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SOME ADJUNCTION-THEORETIC PROPERTIES
OF CODIMENSION TWO
NON-SINGULAR SUBVARITIES OF QUADRICS

MARK ANDREA A. DE CATALDO

ABSTRACT.  We make precise the structure of the first two reduction morphisms
associated with codimension two non-singular subvarieties of non-singular quadrics
Q ", n> 5. We give a coarse classification of the same class of subvarieties when they
are assumed not to be of log-general-type.

0. Introduction. The study of low codimension subvarieties of projective space
has been avery active area of researchin recent years. The papers[15], [6] and their bib-
liographies may servethereader asadiving board towards avast seaof general structure
results, classificationin low degree and conjectures concerning surfacesin P* and three-
foldsin P°, respectively.

Low codimensional embeddingsin projective space are special in many respects be-
cause, for example, of results such as the Barth-Larsen theorem and the double-point
formulee

The Barth-Larsen theorem asserts that, given an embedding ¢: X — PN, the group
homomorphisms ¢, HM(PN,C) — HM(X,C) are isomorphisms in a certain range of
dimensions which depends on the codimension of +(X) in PN; see [3]. The reader can
consult [7], section 2.3.10 for a precise statement and a set of references concerning
this result and its generalization, due to Sommese, to homogeneous varieties, such as
non-singular quadrics Q ". In this paper we will use frequently these resultsin the form
summarized by Remark 2.2.

Given an embedding as above, the double-point formulae provide expressionsfor the
Chern classes of the normal bundle of +(X) in terms of the Chern classes of the ambient
space PN and of the embedding line bundle L := +*Opn(1). Other information about the
Chern classes of the normal bundle of the embedding can be used in conjunction with
these formulae to obtain numerical restrictions on X. See[19], Example 4.1.3, where the
double point formulae are used in conjunction with the self-intersection formulee to find
anumerical identity between the basic invariants of embedded surfacesin P4. A classical
application is that abelian surfacesin P* must have degree d = 10.
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Thedouble-point formulae hold in awider context, e.g. .: X — Y could be any morphism
of non-singular varieties, with X complete; see [17], section 9.3. In this wider context,
their utility is clear only when one has precise information about the cohomology ring
of the target space Y.

In particular, the Barth-Larsen theorem and the double-point formulee hold in the
more general context of low codimensional embeddings in homogeneous spaces. It
seems natural to the author to explore their consequencesin this context. Thefirst homo-
geneous space that should come to mind, after PN, is the non-singular quadric and, since
hypersurfaces and complete intersections are considered trivial in this context, the first
value for the codimension to be considered should be two.

In his dissertation, [11], the author concerned himself with the case of codimension
two embeddings in non-singular quadrics 1: X2 < Q™" n > 5. This paper is part
of aseries of papers stemming from the results of his dissertation; the other papers are
[12], [13] and [14]. Arrondo and Sols had previously studied surfacesin Q 4, which is
isomorphic to the Grassmannian of linesin P3; see[2].

In this paper we address the following question: what are the special adjunction-
theoretic properties of (n — 2)-folds embedded in quadrics Q "? Given a projective man-
ifold X and an ample line bundle L on X, the Adjunction Theory of Fujita et al. and
Sommese et al. studies these polarized varieties (X, L); see[16] and [7]. Roughly speak-
ing, this theory studies the positivity properties of the Q-divisors Kx +tL,t € Q*. In
general, the lack of this positivity is adetector of the presence of special projective mor-
phisms defined on the variety. There are two cases. In the former one, the morphism is
birational and it is called reduction; it contracts some specia subvarieties and provides
a new birational model where the positivity of naturally associated divisors can be in-
vestigated further; one may think of this as a step of an inductive analysis. In the latter
one, the morphism is a fibration onto a lower dimensional variety, with general fibers
Fano manifolds; thisis how the special varietiesof Adjunction Theory arise. Adjunction
Theory acts as a flowchart. We start with a pair (X, L) and witht = dim X — 1 as above
and take on and inductive analysis using the morphisms as above. At each step we either
perform a reduction and reduce t or we have a special fibration. However, the theory is
completeonly for t > dimX — 3.

The paper [6] consists of athorough analysis of the adjunction-theoretic properties of
threefolds X2 in P°. Under this stringent restriction, many of the already precise results
of Adjunction Theory become explicit.

