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Summary

Genome-wide association studies (GWAS) can detect common variants associated with diseases. Next gener-
ation sequencing technology has made it possible to detect rare variants. Most of association tests, including
burden tests and nonburden tests, mainly target rare variants by upweighting rare variant effects and down-
weighting common variant effects. But there is increasing evidence that complex diseases are caused by both
common and rare variants. In this paper, we extend the ADA method (adaptive combination of P-values; Lin
et al., 2014) for rare variants only and propose a RC-ADA method (common and rare variants by adaptive
combination of P-values). Our proposed method combines the per-site P-values with the weights based on
minor allele frequencies (MAFs). The RC-ADA is robust to directions of effects of causal variants and inclu-
sion of a high proportion of neutral variants. The performance of the RC-ADA method is compared with
several other association methods. Extensive simulation studies show that the RC-ADA method is more
powerful than other association methods over a wide range of models.

1. Introduction

Over the past several years, GWAS have successfully
identified thousands of common genetic variants asso-
ciated with complex traits and common diseases
(Visscher et al., 2012; Welter et al., 2014). However,
many common variants identified explain only a small
proportion of heritability (Maher, 2008; McCarthy
et al., 2008; Bansal et al., 2010). It has been hypothesized
that some of the heritabilitymaybe explained byuniden-
tified rare variants (Pritchard, 2001; Pritchard & Cox,
2002; Manolio et al., 2009). Next generation sequencing
technology is being conducted to identify rare variants
associated with complex traits. Since frequencies of
rarevariantsarevery low, itwillbedifficult todetect single
rare variants. Hence, many existing methods for single
commonvariantswouldnotwork and are underpowered
for single rare variants. Recently, to increase the powerof
rare variants association tests, many statistical methods
have been proposed. These methods can be classified
into burden tests and nonburden tests.

Burden tests collapse the multiple rare variants
within a given region into a single variable, then test

the association between the single variable and the
trait of interest. For example, the cohort allelic sums
test (Morgenthaler & Thilly, 2007), the combined
multivariate and collapsing method (CMC; Li &
Leal, 2008), the weighted sum statistic (Madsen &
Browning, 2009), the variable minor allele frequency
threshold method (Price et al., 2010) and so on. The
same strategy is used in many methods (Feng et al.,
2011; Lin & Tang, 2011; Sha et al., 2011; Fang
et al., 2012; Sha et al., 2013). These burden tests are
more powerful when all rare variants within a region
influence the phenotype in the same direction (Basu
& Pan, 2011). Nonburden tests, such as the C-alpha
(Neale et al., 2011), the optimally weighted combination
of variants (Sha et al., 2012), and the sequence kernel
association test (SKAT; Wu et al., 2011), are based on
the kernel machine regression method and are robust
to the different directions of effects of variants.

There are several limitations for the above rare
variant association methods. First, these association
tests mainly target rare variants by putting large
weights on rare variants and small weights on
common variants. When common variants are also
associated with the trait, these association methods
can lead to loss of power. In fact, the relative contribu-
tion of common and rare variants is unknown for
many complex traits. Recent studies show that some
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complex diseases are caused by both common and
rare variants (Walsh & King, 2007, Bodmer &
Bonilla, 2008, Stratton & Rahman, 2008, Ng et al.,
2009, Teer & Mullikin, 2010). So it is reasonable to as-
sume that rare and common variants commonly influ-
ence the complex traits. Sha et al. (2012) analytically
derived optimal weights under a certain criterion
and proposed a variable weight test for testing the ef-
fect of an optimally weighted combination of variants
(VW-TOW). The VW-TOW aimed to test the effects
of both rare and common variants. Second, these
association tests suffer from power loss with the inclu-
sion of a large proportion of neutral variants. To
guard against the noise caused by the inclusion of
neutral variants, Lin et al. (2014) proposed an ADA
method that adaptively combines per-site P-values
with the weights based on MAFs. Before combining
P-values, they imposed a truncation threshold upon
the per-site P-values. However, their association
method only targeted rare variants.

In this paper, we extend the ADA method and pro-
pose a RC-ADA method that detects both rare and
common variants in a given region by adaptive com-
bination of P-values. For the given region, each com-
mon variant or each rare variant is separately tested,
to obtain per-site P-values. We use a suited weight
scheme for rare and common variants when per-site
P-values are combined. To guard against the noise
caused by neutral variants, variants with P-values lar-
ger than a threshold will be truncated. We don’t fix a
P-value truncation threshold, on the contrary, we
allow multiple candidate truncation thresholds (0.10,
0.11, 0.12, · · · , 0.20) to choose the optimal threshold
for any given data set. Our proposed method is applic-
able to binary traits, and is robust to the directions of
effects of causal variants and the inclusion of a large
proportion of neutral variants. Extensive simulation
studies are used to compare the performance of the
proposed method with that of other existing methods.
Simulation results show that the RC-ADA is more
powerful across a wide of range of scenarios.

