 to enable the force exerted by the magnetic field to compete with surface
tension. In summary, the following scales are chosen:

t = t̄
ε
, x = x̄

ε
, η = ε2η̄, ξ = εξ̄. (3.2a–d)

After changing variables and dropping bars, the pseudo-differential operator G can be
expanded as

G = −ε
2

2

(
1 − d2

)
∂2

x + ε4
[
A(d)∂4

x − ∂xη∂x

]
+ O(ε6). (3.3)

Upon substituting the asymptotic expansion of the DNO into the Lagrangian (3.1) and
retaining terms valid up to O(ε5), one then obtains

L̃ = ε3
∫ [

ξηt + 1 − d2

4
ξ∂2

x ξ − B − 1
2

η2
]

dx

+ ε5
∫ [

ξηηt − 1
2

A(d)ξ∂4
x ξ + 1

2
ξ∂xη∂xξ + B

3
η3 − 1

2
η2

x

]
dx. (3.4)

Minimizing the action of the approximate Lagrangian
∫

L̃ dt yields two evolution
equations for η and ξ :

ηt = 1
1 + ε2η

[
−1 − d2

2
ξxx + ε2 (A(d)ξxxxx − ∂xη∂xξ)

]
= −1 − d2

2
ξxx + ε2

[
1 − d2

2
ηξxx + A(d)ξxxxx − ∂xη∂xξ

]
+ O(ε4) (3.5)

and

ξt = − 1
1 + ε2η

[
(B − 1)η + ε2

(
1
2
ξ2

x − B
2
η2 − ηxx

)]
= (1 − B)η + ε2

[(
3B
2

− 1
)
η2 − 1

2
ξ2

x + ηxx

]
+ O(ε4). (3.6)

To proceed, taking the derivative of (3.6) with respect to t yields

ξtt = (1 − B)ηt + ε2 [ηtxx − ξxξxt + (3B − 2) ηηt] , (3.7)

where the terms of O(ε4) and higher have been neglected. Replacing ηt with (3.5) and
retaining terms valid up to O(ε2), one obtains a single evolution equation of ξ :

ξtt = (B − 1)(1 − d2)

2
ξxx + ε2

⎧⎪⎨⎪⎩−
(
ξ2

x

)
t
+

⎡⎢⎣2B − 3
2

B − 1
(1 − d2)− 1

⎤⎥⎦ ξtξxx

−
[

1 − d2

2
+ (B − 1)A(d)

]
ξxxxx

⎫⎪⎬⎪⎭ , (3.8)

where the relation η ∼ ξt/(1 − B) arising from the leading order of (3.6) has been used.
Furthermore, by assuming the unidirectional propagation of waves, the classic KdV
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equation can be obtained,

ηt + c0ηx + αηxxx + βηηx = 0, (3.9)

with the dispersive and nonlinear coefficients given by

α = −c0

[
1

2(B − 1)
+ A(d)

1 − d2

]
, (3.10)

β = B − 1
2c0

[
3 − 1 − d2

2
− (3B − 2) (1 − d2)

2(B − 1)

]
, (3.11)

and the long wave speed c0 defined in (2.13a,b). It is worth noting that we have dropped
ε here by reverting to the original variables. Since the derivation from the bidirectional
model to the unidirectional is standard, we state the resultant equation and refer interested
readers to Whitham (1974) or Guan & Wang (2022) for details. As d → 0, (3.9) is precisely
the same as derived by Rannacher & Engel (2006). The celebrated (single) soliton solution
to (3.9), corresponding to a locally confined travelling wave, is given by

η(x, t) = 3δ
β

sech2

(√
δ

4α
(x − (δ + c0)t)

)
, (3.12)

where δ 
 1 is a free constant with the same sign as α. A critical parameter, B1(d), can be
found to identify elevation solitons for 1 < B < B1(d) and depression solitons for B1(d) <
B < B2(d), both bifurcating from zero amplitude; this critical value is expressed by

B1(d) = 3(1 + d2)

2(1 + 2d2)
. (3.13)

As is well known, soliton formation arises from a dynamic balance between dispersive and
nonlinear effects. However, the dispersive and nonlinear coefficients in (3.9), α and β, may
be close to zero for certain parameter sets; hence, rescaling is required in the asymptotic
analysis. For the first case, namely β 
 1, a higher-order nonlinearity must be introduced
to balance the dispersion, resulting in the modified KdV equation. To proceed, we choose
a set of new scales

t = t̄
ε
, x = x̄

ε
, η = εη̄, ξ = ξ̄ , β = εβ̄. (3.14a–e)

Following the same procedure, symbolic calculations yield

G = −ε2 1 − d2

2
∂2

x − ε3∂xη∂x + ε4A(d)∂4
x + O(ε5). (3.15)

Substituting (3.14a–e) and (3.15) into (3.1) and truncating the expansion at O(ε4), an
approximate Lagrangian can be obtained as

L̃ =
∫ {

ε

[
ξηt − 1 − d2

4
ξ2

x − A(d)
2

− B − 1
2

η2
]

+ ε2
[
ξηηt − 1

2
ηξ2

x + B
6
η3
]

− ε3
[

B
8
η4 + 1

2
ηx

]}
dx. (3.16)
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Dynamics of solitary waves on a ferrofluid jet

Minimizing the action of the approximate Lagrangian yields

ηt = −1 − d2

2
ξxx + ε

(
1 − d2

2
ηξxx − ∂xη∂xξ

)
+ ε2

[
A(d)ξ4

x + η∂xη∂xξ − 1 − d2

2
η2ξxx

]
, (3.17)

ξt = −(B − 1)η + ε
[(

3
2 B − 1

)
η2 − 1

2ξ
2
x

]
+ ε2

[
1
2ηξ

2
x + (1 − 2B) η3 + ηxx

]
, (3.18)

where the variational principle is retained up to O(ε2). Following the standard argument,
after some algebra, a modified KdV equation can be derived to govern the free surface
dynamics

ηt + c0ηx + αηxxx + βηηx + β1η
2ηx = 0, (3.19)

where ε has been removed by returning to the original variables, and the coefficient of the
cubic nonlinearity reads

β1 = (B − 1)2

2c0

[
6 + d2

2(1 − B)
− 2(3B − 2)
(B − 1)2

+ (1 − d2)(9B − 5)
2(B − 1)2

]
. (3.20)

Of note is the balance between the two effects, which can be achieved for larger amplitude
waves indicated by the scales of (3.14a–e), although the temporal and spatial scales for
solitons remain the same. It is well known that the modified KdV equation (3.19) has a
one-parameter family of soliton solutions:

η(x, t) = 6α

βΞ2 +
√
β2Ξ4 + 6αβ1Ξ2 cosh

[
(x − c0t − αt/Ξ2)/Ξ

] , (3.21)

where Ξ is the free parameter.
For the second case, α 
 1, a fifth-order derivative term needs to be introduced to

balance the quadratic nonlinearity, resulting in the fifth-order KdV equation. For this
purpose, we choose the scales

t = t̄
ε
, x = x̄

ε
, η = ε4η̄, ξ = ε3ξ̄ , α = ε2ᾱ. (3.22a–e)

By assuming one-way wave propagation along a primary direction (right-going waves, say)
and following a standard argument, one finally, after some tedious calculation, obtains a
fifth-order KdV equation,

ηt + c0ηx + αηxxx + βηηx + α1ηxxxxx = 0, (3.23)

in terms of the original variables. The fifth-order dispersive coefficient reads

α1 = 1
2c0

[
1 − d2

2(1 − B)
+ (B − 1)A1(d)

]
(3.24)

with

A1(d) = 1
192

[
2 − 15d2 + 30d4 − 17d6 + 12d4(−2 + 3d2) ln d − 24d6(ln d)2

]
. (3.25)

The coefficients of the fifth-order dispersive term can also be obtained by directly
expanding the dispersion relation (2.12) up to terms of O(ε4). It is also highlighted that
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Groves & Nilsson (2018) provided a rigorous derivation of the KdV and fifth-order KdV
equations within this context.

