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EXPLICIT SOLUTIONS OF PYRAMIDAL DIOPHANTINE 
EQUATIONS 

BY 
LEON BERNSTEIN 

1. Introduction. Let Pmfk denote the set of pyramidal numbers 

(U, , „ = {(") m,keN;k fixed > 2 

The question has been asked whether there exist elements p, q, r in Pm> k such that 
p+q = r or, as the problem is usually posed, 

(1.2) k\p + k\q = k\r. 

The case k=2 has been studied by Sierpinski [6] and Khatri [3]; the case k=3by 
Oppenheim [4] and Segal [5]; recently Fraenkel [2] has generalized (1.1) to the 
larger set 

_((m,d\ 
>«>*-{[ k ) m9k,de N; 

(1.3) 
k fixed > 2;kl (m,

k
d\ = n ( ^ + W)} 

and has also investigated the cases k=2, 3. But these authors succeeded in finding 
only one infinite class of tuples (p, q, r) ePm,k or EPm,k,d satisfying (1.2). In this 
paper infinitely many classes of solutions of (1.2) each containing infinitely many 
tuples (/?, q, r) are stated explicitly. In addition related Diophantine equations are 
studied. The following results are obtained : 

(i) solutions of the Diophantine equation 

(1.4) x(x+d)+y(y + d) = z(z+d) 

are stated explicitly; 
(ii) solutions of infinitely many classes (each containing infinitely many ele­

ments) of the Diophantine equation 

(1.5) x(x + d)(x+2d)+y(y + d)(y+2d) = z(z+d)(z+2d) 

are stated explicitly; 
(iii) many infinite classes of solutions of the Diophantine equation 

(1.6) x(x+l)(x+2)(x+3)+y(y+l)(y + 2)(y + 3) = z(z+2) 

are stated explicitly. 
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2. The equation x(x+d)+y(y + d)=z(z+d),d arbitrary. The methods used in 
this paper are mainly based on solving a Pellian equation. Concerning notations 
and formulas the author's papers [1] should be consulted. We shall use the follow­
ing theorems: 

(I) The solutions of the Pellian equation 

{x2—my2 = 1 (m not a perfect square); [Vm] = D > 1 ; 

Vm = [D,bl9b29...,bn-l92D]; n > 1; b{ = £n_i_i, 

are given by the formulas 

xk = ,!<»*>+ 2M<Bfc+1>, yk = Aink + 1\ nk = 2u (k = 1, 2 , . . . or 2, 4 , . . . ) 
(2.2) A(0) = 1, Aa) = 0; Aiv+2) = A™ + bvA<v+1) (v = 0, 1,...) 

All solutions of (2.1) are obtainable from 

(2.3) xk + Vm yk = (xs + Vm ys)
k; s = min (nk) (k = 1,2,. . .) 

(II) The Diophantine equation 

(2.4) x2-my2 = - 1 , Vm = [D, bl9 b2,..., 6n_ l 5 2D] (m, D as in (I)) 

is solvable iff w — 1 = 2w. The solutions are given by the formulas 

x2fc-i = v4((2/c-1)n) + i)v4((2fc-1)ri+1>: 
(2.5) 

J2fc-i = ^ ( (2 fc"1)n+1) ( £ = 1 , 2 , . . . ) . 

(III) Let u0, v0 be a solution of the Diophantine equation 

(2.6) u2-mv2 = JV 

(N an integer not a perfect square; m as before). Let xk, yk be the solutions of 
x2 — mj>2 = 1 (x2 — my2 = — 1). Then infinitely many solutions of u2 — mv2 = N 
(u2 — mv2= —N) are given by 

(2.7) uk + Vm vk = (u0 + Vm v0)(xk + Vm yk). 

We shall now solve equation (1.4). Introducing the parameter t by means of 

(2.8) y = x + t 

(1.4) takes the form x(x+d) + (x+t)(x+t+d)=z(z+d). Transforming this equa­
tion into a quadratic form in x and z, we obtain 

(2.9) 2(2x+t+d)2+2t2-d2 = (2z+d)2. 