2. Materials and methods

We consider a binary trait. Assume n individuals are
sequenced in a genomic region (e.g. a candidate
gene) with m variant sites. Denote Yi as the trait
value of the ith individual (1 for case and 0 for con-
trol) and denote Gi = (Gi1, Gi2, · · · , Gim)

T as genotypic
score of the ith individual, where Gik∈ {0, 1, 2} is the
number of minor alleles the ith individual has at the
kth variant. Our analysis goal is to detect whether
there is any association between the trait and the gen-
omic region (a group of rare and common variants).
We firstly test the association between the trait and
each variant in the region. We divide variants into

rare variants (MAF< the rare variant threshold
[RVT]) and common variants (MAF>RVT). For
each rare variant in the region, P-value is obtained
by the Fisher’s exact test (Fisher, 1922; Cheung
et al., 2012). For each common variant in the region,
we consider a logistic regression model:

logitP(Yi = 1) = β0 + β1G
c
ik,

where superscript c represents the common variant.
The score statistic of testing β1 = 0 is:

Tk =
∑n
i=1

(Yi − Y )(Gc
ik − Gc

k)
( )2

Y (1− Y )∑n
i=1

(Gc
ik − Gc

k)
2
,

where Y = 1
n

∑n
i=1

Yi,Gc
k = 1

n

∑n
i=1

Gc
ik. Tk is approxi-

mated by χ21 distribution.
Let the per-site P-values of the m variants be p1,

p2, · · · , pm, respectively. We name the sites with
larger variant frequencies in cases than in controls,
‘deleterious-inclined variant sites’, and those with
larger variant frequencies in controls than in cases
‘protective-inclined variant sites’. To test the signifi-
cance of the region and to guard against the noise
caused by neutral variants, we combine the per-site
P-values that are smaller than a given truncation
threshold. Suppose that we consider J candidate
truncation thresholds θ1, θ2, · · · , θJ. For the jth trun-
cation threshold θj, the significance score of the
deleterious-inclined variant sites is:

S+
j = −

∑m
i=1

ξ i · I[ pi,θj] · wi · log pi,

where the indicator variable ξi is 1 if the ith site is
deleterious-inclined and 0 otherwise, wi is the weight
of the ith site, and I[pi< θj] is 1 if the P-value of the
ith site is smaller than the jth truncation threshold θj
and 0 otherwise. Similarly, for the jth truncation
threshold θj, the significance score of the protective-
inclined variant sites is:

S−
j = −

∑m
i=1

φi · I[ pi,θj ] · wi · log pi,

where the indicator variable φi is 1 if the ith site is
protective-inclined and 0 otherwise. In this paper, we
specify 11 candidate truncation thresholds (0.1, 0.11,
0.12, · · · , 0.2) (we will discuss the selection of candi-
date truncation thresholds in the Discussion section).
Since the goal is to test the association regardless of
the direction of the effects, we use the statistic
Sj = max(S+

j ,S
−
j ). Let Pj be the P-value of the statis-

tic Sj, for j = 1, 2, · · · , J. The overall test statistic is
T =minPj. Because variants within a functional region
are usually not independent, we need permutations to
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obtain the P-values of the statistic Sj(j = 1, 2, · · · , J)
and the overall test statistic T. The permutations pro-
cess is the same as that of Lin et al. (2014).

Since rare variants and commonvariants are both like-
ly to be associated with the trait, upweighting the contri-
bution of rare variants and downweighting the
contribution of common variants is not appropriate. So
we use the same weight scheme as proposed by
Ionita-Laza et al. (2013) for rare and common variants.
For rare variants, we use the weights wj=Beta
(MAFj;1, 25). However, this weight scheme does not
work for common variants because it assigns almost zero
weight to common variants. For example,w= 0·0004 for
a MAF of 0·30, but w= 7·28 for a MAF of 0·05. So for
common variants, we use the weight wj=Beta
(MAFj;0.5, 0.5), which slowly decreases with increasing
MAF. For example, for MAF= 0·05, w= 1·46, for
MAF= 0·10, w= 1·06, for MAF= 0·30, w= 0·69, and
for MAF= 0·5, w= 0·64. Our proposed method is re-
ferred to as ‘RC-ADA’, because the per-site P-values of
rare and commonvariants sites are combined adaptively.