In the water-wave community, in addition to weakly nonlinear dispersive models,
regularized strongly nonlinear models are usually required to describe moderate-amplitude
wave phenomena as well as to afford a significant simplification over primitive equations.
For ferrofluid jets, it was Cornish (2018) who first proposed a strongly nonlinear and
weakly dispersive model by extending the model of Papageorgiou & Orellana (1998) via
including the magnetic effect. We propose in the subsequent analyses a new strongly
nonlinear model using the Lagrangian perturbation method and show that the model
documented by Cornish (2018) can also be obtained based on our method. First, we
introduce a new set of non-dimensional scales

x = lx̄, r = Rr̄, S = RS̄, t =
√
ρRl2

σ
t̄, φ =

√
σ l2

ρR
φ̄, (3.26a–e)

where l is the typical wavelength and η is assumed to be O(1) (recalling that S = 1 + η).
After changing variables and dropping bars, the Lagrangian L becomes

L =
∫ [

ξζt − 1
2

∫ S

d

(
φ2

x + 1
ε2φ

2
r

)
dr +

(
B
2

ln S − S
√

1 + ε2S2
x

)]
dx, (3.27)

where ε = R/l is a small parameter reflecting the long-wave approximation. We denote by
G̃ the rescaled DNO, involving the small parameter ε. Since

G̃0 = −ε
2(1 − d2)

2
∂2

x + ε4A(d)∂4
x + O(ε6), (3.28)

the pseudo-differential operator G̃ can be expanded, in terms of ε, as

G̃ = ε2
(

−1 − d2

2
∂2

x − ∂xη∂x − 1
2
∂xη

2∂x

)
+ ε4

{
A(d)∂4

x − (1 − d2)2

4
∂2

x η∂
2
x +

[
(1 − d2)2

8
− 1 − d2

2

]
∂2

x η
2∂2

x

}
+ O(ε6).

(3.29)

The approximate Lagrangian is constructed by inserting (3.29) into (3.1) and retaining
terms valid up to O(ε2), resulting in

L̃ =
∫ [

ξζt + 1
2
ξ

(
1 − d2

2
∂2

x + ∂xη∂x + 1
2
∂xη

2∂x

)
ξ + B

2
ln(1 + η)− (1 + η)

]
dx

− ε2

2

∫ {
A(d)ξ∂4

x ξ − (1 − d2)2

4
ξ∂2

x η∂
2
x ξ

+
[
(1 − d2)2

8
− 1 − d2

2

]
ξ∂2

x η
2∂2

x ξ + (1 + η)η2
x

}
dx. (3.30)

Minimizing the approximate action
∫

L̃ dt yields

0 = ηt + uηx + (1 + η)2 − d2

2(1 + η)
ux − ε2

1 + η

[
A(d)uxxx

−(1 − d2)2

4
∂2

x (ηux)+ d4 + 2d2 − 3
8

∂2
x (η

2ux)

]
(3.31)
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Dynamics of solitary waves on a ferrofluid jet

and

0 = ut + uux − (1 + η − B)ηx

(1 + η)3
− ε2

[
(1 − d2)2(η − 1)

8(1 + η)
u2

x

− 1 − d2

2(1 + η)
ηu2

x

]
x
− ε2

[
η2

x

2(1 + η)
+ ηxx

]
x
, (3.32)

where the governing system has been rewritten in a more revealing form by letting u = ξx.
The small parameter ε can be removed from the problem by stretching variables: x → εx,
t → εt and u → u.

It is worth mentioning that, although based on the same scaling, the strongly
nonlinear model established by Cornish (2018), which does not have a clear Hamiltonian
conservation form, is different from (3.31)–(3.32). This is not only because a different
unknown variable was adopted, but also due to a certain special treatment on the kinematic
boundary condition. Next, we will show that the Cornish system can also be obtained using
the Lagrangian perturbation method. To proceed the derivation, we rewrite the Laplace
equation with the rescaled velocity potential as

φrr + 1
r
φr + ε2φxx = 0, in d < r < S, (3.33)

subject to the impermeability boundary condition φr = 0 at r = d. The asymptotic
expansion of φ can be written as φ = φ(0) + ε2φ(1) + O(ε4). The substitution of the above
expansion into (3.33) gives the leading and next-to-leading order terms:

φ(0) = Φ(x, t), φ(1) = Φxx

(
−r2

4
+ d2

2
ln r

)
. (3.34a,b)

The approximate Lagrangian is constructed by substituting (3.34a,b) into (3.27) and
retaining terms up to O(ε2), resulting in

L̃ =
∫ [

Φζt − S2 − d2

4
Φ2

x + B
2

ln S − S
]

dx + ε2
∫
Φxx

(
d2

2
ln S − S2

4

)
ζt dx

− ε2

2

{∫
ΦxΦxxx

[
3d4 − S4 − 2S2d2

8
+ 1

2
d2
(

S2 ln S − d2 ln d
)]

dx

+
∫ [

Φ2
xx

(
S4 + 3d4 − 4d2S2

16
+ 1

4
d2 ln

S
d

)
+ SS2

x

]
dx
}
. (3.35)

Again, we obtain the governing equations by taking the variational derivatives of the
approximate action

∫
L̃ dt:

St + Sxu + S2 − d2

2S
ux + ε2

S

[(
d2

2
ln S − S2

4

)
SSt

]
xx

+ ε2

2S

{
uxx

[
3d4 − S4 − 2d2S2

8
+ d2

2

(
S2 ln S − d2 ln d

)]}
x

+ ε2

2S

{
u
[

3d4 − S4 − 2d2S2

8
+ d2

2

(
S2 ln S − d2 ln d

)]}
xxx
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− ε2

S

[
ux

(
S4 + 3d4 − 4d2S2

16
+ d2

4
ln

S
d

)]
xx

= 0 , (3.36)

ut + uux +
(

1
S

− B
2S2

)
x
+ ε2

4

[(
2d2 ln S − S2

)
(uxt + uuxx)

]
x

+ ε2

2

[
u2

x

(
d2 − S2

2S

)2]
x

− ε2
(

S2
x

2S
+ Sxx

)
x
= 0. (3.37)

Following the idea of Cornish (2018) to retain only the leading order terms in the kinematic
boundary condition, i.e. neglect the terms of O(ε2) in (3.36), one arrives at the same
governing system; see (4.50) and (4.51) of Cornish (2018).

3.2. A fully dispersive model
Hitherto, we derive various models in the long-wave approximation. Alternatively, these
models only describe wave behaviours near k = 0 and are suitable for 1 < B � B2(d).
However, when the phase speed minimum occurs at k /= 0 or, equivalently, B > B2(d),
the narrow band approximation and normal form analysis are commonly conducted near
this minimum, resulting in the nonlinear Schrödinger type equation (see Groves & Nilsson
(2018) for the case of ferrofluid jets). Next, we expect to propose a model that can capture
the essential features near the phase speed minimum for an arbitrary magnetic Bond
number. Therefore, the fully dispersive model, which accurately describes linear waves
across the whole spectrum of wavelengths, is a good candidate.

In this part, the main goal is to derive a cubic truncation model, which incorporates
the complete linear dispersion relation of the full potential flow equations, and keeps the
full nonlinearity involving the surface tension and magnetic field. A similar counterpart
has been proposed for capillary-gravity waves on water of infinite depth in the classical
water-wave system (the interested readers are referred to Wang & Milewski (2012) for
more details). The non-dimensionalization is made in the same way as (2.7a–e). First, in
the sense explained by Craig & Sulem (1993), the DNO can be expanded as a Taylor power
series (see § 2.3). The first three terms, expressed by (2.34), (2.38) and (2.46), are used to
approximate the DNO, namely G ≈ G0 + G1 + G2. In this set-up, the Lagrangian (3.1)
can be approximated by

L̃ �
∫ [

ξ(1 + η)ηt − 1
2
ξ (G0 + G1 + G2) ξ − B

2

(
1
2
(2η + η2)− ln(1 + η)

)]
dx

− 1
2

∫ [
(1 + η)

√
1 + η2

x − 1
2

(
2 + 2η + η2

)]
dx. (3.38)

Following the same procedure, by ignoring higher order terms and then taking the
variational derivatives of the truncated action,

∫
L̃ dt, with respect to ξ and η, we obtain

the cubic full-dispersion model:

ηt = 1
1 + η

(G0 + G1 + G2) ξ, (3.39)
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Dynamics of solitary waves on a ferrofluid jet

ξt = − 1
2(1 + η)

[(G0ξ) (−G0ξ + 2ηξxx + ηG0ξ + 2G0ηG0ξ)]

− 1
2
ξ2

x + B
2

[
1

(1 + η)2
− 1

]
− (κ − 1). (3.40)

This is more than just a weakly nonlinear model. First, as Craig & Sulem (1993)
pointed out, the DNO expansion in Cartesian coordinates does not assume a smallness
of wave amplitude and surface potential, but instead uses its analytical property, namely
the Taylor expansion of the DNO converges under certain regularity conditions on the
surface displacement, differing from other high-order spectral methods for water waves.
It is reasonable to assume that the analytical property of the operator also holds in the
axisymmetric cylindrical configuration, though we leave the rigorous analyses outside the
scope of this paper. Second, the restoring forces exerted by the magnetic field and surface
tension are retained precisely.