Introducing the notation 

(2.10) 2z+d = u9 2x + t + d = v, d2-2t2 = N, 

we obtain from (2.9) 

(2.11) u2-2v2 = —AT. 
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We face the problem of finding representatives of the classes of solutions of 
u2 — 2v2= — N. By Theorem (III), it suffices to solve u2 — 2v2 = N, since u2 — 2v2 = — 1 
is solvable. But d and t are arbitrarily chosen parameters, and since N=d2 — 2t2, 
we obtain from u2 — 2v2 = d2—2t2 

(2.12) u0 = d0; v0 = t0, 

where the subscripts denote special values for u, v, d, and /. The smallest solution 
of w2 — 2v2— — 1 is the vector (1, 1) which can be verified directly or from the ex­
pansion V2= [1, 2]. From these considerations and formulas (2.6), (2.7) we obtain 

juk + vkV2 = (a2k+1+b2k+1V2)(d0 + t0V2), 

l # 2/c +1 ~ 2&2/c+1 = — 1? (A; = 1 , 2 , . . . ) 

Calculating the values of u, v from (2.13), and substituting them in (2.10), infinitely 
many solutions of (1.4) are thus given by 

(2.14) 
'* = i[(«2fc + l - l ) ^ 0 + (*2fc + l - l ) ^ o L 

y = Mfa2/c+1 + l)'o + (b2k + i - l ) d0], 

Z = M(*2fc+ 1 - 1 ) ^ 0 +2*0^2* +li­

lt is easy to prove that a2k + 1, b2k + 1 are both odd, so that x, y, z from (2.14) are 
integral. Likewise it is verified without difficulty that (x,y,z) from (2.14) is a 
primitive solution in the sense that (x, y,z) = l if and only if (d0, t0) = l. 

For k= 1, 2, we obtain from (2.14) the special cases 

[x = 3̂ o + 2J0; y = 4f0 + 2rf0; z = 5tQ + 3d0. 
(2.15) \ 

[x = 20*o +14</0; y = 2\tQ + \4d0\ z = 29/0 + 20^0. 
The following solutions of 

(2.16) x(x+l)+y(y+l) = z(z+l) 

where found by the author independently of (2.14): 

fx = 2nk+n; 

(2.17) ly = (n2-l)k+Mn + l)~l; 
[z = (n2 + l)k+in(n+1) (k, n any integers). 

From (2.17) one obtains Sierpinski's solution for (2.16) with &=0, and the three 
solutions of Khatri for « = 2, —2, 4. 

3. The equation x(x + d)(x + 2d)+y(y + d)(y+2d)=z(z+d)(z+2d). For con­
venience we write the title equation in the form 

(3.1) (x-d)x(x+d) + (y-d)y(y+d) = (z-d)z(z+d). 
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This is easily rearranged in the form 

(3.2) y(y2-d2) = (z-x)(z2 + zx + x2-d2). 

We introduce a new parameter a by putting 

(3.3) y = a(z-x\ 

From (3.2), (3.3) we obtain, after easy rearrangements, 

(3.4) [2(a3-l)z-(2a3 + l)x]2-(l2a3-3)x2 = 4d2(a-l)(a3~\), 

and, denoting 

(3.5) 2(a3-l)z-(2a3+l)x = du; x = dv9 

(3.6) u2-(\2a3-3)v2 = 4(a3-l)(a-l). 

Surprisingly, the Pellian equation (3.6) has the special solution 

(3.7) v0=l; Uo = 2a(a+l)-l. 

Indeed, we have 

[2a(a+l)-l]2-(l2a3-3)'l = 4a* + Sa3 + 4a2-4a2-4a+l-l2a3 + 3 

= 4a*-4a3-4a + 4 = 4(a3~ \)(a-1). 
If sk, tk are solutions of 

(3.8) s2-(\2a3-3)t2 = 1, 

then infinitely many solutions of (3.6) are given by 

(3.9) uk+Vl2a3-3 vk = [2a(a +1)-1 + Vl2a3-3][sk+V\2a3-3 tk]. 

Thus 

uk = [2tf(a + l ) - l K + (12a 3 -3)4 , 

vk= [2a(a+l)-l]tk+sk ( £ = 1 , 2 , . . . ) . 