3. Simulation studies

(i) Simulation design

The GAW17 dataset is used for simulation studies.
This dataset contains genotypes of 697 unrelated indi-
viduals on 3205 genes. We follow the simulation
set-up of Sha et al. (2012). Specifically, we choose
four genes: ELAVL4 (gene 1), MSH4 (gene 2),
PDE4B (gene 3) and ADAMTS4 (gene 4) with 10,
20, 30 and 40 variants, respectively. We merge the
four genes into a super gene (Sgene) with 100 variants.
In our simulation studies, we generate genotypes of n
individuals based on the genotypes of 697 individuals
in the Sgene. We infer haplotypic phases in the Sgene
for the 697 individuals. To generate the genotypes
with 100 variants of n individuals, we randomly com-
bine two haplotypes of 1394 haplotypes of the 697
individuals. In the following, we describe how to gen-
erate trait values.

To evaluate type I error rate, we generate trait
values by using the logistic model:

logitP(Yi = 1) = β0.

β0 is chosen such that the disease prevalence is 0·05.
We estimate the empirical type I error rate as the pro-
portion of P-values less than α= 0·01 or 0·05.

To evaluate power, we consider two cases: (1) cau-
sal variants contain both rare and common variants,
(2) all causal variants are rare variants. In case 1, we
randomly select one common variant and 30% of all
rare variants as causal variants. In fact, our proposed
method can be applied to multiple common variants.
In case 2, we randomly choose 30% of all rare variants
as causal variants. In the two cases, we randomly

assign d% of the rare causal variants as deleterious
variants, and let the remaining (100–d%) of the rare
causal variants be protective variants. The value of d
is set to 10, 20, 50, 80 and 100, respectively. For
power comparisons, we also consider three different
values of RVT (0·01, 0·03 and 0·05). We generate bin-
ary traits by:

logitP(Yi = 1) = β0 +
∑nd
i=1

βdi G
d
i −

∑np
j=1

βpj G
p
j + βcGc,

where nd and np are the number of deleterious and
protective rare variants, respectively. Gc is the geno-
type of the common causal variant. β0 is chosen
such that the disease prevalence is 0·05. Under the
two considered cases, we set the magnitude of each
βj to a|log10MAFj | such that rarer variants have larger
effects, where a= ln5/4 = 0·402. In case 2, βc is 0.

We compare the performance of our proposed
method with that of the CMC method (Li & Leal,
2008), the SKAT method (Wu et al., 2011), the
VW-TOW method (Sha et al., 2012), and the ADA
method (Lin et al., 2014). The ADA method and the
VW-TOW method are implemented with their re-
spective R script.

(ii) Evaluation on type I error rates

For type I error evaluation, we consider different
values of RVT and different significance levels. In
each simulation set-up, P-values are estimated by
1000 permutations and type I error rates are evaluated
by 1000 replications. Sample size is set at 1000 (500
cases and 500 controls). Table 1 summarizes the esti-
mated type I error rates for given different values of
RVT and different significance levels. From this
table, we can see that the estimated type I error
rates are not significantly different from the nominal
levels. So all test methods are valid tests.

(iii) Power comparisons

To evaluate the power of the proposed approach, we
consider two cases: (1) both rare variants and one

Table 1. The estimated type I error rates for all tests.

RVT α CMC SKAT VW-TOW ADA RC-ADA

0·01 0·01 0·009 0·009 0·014 0·012 0·010
0·05 0·043 0·047 0·047 0·049 0·046

0·03 0·01 0·010 0·013 0·012 0·013 0·011
0·05 0·042 0·041 0·046 0·034 0·035

0·05 0·01 0·005 0·010 0·007 0·011 0·011
0·05 0·039 0·052 0·049 0·047 0·050

Note: RVT represents the rare variant threshold; α repre-
sents the significance level.
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common variant are causal variants, (2) all causal
variants are rare variants. In each of two cases, we
consider different values of RVT, and different per-
centages of deleterious rare variants. Sample size is
set at 1000 (500 cases and 500 controls). In case 1,
we also consider different percentages of neutral var-
iants among all rare variants (10%, 30%, 50% and
70%) and different sample sizes (500, 1000, and
2000). In each simulation scenario, P-values are
estimated by 1000 permutations and powers are eval-
uated by 500 replications at a significance level of
0·05.

In Fig. 1, we report the power of the proposed
RC-ADA method and of the existing four methods
(CMC, SKAT, VW-TOW and ADA) for different
percentages of deleterious rare variants based on
case 1. Fig.1a shows that the RC-ADA and the
ADA are much more powerful than the other three
tests when RVT is 0·01. Fig.1b and c show that the
RC-ADA, the SKAT and the ADA are much more
powerful than the VW-TOW and the CMC. The
RC-ADA is the most powerful in many cases.
Among all methods, the CMC is the least powerful
one. The CMC loses power because it gives common
variants the same weights as rare variants, thus com-
mon neutral variants will introduce more noise. The
RC-ADA is more powerful than the ADA. This is be-
cause the ADA only considers rare variants, but the
RC-ADA considers both rare and common variants
and imposes proper weights. The power of all methods
increases when the percentage of deleterious rare var-
iants is increased. The reason for this, pointed out by
Wu et al. (2011) and Sha et al. (2012), is that protect-
ive variants imply negative log ORs and lower disease
risk and hence lower MAFs in cases and causes more
difficulties in observing rare variants in cases. The
power of all methods is improved when RVT is larger.