Following the same procedure, it is natural to derive other truncation models, such as
the quadratic, quartic and quintic truncation models, corresponding to the third-, fifth- and
sixth-order kinetic energy truncations. For conciseness, we omit the detailed derivations
and governing equations for other truncation models. We finally remark that a limitation
of the cubic full-dispersion model is that overturning waves with a multi-valued profile are
excluded. In the subsequent sections, we will conduct theoretical and numerical research
for the newly proposed model (3.39)–(3.40). We will demonstrate the effectiveness of this
fully dispersive system from the perspective of solitary waves, including the bifurcation
mechanism, stability and dynamics, as well as define the model’s applicability.

4. Solitary waves

4.1. Numerical method
Despite the dimension reduction compared with the full Euler equations, finding
theoretical solutions in the newly developed model is still overly complicated. To examine
the qualitative similarities between the cubic full-dispersion model and the full Euler
equations, and to assess the quantitative validity of the reduced model, we seek help from
numerical tools. The pseudo-spectral method is applied to numerically solve the nonlinear
dispersive equations (3.39)–(3.40), where the integrating factors technique is incorporated
to handle the stiffness problem. For convenience, we recast the system to a single evolution
equation. Numerical experiments are implemented on a double-periodic domain, where
the Fourier transform is applicable in spatial variables, and hence(

η̂

ξ̂

)
t
+
[

0 −Ĝ0
k2 − 1 + B 0

](
η̂

ξ̂

)
=
(N̂1
N̂2

)
, (4.1)

where the hat indicates the Fourier transform and k is the wavenumber in the Fourier space.
The nonlinear terms N1 and N2 read

N1 = 1
1 + η

(G1ξ + G2ξ) ,

N2 = − 1
2(1 + η)

[(G0ξ) (−G0ξ + 2ηξxx + ηG0ξ + 2G0ηG0ξ)] − 1
2
ξ2

x

+B
2

3η2 + 2η3

(1 + η)2
−
η2
(

1 + η2
x +√

1 + η2
x

)
− η2

x

(1 + η)
(

1 + η2
x +√

1 + η2
x

) −
[

η3
x

1 + η2
x +√

1 + η2
x

]
x

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.2)
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We then multiply (4.1) by a matrix to diagonalize the system:⎡⎢⎢⎢⎣
1

iĜ0

w

1 − iĜ0

w

⎤⎥⎥⎥⎦
(
η̂

ξ̂

)
t
+
[

iw 0
0 −iw

]⎡⎢⎢⎢⎣
1

iĜ0

w

1 − iĜ0

w

⎤⎥⎥⎥⎦
(
η̂

ξ̂

)
=

⎡⎢⎢⎢⎣
1

iĜ0

w

1 − iĜ0

w

⎤⎥⎥⎥⎦
(N̂1

N̂2

)
. (4.3)

Introducing notation p̂ = η̂ + (iĜ0/w)ξ̂ and q̂ = η̂ − (iĜ0/w)ξ̂ , we can rewrite the
system as

p̂t + iwp̂ = N̂1 + iĜ0

w
N̂2, (4.4)

q̂t − iwq̂ = N̂1 − iĜ0

w
N̂2. (4.5)

Using the fact that ξ and η are both real, these two equations are essentially equivalent,
and ξ and η can be recovered from p alone with

η̂(k) = 1
2

[
p̂(k)+ p̂(−k)∗

]
, (4.6)

ξ̂(k) = 1
2i

w

Ĝ0

[
p̂(k)− p̂(−k)∗

]
, (4.7)

where the asterisks represent complex conjugation. Thus, the problem is reduced to solving
(4.4), a single complex evolution equation. It is worth mentioning that ξ̂(0, t) requires
special treatment since the right-hand side of (4.7) becomes singular for k = 0. This
can be generally overcome by directly integrating the second equation of (4.1) for k = 0.
Nevertheless, upon noticing that on the right-hand sides of (3.39)–(3.40), ξ always appears
in the form of spatial derivatives or being acted on by the pseudo-differential operator G0,
ξ̂(0) has no substantial contribution to other Fourier coefficients and hence there is no
need to update at every time step.

To compute a travelling wave translating with a constant speed c, we set p̂t = −ickp̂
and solve the resulting nonlinear algebraic system for the Fourier coefficients using the
Newton–Raphson method. The initial guess for the Newton algorithm is obtained by
using the vanishing pressure method, which was first presented by Vanden-Broeck &
Dias (1992). Time integration of the system is accomplished with a classic fourth-order
Runge–Kutta method combined with an integrating factor. All the computations are
de-aliased with a doubling of Fourier modes, and no filters are used. For solitary waves of
wavepacket type, small-amplitude solutions often present significant challenges in terms
of accurate computation due to their slower spatial decay. Consequently, it is necessary
to gradually expand the computational domain as the amplitude becomes smaller (or
equivalently, the solutions are in the vicinity of the bifurcation point).

4.2. Bifurcation of solitary waves and model accuracy
The numerical investigation of axisymmetric solitary-wave solutions in the fully nonlinear
regime for arbitrary values of d was performed by Blyth & Părău (2014) for the
one-layer scenario and Doak & Vanden-Broeck (2019) for the two-layer counterpart
via using a finite difference method. They solved the full Euler equations using the
hodograph transformation that exchanges the dependent and independent variables. Based
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Dynamics of solitary waves on a ferrofluid jet

on the fact that the Stokes stream function ψ on the free surface and the rigid bottom
is constant for a solitary wave in the co-moving frame of reference, the hodograph
transformation transforms the computational domain into a rectangular stripe in the (φ, ψ)
plane. Then, the rewritten equations and boundary conditions for x(φ, ψ) and r(φ, ψ) can
be discretized over a rectangular grid and solved using the finite difference method. We
omit the complete description of the numerical scheme, and the interested readers are
referred to Blyth & Părău (2014) and Doak & Vanden-Broeck (2019) for more details.

In this subsection, we focus on justifying that the cubic full-dispersion model is in
excellent quantitative agreement with the full Euler equations across a range of physical
parameter scenarios. For both systems, solitary waves were computed by Newton’s
method in the appropriate ranges of B and d, and the bifurcation branches were found
by straightforward numerical continuation in a chosen parameter (speed or amplitude).
A solution was considered to have converged when the l∞-norm of the residual error was
less than 10−10. It should be pointed out that for the Euler equations, the computational
domain in the φ direction, originally unbounded, was truncated, and an extra condition
rφ = 0 was imposed at the endpoints to numerically approximate solitary waves ascribed
to their decaying nature in the far field. However, solitary waves in the cubic full-dispersion
model were approximated by long periodic waves with flat tails, and the period and mesh
point number were both chosen sufficiently large so that, to the numerical accuracy we
used, the solution did not change when they were further enlarged.