Inspired by the results and by the techniques employedin [6], in this paper we estab-
lish that some of the adjunction-theoretic properties of threefoldsin P° provedin [6] also
hold for codimension two non-singular subvarieties of quadricsQ ", n > 5.

The paper is organized as follows. Section 1 contains preliminary material such asa
little background in Adjunction Theory and results from the papers [12]and [14] which
will be used in the subsequent sections. Section 2 contains the precise description of the
first two reduction morphisms of Adjunction Theory for codimension two subvarieties
of quadrics; asit turns out, by analogy with [6], Theorem 1.4, the reduction morphisms
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associated with these varieties are almost always isomorphisms; see Theorem 2.3. In
Section 3 we give a coarse classification theorem for the varieties for which the second
reduction morphism is not defined, the so-called varieties not of log-general-type; see
Theorem 3.1, Theorem 3.2 and Theorem 3.4. In order to prove the third one, we need
to analyze the case of Del Pezzo fibrations and, in the same way as in the paper [10],
the case of conic bundlesin Q °. Thesetwo analysesare carried out in Sections 4 and 5,
respectively.

Threefolds not of log-general-type in P° are completely classified (cf. [10]) by the
efforts of many authors and the complete classification of threefolds in P° up to degree
11 (see [6] and its references) was instrumental in achieving that goal. The paper [14]
completes the classification of varieties as in its title. In particular the classification is
complete only for degree d < 10. In order to make Theorem 3.4 complete, we would
need the above classification for degreed < 20.

NOTATION AND CONVENTIONS. Our basic reference is [19]. We work over any al-
gebraically closed field of characteristic zero. A quadric Q ", here, is anon-singular hy-
persurface of degree two in the projective space P™*. Little or no distinction is made
between line bundles, associated sheaves of sectionsand Cartier divisors.

By ascroll we mean avariety X C PV, for which (X, Opn(1)x) =~ (Py(E), ¢g), where E
isavector bundle on anon-singular variety Y. An adjunction-theoretic scroll (see[5]) is
not, in general, a scroll; we denotethem by a. t. scrolls.

ACKNOWLEDGEMENTS. Thispaper isan expanded and completed version of parts of
my dissertation. Itisapleasureto thank my Ph. D. advisor A. J. Sommese, who suggested
to methat | study threefoldsin Q °. | am grateful to the referee for suggestions on how
to improve the structure of the paper. | thank the C. N. R. of the Italian Government and
The University of Notre Dame for partial support.

1. Preliminary Material.

1.1 Background in Adjunction Theory. For a self-contained introduction to Adjunction
Theory we refer the reader to [5]. The book [7] summarizes the state of the art in Ad-
junction Theory.

Let usrecall the notions of first and second reduction morphism.

Let X be a non-singular projective variety of dimension n and L be an ample line
bundle on X which is spanned at all points by its global sections. We say that a pair
(X/, L"), consisting of a non-singular, projective variety X’ and an ample line bundle L,
isthefirst reduction of (X, L) if:

(1) there exists a morphism, the first reduction morphism, ¢: X — X’ expressing X

as X’ blown-up at a finite set F of non-singular distinct points,and

(2 L=¢L' = [671(F)];
thislast relation 2) isequivalent to 2') Ky + (n — 1)L = ¢*(Ky + (n — 1)L).

Moreover, ¢ induces a bijection between the smooth elements of |L| and those of |L’|
passingthrough F ; Kx+(n—1)L isnef and big if and only if there existsthefirst reduction
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(X’, L") of (X, L), which is unique up to isomorphism. The positive dimensional fibers of
¢ are exactly the integral divisors D with D ~ P!, L5 ~ Opns(1) and with normal
bundle Opn-1(—1). Findly, Ky + (n — 1)L’ is ample on X’

If Kx +(n— 1)L isnot nef and big, then (X, L) ison an explicit list of special polarized
varieties; see (8], page 381.

Assume that (X, L) admits the first reduction (X’, L") and that Ky + (n — 2)L’ is nef
and big. Then a suitable positive power of it defines a birational morphism : X" — X"
onto a normal variety X”. ¢ will be referred to as the second reduction morphism. Its
positive dimensional fibers are well understood; see [5], (0.2.1) and (0.2.2). The Weil
divisor (L) isactually Q-Cartier. The pair (X", L") is called the second reduction of
(X,L).