From (3.5), (3.10) we now obtain 

xk = A f c[2û(a+l)- l ] + dsfc; 

2 ( a 3 - l K = (2a3 + l)xfc + di#fc 

= d[(2a3 + l)(2fl2 + 2a - I K + (2a3 + I K 

+ (2a2 + 2a - I K + (12a3 - 3)tk] 

= </[(4a5 4- 4a4 + 10a3 + 2a2 + 2a - 4)tk + (2a3 + 2a2 + 2a)sk] 

= 2d[(a2 + a+l)(2a3 + 3a-2)tk + a(a2 + a+l)sk]. 

The reader can easily verify this interesting factorization in virtue of which we 
obtain 

2(a3-l)zk = 2d[(2a3 + 3a2-2)tk + ask](a2 + a+l) 

(3.10) 
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and, after cancelling by 2(a2+a +1)^0, 

(a-l)zk = d[(2a3 + 3a-2)tk+a$k]. 

We have thus obtained for x, y, z the expressions 

( XJC = d[(2a2 + 2a-l)tk+sk]; 

yk = da(a-iy1[3(2a-l)tk+sk]; 

zk = d(a-l)~1[(2a3 + 3a-2)tk + ask]. 

The value of yk was calculated from those of xk9 zk and (3.3). Formulas (3.11) are 
most remarkable. We shall first investigate the case a = 2. Then d | (x, y, z) and we 
have to put d= 1 in order to obtain primitive solutions. This gives 

THEOREM 1. An infinity of solutions of the Diophantine equation 

(3.12) (x-\)x(x+i)+(y-i)y(y+i) = (*-iM*+i) 

is given by 

(3.13) x = llffc+$fc; y = 18ffc+2yfc; z = 20tk + 2sk 

where sk9 tk are all solutions of 

(3.14) s2-93t2 = 1. 

We shall illustrate Theorem 1 by an example. We obtain 

V93 = [9,1,1,1,4,6,4,1,1,1,18]; 

We calculate easily 

^ (10) = 811; ^ (11) - 1260; Sl = 12151; tx = 1260. 

We now obtain from (3.13) 

(3.16) x± = 26011; j x = 46982; zx = 49502. 

Indeed 

17,598,317,413,320+103,703,759,631,186 = 121,302,077,044,506. 

This is the smallest solution of this infinite class of solutions of the title equation 
withrf=l. 

We shall now investigate the case a>2. In order that yk9 zk, xk be integers, and 
taking into account that (sk, tk)=l, ((a— 1), a) = 1, one of the following two pos­
sibilities must hold 

(3.17) (*-1) | ([3(2a-l)tk+sk]9 [(2a* + 3a-2)tk+sk]) 

in which case d \ (xk9 yk, zk), and we have to put d= 1. If (3.17) does not hold, we 
put d=a— 1 and have thus obtained 
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THEOREM 2. Let (sk, tk) be a solution tuple ofs2-(l2a3-3)t2-l. If, for a fixed 
a, (3.17) holds, then 

{ xk = (2a2 + 2a~l)tk+sk, 

yk = (a-\)-^a(2a-\)tk+ask], 

zk = (a-l)-1[(2a3 + 3a-2)tk+ask) 

is a solution of the equation (x— l)x(x+l)+(y— l)y(y+l) = (z-l)z(z+l). If 
(3.17) does not hold, then 

(xk = (a-l)[(2a* + 2a-l)tk+sk], 

(3.19) I yk = [3a(2a- l)tk+ask], 

[zk = [(2a3 + 3a-2)tk+ask] 

is a solution of 

(3.20) (x-d)x(x+d)+(y-d)y(y+d) = (z-d)z(z+d); d = a-\. 

We shall illustrate Theorem 2 by numerical examples. Let 

a = 3; s2~mt2 = \; V32Î = [17, 1, 10, 1, 34], 

Sk = Altki +1 !Am+1> ; tk = A^+», by (2.2). 

We calculate easily: ^ '«=11, A™=-12, and from (3.21), for k=\, 

Sl = AW + 17A™ = 215; ^ = ^ (5>=12. 