It is well known that monotonic elevation and depression solitary waves were identified
in the regimes of 1 < B < B1 and B1 < B < B2, respectively, both bifurcating from the
uniform stream at the global minimum of the phase speed (denoted by c0), which can be
understood from the KdV theory since these minima occur at k = 0. We should clarify that
only symmetric solitary waves are considered, and half of the solution is ‘monotonic’. We
set d = 5/11, which is the value of d used in the experiments of Bourdin et al. (2010),
so that B1 ≈ 1.28 and B2 ≈ 15.55. For demonstration purposes, two typical magnetic
Bond numbers, B = 1.25 and B = 1.75, were chosen so that the respective elevation and
depression solitary waves predicted by the associated KdV equation can be expected in the
model equations. Comparisons of the speed-amplitude bifurcation diagram of the cubic
full-dispersion model to those of the Euler equations and the theoretical predictions of
the KdV equation are plotted in figure 2. The quantitative agreement between the newly
proposed model and the full Euler equations is reasonably good, extending far beyond
the narrow validity range of the KdV region. Typical profiles shown in figure 3 illustrate
that the cubic full-dispersion model is remarkably accurate at relatively large amplitudes;
specifically, the relative difference in profiles between the Euler equations and the model
is approximately of order 10−4 on this scale.

A striking phenomenon found in ferrofluid jets is the existence of another type of
axisymmetric solitary waves of the opposite polarity in the Euler equations for a fixed
magnetic Bond number satisfying 1 < B < 2, as shown by Blyth & Părău (2014). The
weakly nonlinear theory cannot capture these new solutions since they do not bifurcate
from zero amplitude. For B = 1.25, in contrast to elevation solitary waves predicted by
the KdV equation, depression waves were also found in both the cubic full-dispersion
model and the Euler equations, and excellent agreement was obtained for the bifurcation
diagram (figure 2) and wave profile (figure 3a), confirming the effectiveness of the new
model. However, it should be noted that the cubic full-dispersion model is impractical to
capture the branch bifurcating from a considerably large finite amplitude. This limitation is
demonstrated by the model’s failure to converge to a solution at a magnetic Bond number
of B = 1.75. However, at this specific value, the numerical results from the full Euler
equations reveal that an elevation branch actually bifurcates from a finite amplitude of
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Figure 2. Speed-amplitude bifurcation curves of axisymmetric ferrofluid solitary waves obtained with d =
5/11 and two magnetic Bond numbers: B = 1.25 (on the left-hand side) and B = 1.75 (on the right-hand side),
emerging from bifurcation points c0 = 0.3149, 0.5455, respectively. The solutions were obtained with different
models: the full Euler equations (black dashed lines), the cubic full-dispersion model (blue solid lines) and
the KdV equation (red dash-dotted lines). The inset shows the bifurcation curve of the elevation branch for
B = 1.75 computed with the full Euler equations.
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Figure 3. (a) Typical wave profiles for B = 1.25 and S(0) = 0.6, 1.10, 1.50, 1.90. (b) Typical wave profiles
for the depression branch for B = 1.75 and S(0) = 0.7. Solutions were obtained with the cubic full-dispersion
model (blue solid lines), the full Euler equations (black dashed lines) and the KdV theory (red dash-dotted
line).

S(0) ≈ 2.98 at c = c0, as illustrated in the embedded diagram in figure 2. Taking this
limitation into account, we keep d = 5/11 unchanged while selecting a magnetic field
of B = 1.30 in the vicinity of the critical parameter B1. This choice is based on the
fact that, for a fixed d, the solution amplitude at the bifurcation point decreases as B
approaches B1. As shown in figure 4, the finite-amplitude elevation branch bifurcating
with S(0) ≈ 1.1 at c = c0 is identified by using the cubic full-dispersion model. As the
parameter B continues to increase – though not depicted in a figure – the divergence
between the speed-amplitude bifurcation curve of the finite-amplitude elevation branch
derived from the cubic model and that of the full Euler equations becomes increasingly
pronounced. This growing discrepancy ultimately leads to the failure of the cubic model
to converge to a solution.
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Figure 4. (a) Speed-amplitude bifurcation diagrams for B = 1.30 > B1 and d = 5/11 obtained with the cubic
full-dispersion model (blue solid line), the Euler equations (black dashed line) and the KdV theory (red
dash-dotted line). (b) Typical wave profiles for S(0) = 0.6, 1.6, 1.9, and the line styles are the same as in
panel (a).

Given that the nonlinear coefficient β in (3.9) is close to zero, achievable by selecting
B ≈ 3(1 + d3)/(2 + 4d2), and thus cannot balance the dispersion, a rescaling is invoked,
resulting in the modified KdV equation (3.19), which can be used to describe the small-
and moderate-amplitude solutions. The following four sets of parameters are chosen: d =
0.5, 0.4, 0.3, 0.2, and the associated magnetic Bond numbers B = 1.26, 1.33, 1.40, 1.48.
To highlight the superiority of the cubic full-dispersion model in the fully nonlinear
regime, solitary waves were also computed in the strongly nonlinear model (3.31)–(3.32)
and participated in comparison. As a locally confined travelling wave translating with
speed c, the system can be integrated once, yielding

− c
2

(
η2 + 2η

)
+ (1 + η)2 − d2

2
u = ε2

[
A(d)ux − (1 − d2)2

4
ηux + d4 + 2d2 − 3

8
η2ux

]
x

(4.8)

and

− cu + u2

2
− η

1 + η
+ B

2
η2 + 2η
(1 + η)2

= ε2
[
(1 − d2)2(η − 1)

8(1 + η)
u2

x − 1 − d2

2(1 + η)
ηu2

x + η2
x

2(1 + η)
+ ηxx

]
, (4.9)

which is then solved by the Newton iteration method. Depression solitary waves can
be found for all four parameter sets we tested, and the speed-amplitude curves from
four types of models are plotted in figure 5(a). The modified KdV equation offers
qualitative descriptions for the small- and moderate-amplitude solitary waves, and the
cubic full-dispersion model and the strongly nonlinear model show overall consistency
with the magnetized Euler equations. Typical profiles for depression waves with S(0) =
0.8 and S(0) = 0.6 are shown in figures 5(b) and 5(c) for d = 0.3 and B = 1.40. The
cubic full-dispersion model outperforms other reduced models when compared with
the full Euler equations, as the two wave profiles overlap significantly, making the
difference nearly indistinguishable. Additionally, the situation of α 
 1 is also examined.
In figure 6(a), we show the dispersion relations of the fifth-order KdV equation and the
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Figure 5. (a) From left to right, it shows the speed-amplitude bifurcation curves for d = 0.5, 0.4, 0.3, 0.2
(the corresponding values of B are 1.26, 1.33, 1.40 and 1.48) obtained with different models: the cubic
full-dispersion model (blue solid lines), the full Euler equations (downward-pointing black triangles), the
modified KdV equation (dash-dotted lines) and the strongly nonlinear model (red asterisks). (b) Comparison
of typical wave profiles for d = 0.3 and S(0) = 0.8: the cubic full-dispersion model (blue solid line), the Euler
equations (black dashed line), the modified KdV equation (black dash-dotted line) and the strongly nonlinear
model (red dotted line). (c) Comparison of typical wave profiles for d = 0.3 and S(0) = 0.6, and the line styles
are the same as in panel (b).
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Figure 6. (a) Comparison of the linear dispersion relation between the fifth-order KdV equation (red solid
line) and the Euler equations (black dashed line) for d = 0.3 and B = 10.2. (b) Speed-amplitude bifurcation
curves obtained from the fifth-order KdV equation (red solid line), the cubic full-dispersion model (blue solid
line) and the Euler equations (black dashed line). The inset shows the typical profiles for S(0) = 0.9, and the
line styles are the same as the bifurcation curves.

full Euler equations with d = 0.3 and B = 10.2. The solitary-wave solutions to (3.23)
were obtained through an extension of the Petviashvili method, as described by Guan
& Wang (2022), with the speed-amplitude bifurcation curves and typical profiles shown
in figure 6(b). As expected, the cubic full-dispersion model still performs excellently.
However, as is well known, unlike the modified KdV equation, the fifth-order KdV
equation is only valid in the small-amplitude limit considering the scale balance in the
asymptotic analysis.
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Dynamics of solitary waves on a ferrofluid jet