If (X, L) admitsafirst reduction (X, L'), but Ky +(n— 2)L’ failsto be nef and big then
the pair (X, L) is on an explicit list of polarized varieties; see [8], pages 381-2.

Pairs for which the two reduction morphisms are not defined are called not of log-
general-type.

1.2 Codimension two subvarieties of quadrics. Let ¢: X < Q " be the embedding of a
degreed, non-singular subvariety of codimensiontwo of Q "; let L denotetheline bundle
L*OQ (1), g the genus of the curve C obtained by intersecting (n — 3) general elements
of |L|. Denote by x; the Chern classes of the tangent bundle of X and by n; the ones of the
normal bundle Nx,Q n; by adjunction Kx = —nL +n; and by the self-intersection formula
ny = (1/2)dL2

The following formulag which hold in the Chow ring of X for n > 5, are obtained
using the double-point formulae (see [17]) for ¢.

1
(1) n2:E(nz—n+2)L2—nx1-L+x§—x2;

2 é(n3 —3n?+8n—12)L3+ %(—n2+n— 2)x1L2 +n(XE — X)L + X% — X5 — X3 = 0.

The following formulae for surfaces X in Q # with balanced cohomology class can be
foundin [2].

(3) 2K2 = % d? — 3d — 8(g — 1) + 12y (Ox).

In the case of n = 5, using the formulae (1) and (2), we can express Ky - L2, KZ - L,
K3, %2 - L and x3 asfunctions of d, g, x(Ox), x(Os); for example, omitting the dots from

now on:

(4) KxL? = 2(g— 1) — 2d,

® KL=+ 2d—8g-1)+6x(09),

(6) K3 = —%dz + 2—27d +gd + 18(g — 1) — 30y (0g) — 24x(Ox).
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PROPOSITION 1.1.  Let X be a non-singular threefoldin Q . Then
60x(Os) > gdz — 12d + (d — 48)(g — 1) + 24x(Ox)
and

2(9-1?%
3 d

1, 5
O <
x(©s9) 24d +12d'

PrOOF. Denote by s and n; the Segre and Chern classes respectively of the normal
bundleN of XinQ °. Since N is generated by global sections, we have sz > 0. Since
S3 = N3 — 2nyny, we get

1
0 < (Kx +5L)% — 2(Kx + 5L)§dL2 = K3+ 15K2L + 75KxL2 + 125d — d(Kx + 5L)L2.

Thefirst inequality follows from (6), (5) and (4).
We use the Generalized Hodge Index theorem of [4]:

d(KZL) < (KxL?)?

and we make explicit the left hand side using (5) and the right hand side using (4). The
second inequality follows. ]
In what follows:
- ((a, b, ¢), 0(1)) denotesthe polarized pair given by acompleteintersection of type
(a, b, ) in P™! and the restriction of the hyperplane bundleto it;
- (X, L) denotesthe polarized pair given by avariety X C Q "and L := Oq (1) x;
- 0, g and py denote the sectional genus of the embedding line bundle, the irregu-
larity and geometric genus of a surface section, respectively.

REMARK 1.2. Let X C Q", n > 5, be any subvariety. Then the degree d of X
is even. This follows from the fact that the cohomology class of [X] equals the class

(1/2)d[Q "?1inH*Q ", 2).
PROPOSITION 1.3 (CF. [14]). Let X C Q ", n > 5, a codimension two non-singular
subvariety of degreed < 10. Then the pair (X, L) is one of the types below.
TypeA) d=2,((1,1,2,0(1)); g=g=py=0.
TypeB) d=4,((1,2,2),0()); g=1,q=p;=0.
TypeC) d=4,n=6, (P* xP3,0(1,1)); g=q=py=0.
TypeD) d = 4,n =5, (uw(opl(l)2 ®0pn(2)), 5); g=q=py=0.
TypeE) d=6,((1,2,3),0(1)); g=4,9=0,ps=1.
TypeF) d = 6,n =5, (P(T;2), ), embedded using ageneral codimensiononelinear
system( C [¢7,l; 9=1,0=py=0.
TypeG) d = 6,n = 5,f: X — P! xP? =: Y adoublecover, branched along a divisor
of typeOv(2,2), L ~ p*Oy(1,1); g=2,q=py=0.
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TypeH) d =8, ((1,2,.4),0(1)); 9=9.9=0,p;=>5.
Typel) d=8,((2,2,2,0(1)); 9g=5q=0ps=1
Typel) d = 8,n = 5, (P(E), &), E arank two vector bundle over Q 2 asin[20];
g=4,q=pg=0.
TypeM) d =10, ((1,2,5),0(1)); g=16,q=0,py=14.
TypeN) d = 10,n = 5, ik, X — P! is afibration with general fiber a Del Pezzo
surfaceF, K2 = 4, Kx = —L +f*Opi(1); g=8,4=0,py = 2.