We now obtain from (3.11), for a=3, 

xj. = 491rf, Ji = KH85J), zx = i(1377J). 

and have to put d=2; then 

Xl = 982; ^ = 1185; zx = 1377 

is a solution of (x-2)x(x+2) + (y-2)y(y+2)=(z-2)z(z+2). Let 

a = 4; s2-765t2 = 1; V765 = [27,1,1,1,13,6,13,1,1,1,54]; 

Sfc = ,4(10» + 27^( 1 0 f c +« ; ffc = ^<10* + » . 

We calculate, for k=1, 

^(10> = 6805; Aa" = 10332; 5 l = 285769; tx = 10332; 

Xl = ^(39/!+*!); 

^ = (4J/3)(21?1+^1); 

zx = (<//3)(l 38^+4^)-

Since 3 \su 3 | 21 ; 3 | 138, we have to put d=3 and obtain that 

xx = 2066151; ^ = 2010964; zx = 2568892 

is a solution of (x-3)x(;v;+3)+0>—3)Xj+3)=(z—3)z(z+3). 
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4. Solutionofx(x+l)(x+2)(x+3)+y(y+l)(y+2)(y+3) = t(t+2). Rearranging 
the title equation, we obtain 

(4.1) ix(jc+3)[ij<x+3) + l]+iKy+3)[My+3) + l]==2(r+l), t = 2z. 

If we substitute —x for x in (2.16) and —(«+1) for n in (2.17), we obtain that 

( x = 2(n+l)k+(n + l), (x-1 = 2(n + l)k+n), 

y = n(n + 2)k+i(n-l)(n+2), 

z = (n2+2n + 2)k+%n(n + l), 

is a solution of 

(4.3) x (x - l )+ j ( j+ l ) = z(z+l). 

Now, (4.1) has the same structure as (4.3), with x - 1 standing for %x(x+3), and 
we thus obtain, in virtue of (4.2), 

{ ix(x+3) = 2(n+l)k+n, 

My+ 3) = n(n + 2)k+i(n-l)(n + 2), 

z = (n2 + 2n + 2)k+in(n+l). 

Eliminating k from the first two equations we obtain 

2(n+l)y(y+3)-n(n + 2)x(x + 3) = -2(« + 2), 

or, writing the left side as quadratic form in x and y 

(4.5) 2(n+l)(2y + 3)2-n(n + 2)(2x + 3)2 = -(9«2 + 8«-2). 

(4.5) leads again to a Pell equation, but the author did not succeed to find a special 
solution of it for every n. For n = 2, this is possible, and by the usual technique an 
infinity of solution vectors of (4.5) is found easily. The smallest solution is Xi = 31 ; 
y1 = 36; with these values and n = 2, we obtain, from (4.4), k=l:p-; substituting 
n=2, k=-\L in (4.4), we obtain z=878. A solution of the title equation of this 
chapter is thus given by 

(x,y,t) = (31,36,1756). 

For other values of n many more infinite solution classes of the title equation can 
be constructed. 

We shall outline still another method of solving the title equation. Rewriting it 
in the form 

(4.6) (JC2 + 3JC)(X2 + 3 X + 2 ) + ( / + 3 ^ ) ( / + 3J;+2) = z(z+2) 
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and comparing (4.6) with x(x+d)+y(y+d)=z(z+d), we make use of the solu­

tions (2.14) of the latter, with d=2, to obtain 

{ x2 + 3x = it0(a2k + 1-l) + b2k + 1-l9 

y2 + 3y = x2 + 3x + t0, 

z = a2k + 1 — 1 + t0b2k + 1 (a2k + 1 — 2b2k + 1=—l; k = 1,2,...) 

We now substitute the value of t0 from the second equation of (4.7) into the first 

and obtain 

(4.8) (a2k + 1 + l)x(x+3)-(a2k + 1-l)y(y+3) = 2(b2k + 1-l). 

(4.8) leads again to a Pell equation. Choosing, for instance, (a2k + 1, b2k + 1) = (4l, 29) 

one calculates easily: (x, j ) = (444, 455); then the value of t0 is calculated which 

enables us to find z from the third equation of (4.7). We thus find that 

(x,y,z) = (444,455,287778) 

is a solution of the title equation. 
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