As B > B2(d), the linear dispersive relation of the full Euler equations has a global
minimum at a non-zero wavenumber, from which wavepacket solitary waves can bifurcate.
A typical example with d = 5/11 and B = 28, including the bifurcation diagrams and
typical profiles, is shown in figure 7. It is worth mentioning that the solutions within
this region are highly oscillatory and very broad near the bifurcation point, requiring
more grid points than monotonic solitary waves for B < B2(d) to resolve solutions
satisfactorily, for both the Euler equations and reduced models. To further validate the
rationality of the cubic truncation, we made a comparison between solutions found using
the different truncations mentioned in § 3.2 (quadratic, cubic, quartic and quintic) and
those of the full potential flow equations for depression wavepacket solitary waves.
As shown in figure 7 for the speed-amplitude bifurcation diagrams, it is clear that, over
an extensive range of wave speeds corresponding to a large range of amplitudes, the
cubic full-dispersion model exhibits better performance than the other truncated models,
confirming its accuracy. Regarding the bifurcation diagrams of the cubic model, we
found two branches of symmetric wavepacket solitary waves, elevation (with a positive
free-surface displacement at the centre) and depression (with a negative free-surface
displacement at the centre), tending to meet at the point S(0) = 1 and c = 3.021 (which
is precisely equal to the phase speed minimum). This numerical evidence confirms that
the two branches simultaneously bifurcate from the infinitesimal periodic waves at this
minimum point (denoted by cm hereafter). These wavepacket solitary waves are governed
at small amplitude by a nonlinear Schrödinger equation, recently derived by Groves &
Nilsson (2018) under the assumption of d = 0. As for the small deviation in bifurcation
curves between the cubic full-dispersion model and the Euler equations, in addition to
the truncation error of the DNO, it is also attributed to the under-resolved potential flow
results. This is especially noticeable near the bifurcation point cm, where the waves are
of small amplitude, highly oscillatory and spatially extended. There is a numerical clue
that increasing the number of grid points in the ψ-direction from 50 to 150 makes the
solution branch of the Euler equations closer to that of the cubic full-dispersion model.
However, the calculation of the Euler equations is actually two-dimensional, and thus
limited by computational power, so further increasing the number of grid points becomes
challenging.

In this part, all numerical evidence on solitary waves basically justifies the assertion
that the cubic full-dispersion model is an appropriate reduced model to approximate the
primitive Euler equations. Since the unsteady simulation of the full Euler equations is
still challenging, in what follows, we use (3.39)–(3.40) as the time-dependent model to
conduct a series of numerical experiments on wave dynamics, including the stability of
solitary waves and collisions between two stable ones.

5. Stability and dynamics of solitary waves

5.1. Stability of solitary waves – theory
In this subsection, using the cubic full-dispersion model, we aim to establish a criterion
for the stability exchange of axisymmetric solitary waves when subjected to longitudinal
perturbations. To achieve this, we employ the asymptotic expansion method near the
neutral mode, following a similar approach to that of Kataoka (2006).

To start, we introduce a steady solution to the model (3.39)–(3.40) in the frame of
reference moving with a constant speed c along the longitudinal direction x, which we
denote as η̄(x − ct) and ξ̄(x − ct). We refer to (η̄, ξ̄ ) as a solitary-wave solution. The
existence of this solution has been confirmed through numerical computations for various
sets of parameters d and B, as demonstrated in § 4.2. Thus, η̄ and ξ̄ satisfy the following
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Figure 7. A comparison of speed-amplitude bifurcation diagram between the full Euler equations (black
dashed line) and various truncation models: the quadratic model (yellow solid line), the cubic full-dispersion
model (blue solid lines), the quartic model (green solid line) and the quintic model (red solid line). The branches
of elevation and depression wavepacket solitary waves were computed with d = 5/11 and B = 28, emerging
from the bifurcation point cm = 3.021.

equations:

−cη̄x =
[

G0ξ̄ − ∂xη̄∂xξ̄ − G0(η̄G0ξ̄ )+ 1
2

G0(η̄
2ξ̄xx)+ 1

2
∂xx(η̄

2G0ξ̄ )

+ 1
2

G0(η̄
2G0ξ̄ )+ G0(η̄G0η̄G0ξ̄ )− 1

2
∂x(η̄

2ξ̄x)

]
1

1 + η̄
, (5.1)

−cξ̄x = − 1
2(1 + η̄)

[
(G0ξ̄ )

(−G0ξ̄ + 2η̄ξ̄xx + η̄G0ξ̄ + 2G0η̄G0ξ̄
)]− 1

2
ξ̄2

x

+ B
2

[
1

(1 + η̄)2
− 1

]
−
[

1
(1 + η̄)(1 + η̄2

x)
− η̄xx(

1 + η̄2
x
)3/2 − 1

]
. (5.2)

Consider perturbations of the form

η = η̄ + η̂eλt, ξ = ξ̄ + ξ̂eλt, (5.3a,b)

where the magnitudes of η̂ and ξ̂ are much smaller than the undisturbed solitary-wave
solution, and λ is an eigenvalue. Substituting (5.3a,b) into (3.39)–(3.40) and linearizing
around the fundamental state (η̄, ξ̄ ), we obtain the following set of linear equations:

−λη̂ = L1

[
η̂, ξ̂

]
= L11[η̂] + L12[ξ̂ ] ,

−λξ̂ = L2

[
η̂, ξ̂

]
= L21[η̂] + L22[ξ̂ ] ,

⎫⎪⎬⎪⎭ (5.4)

1002 A23-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
96

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1196


Dynamics of solitary waves on a ferrofluid jet

where the linearized operators are defined as follows:

L11[η̂] = −cη̂ + η̂

(1 + η̄)2

[
G0ξ − G0η̄G0ξ̄ − ∂xη̄∂xξ̄ + 1

2
G0

(
η̄2ξ̄xx

)
+ 1

2
∂xx

(
η̄2G0ξ̄

)
+ 1

2
G0η̄

2G0ξ̄ + G0η̄G0η̄G0ξ̄ − 1
2
∂x(η̄

2ξ̄x)

]
+ 1

1 + η̄

[
G0η̂G0ξ̄ + ∂x(η̄η̂ξ̄x)− G0(η̄η̂ξ̄xx)− ∂xx(η̄η̂G0ξ̄ )

− G0(η̄η̂G0ξ̄ )− G0η̂G0η̄G0ξ̄ − G0η̄G0η̂G0ξ̄ + ∂xη̂∂xξ̄
]
, (5.5)

L12[ξ̂ ] = 1
1 + η̄

[
−G0ξ̂ + G0η̄G0ξ̂ + ∂xη̄∂xξ̂ − 1

2
G0(η̄

2ξ̂xx)

− 1
2
∂xx(η̄

2G0ξ̂ )− 1
2

G0(η̄
2G0ξ̂ )− G0η̄G0η̄G0ξ̂ + 1

2
∂x(η̄

2ξ̂x)

]
, (5.6)

L21[η̂] = η̂

(1 + η̄)2

[
1
2
(G0ξ̄ )

2(1 − η̄)− (G0ξ̄ )(η̄ξ̄xx + G0η̄G0ξ̄ )

]
+ 1

1 + η̄

[
(G0ξ̄ )

(
η̂ξ̄xx + 1

2
η̂G0ξ̄ + G0η̂G0ξ̄

)]
+ B0

η̂

(1 + η̄)3

−
[

η̂

(1 + η̄)2(1 + η̄2
x)

1/2 + η̄xη̂x

(1 + η̄)(1 + η̄2
x)

3/2

]
−
[

η̂x

(1 + η̄2
x)

3/2

]
x
, (5.7)

L22[ξ̂ ] = −cξ̂x + 1
1 + η̄

[
(G0ξ̂ )

(−G0ξ̄ + η̄ξ̄xx + η̄G0ξ̄ + G0η̄G0ξ̄
)]+ ξ̄xξ̂x

+ 1
1 + η̄

[
(G0ξ̄ )

(
η̄ξ̂xx + G0η̄G0ξ̂

)]
. (5.8)

Under the assumption of |λ| 
 1, we seek the solution (η̂, ξ̂ ) in the following power series
of λ:

η̂ = η̂(0) + λη̂(1) + λ2η̂(2) + · · · , ξ̂ = ξ̂ (0) + λξ̂ (1) + λ2ξ̂ (2) + · · · . (5.9a,b)

Substituting the series (5.9a,b) into (5.4) and collecting powers of λ, we obtain a series of
linear problems with the eigenvalue removed for (η̂(n), ξ̂ (n)):

L1

[
η̂(n), ξ̂ (n)

]
= K(n), L2

[
η̂(n), ξ̂ (n)

]
= H(n), (5.10a,b)

where K(n) and H(n) are the inhomogeneous terms given by

K(n) =
{

0, n = 0,
−η̂(n−1), n = 1, 2, . . . , (5.11)

H(n) =
{

0, n = 0,
−ξ̂ (n−1), n = 1, 2, . . . .