We say that a non-singular threefold X on Q 5 is of Type O), if it has degreed = 12
and it isascroll over aminimal K3 surface. Such athreefold exists. See[14].

PROPOSITION 1.4 (CF. [14]). Thefollowing isthe complete list of non-singular codi-
mension two subvarietiesof quadricsQ ", n > 5, which are scrolls.

TypeC) n= 6,d = 4, scroll over P! and over P3;

TypeD) n =5, d = 4, scroll over P*;

TypeF) n=5,d = 6, scroll over P%;

TypelL) n=5,d = 8, scroll over Q %;

TypeO) n=5,d = 12, scroll over a minimal K3 surface.

PROPOSITION 1.5 (CF. [12], OR [2] FOR THE CASE d > 2k(k — 1)). LetC C Q 3 be
an integral curve of degree d and geometric genus g. Assume that C is contained in a
surface of Q 2 of degree 2k. Then

d? 1

g—1< —+

< o5k 3.

PROPOSITION 1.6 (CF. [2], PROPOSITION 6.4).  Let C beanintegral curvein Q 3, not
contained in any surface of Q 2 of degreestrictly less than 2k. Then

d? 1
1< —— +Z(k —
g—1< 2k+ 2(k 4)d.
Let She anon-singular surfacein Q 4, N its normal bundle, ¢ its postulation, C anon-
singular hyperplane section of S g its genus, d its degree. Let s be a positive integer,
Vs € |lgq+(9)| beintegral and 1 := cz(N (—I)) =(1/2)d® +1( — 3)d — 2(g — 1),
vl e Z.

LEMMA 1.7. Inthe abovesituation: 0 < ps < s°d.

ProoOF. The left hand side inequality is just Proposition 1.5 above. To prove the
right hand side we first assume s = ¢. Using [2], Lemma 6.8 we conclude (from here
on, the hypothesisd > 202 was not used there) in the case at hand. Now, for the general
case, let s = o +t, where t is a non-negative integer. Then, as it is easily checked,
ps = o +otd +t(o +t — 3)d — 2t(g — 1). We conclude by what was proved for y, and
by the obviousg > O. n
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2. Thestructure of the reduction morphisms. In this section we give, by a sys-
tematic use of the double-point formulag a precise description of the first two reduc-
tion morphisms of Adjunction Theory associated with codimension two subvarieties of
quadricsQ ", n > 5. We apply these formulae also to the case of divisorial contractions
of extremal rays on threefoldsin Q .

From now on we shall make free use of the language of Adjunction Theory; we shall
give areference, almost never the original one, for the result used in the sequel.

Lety:=n-—2

LEMMA 2.1. Let X be a codimension two non-singular subvariety of Q ", n > 5.
Let D beadivisor on X with (D, Op(D)) ~ (P*~%,0p.-1(—1)) and (Kx + (v — 1)L)p =~
Op; thenn=5,6andd = 10.

Let n = 5. Then we have the following list of possible degrees according to whether X
containsa divisor of the given form (D, Op(D)) with (Kx + (v — 2)L)‘D ~ Op:

(2.1.2) if (D,0p(D)) =~ (P?,Op2(—2)), then d = 20;

(2.1.2) if (D,0p(D)) ~ (P?,0p(—1)), thend = 14;

(2.1.3) if (D,0p(D)) ~ (F2, G), where 2G = Kp, thend = 14;

(21.4) (D,0p(D)) = (Fo, G), where 2G = Kp, thend = 14;

(2.1.5) thecaseinwhich D hastwo componentsasin [5], Theorem0.2.1, case b5),

cannot occur;

(2.1.6) thecase (D, Op(D)) ~ (F1,—E — f) cannot occur.