Power comparisons of five methods for different
percentages of deleterious rare variants based on
case 2 are given in Fig.2. By comparing Fig.2 with
Fig.1, we see that patterns of power comparisons
based on case 2 are very similar to that based on
case 1. This is because we set smaller ORs for com-
mon causal variants.

Comparisons of power as a function of percentage of
neutral variants amongall rare variants basedon the case
1 are given in Fig.3. As shown in Fig.3, we see that
the RC-ADA and the ADA are more powerful than
the other three methods. The RC-ADA is the most
powerful method in all the cases. The RC-ADA and
the ADA have high power because they can guard
against the noise caused by neutral variants by imposing
a truncation threshold upon the per-site P-values. The
power of the RC-ADA, the ADA, the SKAT and the
VW-TOW are relatively robust to the increasing of neu-
tral variants, while the power of the CMCdecreases rap-
idly with the increasing of neutral variants.

Power comparisons of the five methods for different
sample sizes based on case 1 are given in Fig.4. This
figure shows that the power of all methods increases
with an increase in sample size.

In summary, the RC-ADA is the most powerful
method across a wide of range of scenarios.

4. Discussion

Manydiseases are caused by both commonand rare var-
iants. However, most of the recently developed methods
only detect rare variants. In this paper,we have proposed
a powerful RC-ADA method for rare and common
causal variant detection. We used extensive simulation
studies to compare the performance of the RC-ADA
with that of the existing methods. Our simulation results

Fig. 1. Power comparisons of five tests for different percentages of deleterious rare variants based on case 1. RVT
represents the rare variant threshold for (a) 0·01, (b) 0·03 and (c) 0·05. x-axis represents the percentage of deleterious rare
variants. Sample size is 1000. Power is estimated at the 0·05 significance level.
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Fig. 2. Power comparisons of five tests for different percentages of deleterious rare variants based on case 2. RVT
represents the rare variant threshold for (a) 0·01, (b) 0·03 and (c) 0·05. x-axis represents the percentage of deleterious rare
variants. Sample size is 1000. Power is estimated at the 0·05 significance level.

Fig. 4. Power comparisons of five tests for different sample sizes based on case 1. RVT represents the rare variant
threshold for (a) 0·01, (b) 0·03 and (c) 0·05. A total of 80% of rare causal variants are deleterious variants. x-axis
represents sample sizes. Power is estimated at the 0·05 significance level.

Fig. 3. Power comparisons of five tests for different percentages of neutral variants among all rare variants based on case
1. RVT represents the rare variant threshold for (a) 0·01, (b) 0·03 and (c) 0·05. A total of 80% of rare causal variants are
deleterious variants. x-axis represents the percentage of neutral variants among all rare variants. Sample size is 1000.
Power is estimated at the 0·05 significance level.
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show that theRC-ADA is themost powerfulmethod for
testing rare and common variants in most cases.

For detecting rare variants, many methods put
large weights on rare variants and small weights on
common variants. Thus, these methods will lose
power when the disease is caused by both rare and
common variants. By choosing adaptive weights, our
proposed RC-ADA shows good performance for
detecting rare and common variants.

In our proposed RC-ADA, to guard against the noise
caused by the inclusion of neutral variants, we imposed a
truncation threshold upon the per-site P-values. Instead
of fixing a threshold, we search for the optimal threshold
among multiple candidate truncation thresholds. In this
paper, we consider 11 candidate P-value truncation
thresholds, 0.10, 0.11, 0.12, · · · , 0.20. In fact, we also
consider two other cases. In the first case, we use 21
candidate P-value truncation thresholds, 0.05, 0.06,
0.07, · · · , 0.25. In the second case, we consider respective
P-value truncation thresholds for rare variants and com-
monvariants.Weconsideramore stringent threshold for
common variants. For example, 0.05, 0.06, 0.07, · · · ,
0.15 for common variants, and 0.10, 0.11, 0.12, · · · ,
0.20 for rare variants. Table 2 lists the power of the
RC-ADA with three sets of candidate P-value trunca-
tion thresholds. Table 2 shows that using the other two
cases doesn’t contribute a noticeable power gain to the
RC-ADA.
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