(5.12)

The leading-order equation in this context corresponds to the original linear problem
associated with the zero eigenvalue. The solution to this equation is determined to be(

η̂(0), ξ̂ (0)
)

= (
η̄x, ξ̄x

)
. (5.13)
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At O(λ), the first-order perturbation solutions satisfy

L1

[
η̂(1), ξ̂ (1)

]
= −η̂(0), L2

[
η̂(1), ξ̂ (1)

]
= −ξ̂ (0). (5.14a,b)

System (5.14a,b) has a particular solution of (η̂(1), ξ̂ (1)) = (−η̄c,−ξ̄c), which can be
verified by taking derivatives of (5.1)–(5.2) with respect to c. At O(λ2), the first-order
correction forces the equations for (η̂(2), ξ̂ (2)) as

L1

[
η̂(2), ξ̂ (2)

]
= −η̂(1), L2

[
η̂(2), ξ̂ (2)

]
= −ξ̂ (1). (5.15a,b)

In terms of the Fredholm alternative, a solvability condition for (5.15a,b) is that the vector
(η̄c, ξ̄c), composed of the forcing terms, is orthogonal to the solutions of the homogeneous
adjoint problem. The adjoint problem is given by

L+
1 [ f , g] = 0, L+

2 [ f , g] = 0, (5.16a,b)

where

L+
1 [ f , g] = L21[g] − L22[ f ], L+

2 [ f , g] = L12[g] − L11[ f ], (5.17a,b)

formally akin to the inverse of the linear operators L1 and L2. This adjoint problem is
solved by

f = −ξ̄x, g = η̄x. (5.18a,b)

Thus, the corresponding solvability condition reads∫ +∞

−∞
(1 + η̄)

(
η̄cξ̄x − ξ̄xη̄c

)
dx = 1

c
dH
dc

= 0. (5.19)

A necessary condition for the translational eigenmode to switch between stable and
unstable states is that the wave energy, as a function of wave speed, has an extremum.
This coincides with the necessary condition for the stability exchange of periodic water
waves subjected to superharmonic perturbations (see, e.g. Tanaka 1983; Saffman 1985;
Tanaka 1986; Zufiria & Saffman 1986; Kataoka 2006). The detailed proof of (5.19) is
provided in Appendix B.

5.2. Stability of solitary waves – numerics
In this subsection, we examine numerically the superharmonic instability of locally
confined travelling waves computed in § 4.2. This is achieved by integrating numerically
the single evolution equation (4.4) with slightly perturbed solitary waves as the initial
condition. Unlike periodic waves, whose stability properties are in some cases primarily
affected by subharmonic perturbation, such as the Benjamin–Feir instability in water
waves, it is sufficient to check superharmonic instability for solitary waves since the real
axis can adapt to arbitrary harmonic perturbations. However, according to the necessary
condition for the stability exchange subjected to superharmonic perturbations proved
in § 5.1, the stability characteristics of solitary waves on a monotonic segment of the
speed-energy bifurcation diagram should be the same. Therefore, it suffices to check the
stability property of one typical wave between two successive stationary points on the
speed-energy curve. In the subsequent numerical experiments, the mesh spacing and time
step are typically chosen as dx = 0.05 and dt = 5 × 10−4 in most computations, and a
frame of reference moving with the speed of the unperturbed solitary wave is adopted for
convenience.
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Dynamics of solitary waves on a ferrofluid jet

We begin by considering the solution branches of monotonic solitary waves bifurcating
from zero amplitude. As shown in figure 8, each speed-energy bifurcation curve computed
with the fully nonlinear Euler equations (black dashed line) features a stationary point
marked with an asterisk where the energy reaches its maximum. Specifically, the elevation
branch for B = 1.25 achieves maximum energy of H∗ = 0.4138 at c∗ = 0.1766, while
the depression branch for B = 1.75 peaks at H∗ = 0.2861 and c∗ = 0.3158. However,
for the depression branch shown in figure 8(b), the speed-energy curve of the cubic
full-dispersion model becomes significantly more deviated from the counterparts obtained
from the Euler equations upon c being less than (approximate) 0.3961, a threshold marked
by the red circle, and ultimately fails to capture the stationary point. We speculate that
the discrepancy arises from the intense nonlinearity of solutions as they approach the
bottom boundary r = d. In the spirit of Saffman’s theory, we first verify numerically the
stability of solitary waves for the elevation branch illustrated in figure 8(a). For the region
c ≤ 0.1766, where solitary waves have a relatively large amplitude, an examination was
carried out to observe the free propagation of a single hump travelling-wave solution with
c = 0.1364 and S(0) = 1.90 in the presence of a 1 % amplitude-decreasing perturbation
at t = 0. The snapshots of the time evolution of the perturbed wave are shown in
figure 9. The numerical solution was observed to undergo a noticeable transition to a
smaller amplitude solitary wave as time evolves. The other elevation waves were also
tested within the region, yielding a similar phenomenon. Based on these numerical
experiments, we can conclude that monotonic elevation solitary waves falling within the
range 0 < c � 0.1766 are unstable according to the generalized Saffman theory. Within
the region 0.1766 < c < c0, superharmonic perturbations with magnitudes ranging from
1 % to 5 % amplitude decrease of initial waves showed no instability. Figure 10(a) displays
the time-evolution snapshots of a solitary wave subjected to a 2 % amplitude-decreasing
perturbation. Apart from translation in the x-direction, the wave structure and amplitude
remain barely unchanged from the initial wave, and the maximum difference between
the two profiles is within the order of O(10−3) throughout the time-evolution process.
Finally, we can draw a conclusion for the elevation branch that the exchange stability
does occur at the stationary point. Examining the stability property of the depression
branch is analogous and straightforward, but the range c < 0.3961 is excluded due to the
limitation of the cubic full-dispersion model. Based on a series of numerical experiments,
it has been verified numerically that solitary waves in the region 0.3961 < c < 0.546
are stable. One illustrative example of the time-evolution snapshots, subjected to a 3 %
amplitude-decreasing perturbation, is presented in figure 10(b).

Moreover, we carried out numerical stability tests for monotonic solitary waves
bifurcating from finite amplitudes. In figures 11(a) and 11(b), we also observed stationary
points in the speed-energy bifurcation curves obtained with the full Euler equations. The
cubic full-dispersion model behaves better for the elevation branch than the depression
branch since, in the former situation, the model captures the stationary point, but it fails
in the latter case. The numerical experiments show that the elevation branch computed
with the cubic model also experiences an exchange of stability near the stationary point
where the maximum energy is H∗ = 0.7735 at c∗ = 0.1948, as shown in figure 11(a).
The time-evolution dynamical behaviours of these waves closely resemble those of their
counterparts bifurcating from zero amplitude and thus will not be presented again here.

Subsequently, we move on to the stability characteristics associated with wavepacket
solitary waves, whose speed-energy curves are monotonic, as shown in figure 11(c). All
the computational evidence suggests that the whole elevation branch is unstable and the
depression one is stable. Two illustrative examples are shown in figures 10(c) and 12.
The time-evolution snapshots of a stable depression solitary wave with c = 2.603 and an
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Figure 8. Speed-energy bifurcation curves with fixed d = 5/11 and varying B: (a) the elevation branch
with B = 1.25 and (b) the depression branch with B = 1.75. The solution branches computed with the full
Euler equations and the cubic full-dispersion model are shown with black dashed lines and blue solid lines,
respectively. The two insets demonstrate the stationary points obtained in the full Euler equations.
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Figure 9. Time evolution of a perturbed elevation wave with c = 0.1364 < c∗ = 0.1766. The snapshots (blue
solid lines) represent local wave profiles at t = 0, 400, 800, 1200, 1600 and 2000, and the t − S curve (black
dash-dotted line) shows the maximum amplitude variations over time.

initial 2 % amplitude-decreasing perturbation are presented in figure 10(c). Obviously, the
snapshot observed at t = 5000 exhibits a striking similarity to the initial profile, resulting
in a difference that is nearly indistinguishable. However, as shown in figure 12, an exact
elevation wave evolves rapidly into two depression waves of distinct amplitudes as time
goes on due to numerical errors. As demonstrated in figure 12, for the long-time dynamics,
the depression wave with the smaller amplitude travels rightward more quickly than the
larger one, so an overtaking collision occurs.

5.3. Dynamics of solitary waves
In this subsection, we supplement the stability analysis by investigating the interaction
between two stable solitary waves. In all the collision experiments, the initial data were
constructed by properly shifting the existing travelling waves so as to minimize their
overlap and then adding them together. The direction of wave propagation (left or right)
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Figure 10. Time evolution of perturbed solitary waves with fixed d = 5/11 and varying B. (a) Snapshots of
an elevation wave with B = 1.25 and c = 0.2489 > c∗ = 0.1766, subjected to the 2 % amplitude-decreasing
perturbation. (b) Snapshots of a depression wave with B = 1.75 and c = 0.4077, subjected to the 3 %
amplitude-decreasing perturbation. (c) Snapshots of a wavepacket depression wave with B = 28 and c =
2.603, subjected to the 2 % amplitude-decreasing perturbation. The perturbed initial profiles are plotted with
dash-dotted lines, and the terminal profiles at t = 3000, 4000 and 5000 are shown with solid lines from top
to bottom, respectively. In each panel, the maximum difference between the two profiles is within the order of
O(10−3).
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Figure 11. Speed-energy curves computed with fixed d = 5/11 and varying B: (a) elevation branch with
B = 1.3; (b) depression branch with B = 1.25 and (c) wavepacket branches with B = 28. Both branches
presented in panels (a) and (b) bifurcate from finite amplitudes. The solution branches computed with the
full Euler equations and the cubic full-dispersion model are shown with black dashed lines and blue solid lines,
respectively.

can be set initially by simply altering the sign of the velocity potential ξ . To quantify the
degree of the inelastic interactions, two fundamental quantities can be recorded: the energy
loss and the amplitude variation of solitary waves, with the former measured by the ratio
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Figure 12. Time evolution of a wavepacket elevation wave for c = 2.68, d = 5/11 and B = 28. The snapshots
of wave profiles are shown at t = 0, 30, 60, 90 and 120 from top to bottom.

of the residual energy HR to the total energy HT , as discussed by Craig et al. (2006).
Following Craig et al. (2006), the residual is calculated by matching the well-separated
solitary waves after collision with computed travelling-wave solutions and subtracting
them from the time-dependent solution. Note that time-evolution simulations presented
here extend those reported by Guyenne & Părău (2016) to include more types of colliding
solitary waves.

The first set of computational experiments are head-on collisions. Figures 13 and 14
present several illustrative scenarios in which both colliding waves bifurcate from zero
amplitude. These numerical results indicate that both waves persist after the collision,
and the noticeable residual waves, induced by the interaction and occurring ahead of the
two separating pulses, suggest the inelasticity of the collision. Furthermore, we investigate
the head-on collision between stable elevation and depression waves, one on the branch
bifurcating from zero amplitude and the other on the branch bifurcating from finite
amplitude. As shown in figure 15, two numerical experiments, B = 1.25 and B = 1.3,
were conducted. For B = 1.25, figure 15(a) shows an illustrative example of head-on
interaction for the speeds of c = 0.2698 (a right-going wave on the branch bifurcating
from zero amplitude) and c = 0.3076 (a left-going wave on the branch bifurcating from
finite amplitude) at t = 0. The amplitudes of solitary waves before (after) the collision
are 0.4 and −0.2 (0.3989 and −0.1622 at t = 350). At t = 350, the total energy was
calculated to be HT = 0.4147 and the energy of residual waves to be HR = 0.0198,
giving rise to HT/HR ≈ 4.77 %. Figure 15(b) depicts an alternative dynamic evolution
scenario at the magnetic Bond number B = 1.30, wherein the bifurcation role of the two
solution branches is reversed compared with the former experiment. The time-evolution
snapshots of the head-on interaction for the speeds of c = 0.3269 (travelling rightwards)
and c = 0.3376 (travelling leftwards) at t = 0 are presented. The amplitudes of the two
solitary waves before (after) the collision are 0.3 and −0.15 (0.2968 and −0.1341 at
t = 350). At t = 350, the total energy was calculated to be HT = 0.4038, and the energy
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Figure 13. (a) Asymmetric head-on collision between two monotonic depression solitary waves with the initial
speeds c = 0.4935 (travelling rightwards) and c = 0.3625 (travelling leftwards), respectively, for d = 5/11 and
B = 1.75. (b) Snapshots of wave profiles at t = 90, 117 and 140 from top to bottom are presented, and the dotted
line in the middle panel denotes the rigid boundary.

3

2

 1

0

–10 –5 0 5 10

3

2

 1

0

x
–10 –5 0 5 10

x

t

(a) (b)

Figure 14. Head-on collisions between wavepacket depression solitary waves for B = 28 and d = 5/11.
(a) Snapshots of collision between depression waves of different amplitudes, S(0) = 0.9 (c = 2.758) and
S(0) = 0.85 (c = 2.5638), propagating in opposite directions, at t = 0, 1, 2 and 3 from top to bottom.
(b) Snapshots of collision between depression waves of identical amplitude, S(0) = 0.85 (c = 2.5638),
propagating in opposite directions, at t = 0, 1, 2 and 3 from top to bottom.

of residual waves to be HR = 0.0139, leading to HT/HR ≈ 3.44 %. It can be observed that
the two depression waves undergo an apparent decrease in amplitude after the interaction.

The second set of computational experiments is overtaking collisions where two waves
propagate in the same direction, with a larger and slower wave positioned in front of a
faster and smaller wave. Several illustrative cases are shown in figures 16–18. In contrast
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Figure 15. Head-on collisions between monotonic solitary waves of opposite polarities for (a) B = 1.25 and
(b) B = 1.30, together with d = 5/11. (a) Snapshots of collision between an elevation wave on the branch
bifurcating from zero amplitude (S(0) = 1.40 and c = 0.2698) and a depression wave on the branch bifurcating
from finite amplitude (S(0) = 0.8 and c = 0.3076), at t = 0, 100, 150, 200 and 350 from top to bottom.
(b) Snapshots of collision between an elevation wave (right-going wave on the branch bifurcating from finite
amplitude with S(0) = 1.30 and c = 0.3269) and a depression wave (left-going wave on the branch bifurcating
from zero amplitude with S(0) = 0.85 and c = 0.3376), at t = 0, 100, 150, 200 and 350 from top to bottom.

with the head-on collision, the inelasticity of the overtaking interaction is relatively weak
and produces residual waves that are small, even barely noticeable in some instances.
A feature of these interactions observed is that after the collision, the larger solitary wave is
of slightly larger amplitude than its initial counterpart, which has already been reported in
the water-wave problem (Craig et al. 2006). As shown in figure 18(a), the amplitudes of the
two waves change from 0.4 and −0.2 (before the interaction) to 0.4004 and −0.1961 (after
the interaction), and a non-zero energy transfer from the incident waves to the residual
results in the ratio of the residual to the total energy HR/HT being approximately 0.41 %
at t = 3500.

6. Conclusions

In this paper, nonlinear waves propagating on the surface of an axisymmetric ferrofluid
jet under an azimuthal magnetic field have been investigated from asymptotic and
numerical perspectives. The problem has been proved to be a Hamiltonian system, and a
new definition has been introduced for the crucial pseudo-differential operator involved
(i.e. the Dirichlet–Neumann operator in the axisymmetric geometry). Subsequently,
multi-scale models with weak or strong nonlinearity in various asymptotic limits have
been derived systematically based on the Hamiltonian structure and the expansions of the
Dirichlet–Neumann operator. Through a comparison with the full Euler equations and
other reduced models (the KdV equation, the fifth-order KdV equation, the modified
KdV equation and the strongly nonlinear long-wave model), such as wave profiles
and bifurcation diagrams, the cubic full-dispersion model can be considered as the
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Figure 16. Overtaking collision between monotonic depression solitary waves for d = 5/11 and B =
1.75. Two initial waves are characterized by S(0) = 0.8, c = 0.4935 and S(0) = 0.50, c = 0.2405.
(a) Time-dependent solution in the x–t plane. (b) Snapshots at t = 50, 95 and 150 from top to bottom.
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Figure 17. Overtaking collision between wavepacket depression solitary waves for d = 5/11 and B = 28. Two
initial waves are characterized by S(0) = 0.9, c = 2.758 and S(0) = 0.85, c = 2.5638. The snapshots at t = 0,
20, 24, 26, 30 and 40 are shown in a frame of reference moving with speed c = 2.5638.

quantitatively accurate and optimally efficient reduced model to accommodate both
monotonic and wavepacket solitary waves found previously in the ferrofluid jet problem.

The stability and dynamics of solitary-wave solutions have also been explored
theoretically and numerically based on the cubic full-dispersion model. First, the
stability characteristics of solitary waves subjected to longitudinal superharmonic
perturbations have been discussed analytically through an asymptotic procedure, which
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Figure 18. Overtaking collision between monotonic solitary waves of different polarities for (a) B = 1.25 and
(b) B = 1.3, together with d = 5/11. (a) Snapshots of collision between a depression wave on the branch
bifurcating from finite amplitude (S(0) = 0.8, c = 0.3076) and an elevation wave on the branch bifurcating
from zero amplitude (S(0) = 1.40, c = 0.2698), at t = 0, 1500, 2000, 2500 and 3500 from top to bottom.
(b) Snapshots of collision between a depression wave on the branch bifurcating from zero amplitude
(S(0) = 0.9, c = 0.3426) and an elevation wave on the branch bifurcating from finite amplitude (S(0) = 1.50,
c = 0.3018), at t = 0, 1000, 2000, 3000 and 4000 from top to bottom. The snapshots in panels (a) and (b) are
shown in the respective frames of reference moving with speeds c = 0.2698 and c = 0.3018.

broadens the scope of Saffman’s theory valid for axisymmetric solitary waves.
Subsequently, a time-dependent numerical scheme has been implemented using the
accurate pseudo-spectral method coupled with a fourth-order Runge–Kutta scheme to
simulate the long-time propagation and pairwise collisions of solitary waves. All the
numerical experiments we tested reveal that the monotonic elevation waves on a branch
bifurcating from zero amplitude (or finite amplitude) experience stability exchange near
the stationary point on the speed-energy curve (denoted by c∗). When c > c∗, the elevation
waves remain stable, but for c < c∗, they become unstable and undergo a transition to
different amplitudes during the long-time propagation. Monotonic solitary waves on the
depression branch appear stable as they are in the region of c > c∗. However, when c < c∗,
the cubic full-dispersion model fails to depict the phenomenon of stability exchange
due to the complicated nonlinearity while approaching the rigid bottom. Concurrently,
wavepacket depression waves have been observed to exhibit stability, while wavepacket
elevation waves have displayed instability and evolved into two wavepacket depression
waves. Finally, in all numerical experiments that we have considered, head-on and
overtaking collisions are both inelastic, generating residual waves ahead of the separating
pulses.

Our primary results from the cubic full-dispersion model motivate further investigations
with the full Euler equations. First, it would be interesting to employ an asymptotic analysis
for small eigenvalues and explicitly give their growth rates near the critical point where
an exchange of stability occurs. Second, in terms of the limitation of the cubic model,
it is also necessary to develop a new time-dependent numerical strategy for the Euler
equations to thoroughly investigate the time-evolution characteristics of solitary waves,
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especially involving highly nonlinear wave motions, such as the stability and dynamics
of overhanging waves. Finally, the bifurcation mechanism for monotonic solitary waves
of ferrofluid jets is extraordinary, which cannot always be captured by the cubic model
(especially when the magnetic Bond number is considerably large). This bifurcation
mechanism merits a thorough study, and proposing a suitable reduced model is particularly
interesting.
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Appendix A. Choice of canonical variables

To clarify the reasoning behind our choice of canonical variables for the Hamiltonian
structure, we take the variation of the total energy with respect to ξ and η, resulting in

δH
δξ

= r (φr − ηxφx) |r=1+η = (1 + η)ηt, (A1)

δH
δη

=
( r

2
|∇φ|2 − rφrηt

)∣∣∣
r=1+η

+ F(η) = −ξt, (A2)

where

F(η) = 1
(1 + η)(1 + η2

x)
1/2 − ηxx

(1 + η2
x)

1/2 − 1 − B
2

(
1

1 + η
− 1

)
. (A3)

Equations (A1) and (A2) are equivalent to the non-canonical Hamiltonian system(
ηt
ξt

)
= 1

1 + η

(
0 1

−1 0

)(
δηH
δξH

)
. (A4)

Finally, (A4) can be transformed into the canonical Hamiltonian system (2.24a,b) by using
the change of variable ζ = 1

2(1 + η)2.

Appendix B. Proof of (5.19)

To prove (5.19), we suppose that the total mechanical energy of the cubic full-dispersion
model is

H = ẼK + EP, (B1)

where the potential energy EP is composed of the surface tension energy and the magnetic
energy, being the same as that of the full Euler system, but the kinetic energy ẼK is a
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reduced version, which is defined through a series truncation of the DNO expansion:

ẼK = 1
2

∫
ξ̄ [G0 + G1(η̄)+ G2(η̄)] ξ̄ dx. (B2)

Substituting a solitary-wave solution into ẼK and differentiating it with respect to the
translating speed c, one obtains

∂ẼK
∂c

= 1
2

∫
ξ̄c(G0 + G1 + G2)ξ̄ dx + 1

2

∫
ξ̄
[
(G0 + G1 + G2)ξ̄

]
c dx. (B3)

It follows from the kinematic boundary condition (5.1) at r = 1 + η̄ that

(G0 + G1 + G2)ξ̄ = −c(1 + η̄)η̄x , (B4)

and thus, one obtains

1
2

∫
ξ̄c(G0 + G1 + G2)ξ̄ dx = − c

2

∫
(1 + η̄)η̄xξ̄c dx. (B5)

Substituting the expressions of G0, G1 and G2 into the second part of the right-hand side
of (B3) and using the self-adjointness property of the DNO, we can recast the second part
as ∫

(1 + η̄)η̄c

[
1

2(1 + η̄)
(G0ξ̄ )(−G0ξ̄ + 2η̄ξ̄xx + η̄G0ξ̄ + 2G0η̄G0ξ̄ )

]
dx

+ 1
2

∫
ξ̄c

[
G0ξ̄ − ∂xη̄∂xξ̄ − G0η̄G0ξ̄ + 1

2
G0(η̄

2ξ̄xx)+ 1
2
(η̄2G0ξ̄ )xx

+1
2

G0η̄
2G0ξ̄ + G0η̄G0η̄G0ξ̄ − 1

2
∂x(η̄

2ξ̄x)

]
dx. (B6)

Differentiating EP with respect to c yields

∂EP

∂c
= B

2

∫ [
1 − 1

(1 + η̄)2

]
(1 + η̄)η̄c dx

+
∫ [

1

(1 + η̄)
√

1 + η̄2
x

− η̄xx

(1 + η̄2
x)

3/2 − 1

]
(1 + η̄)η̄c dx. (B7)

Finally, inserting (B5), (B6) and (B7) into

∂H
∂c

= ∂EK

∂c
+ ∂EP

∂c
(B8)

yields

1
c
∂H
∂c

=
∫
(1 + η̄)

(
ξ̄xη̄c − η̄xξ̄c

)
dx, (B9)

where the conditions (5.1) and (5.2) have been used.
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