(2.1.7) thecasesinwhich D isasineither a), or b) of [ 8] Theorem?2.3 cannot occur.
Let n = 6. Assume X containsa surface S suchthat S ~ P?, Lis ~ Op2(1) and such that
the normal bundle Ns x ~ T5(1). Thend = 14.

PROCOF. For n = 5 the proof is the same asthe one of [6], Proposition 1.1, using (1)
in the place of (0.8) of the quoted paper. For n = 6 we compute all the relevant Chern
classes by using (1), the Euler sequencefor S ~ P? and the exact sequence:

0—Ts —>Tx‘3—>Ngvx—>0. m

The following remark will be used several timesin the sequel of this paper.

REMARK 2.2. Let X be a non-singular codimension two subvariety of Q. As a
consequenceof the Barth-Larsen Theorem (see[3]), we havethat: if n > 6, thenthefun-
damental group m1(X) istrivial; if n > 7, then Pic(X) ~ Z, generated by the hyperplane
bundle, so that any projective morphism f: X — Y with connected fibers onto a normal
variety Y iseither trivial or an isomorphism.

THEOREM 2.3 (STRUCTURE OF THE REDUCTION MORPHISMS).  Let X beanon-singular
codimension two subvariety of Q ", n > 5.
Assume that (X, L) admits a first reduction (X', L’). Then the first reduction morphismis
an isomorphism: (X, L) ~ (X/,L").
Assumethat (X, L) admits, in addition, a second reduction (X", L"). We have:
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if n=>5andd # 14, 20, then (X,L) = (X/, L") and the second reduction map
p: X' — X" is the blowing up on a non-singular X" of a disjoint union of
non-singular integral curves;

if n=6andd # 14, then (X,L) = (X, L) and the second reduction map
p: X' — X" is the blowing up on a non-singular X" of a digjoint union of
non-singular integral curves. If in addition d # 16, 22, then the second
reduction morphismis an isomorphism: (X, L) ~ (X', L") ~ (X", L");

if n> 7, then (X, L) ~(X’, L") ~(X",L").

PROCOF.  Since (X, L) admitsafirst reduction, Kx +(n— 1)L isnef and big (i.e., out of
the lists of Theorems 3.1 and 3.2 below). Hence Ky + (n — 1)L fails to be ample only if
the first reduction is not an isomorphism; in turn, that happensif and only if X contains
some exceptional divisors of the first kind. By Lemma 2.1 this happensonly if d = 10.
By Proposition 1.3 the type is either M) or N); neither of them contains an exceptional
divisor of thefirst kind. It follows that if the first reduction exists, then (X, L) ~ (X/,L’).
The statements concerning the second reduction morphism can be proved asfollows. For
n = 5, we use Theorem 0.2.1 of [5] coupled with Lemma 2.1.

For n = 6 we use Theorem 0.2.2 of [5] and then we take a general hyperplane section
and reduceto the case n = 5, with the difference that now case b2) of Theorem 0.2.1 of
[5] does not occur. The case of the blowing up of curvesyieldsd = 16, 22, as we now
show. Since X ~ X’ we cut (1) with F ~ P2, a general fiber of the blowing up. Define
a to be the positive integer such that Lir ~ Op=(a). Since Nex =~ Ope @& Opz(—1) and
Kxr =~ Op2(—2) we get

(16 — d/2)a* = 12a— 4.

Sincea > 0 we seethat d < 30. The only integer solutions to the relation above are

(d,a) = (16, 1) and (22, 2). This concludesthe proof for n = 6.

Finally, for n > 7 we use Remark 2.2. [
Lemma 2.1 can also be used to describe Mori contractions for threefoldsin Q °. See

[6], Corollary 1.2 for the analogous result on P°,

PROPOSITION 2.4. Let X be a non-singular threefold in Q 5. Let D be an integral
divisor on X. We have:

(24.1) if (D,Op(D)) ~ (P? Op(—1)), then either d = 10 and Ljp ~ Op(1), or
d=14andLp ~ Op(2);

(24.2) if (D,0p(D)) ~ (P?,0p2(—2)), then either d = 8 and Lp ~ Op(1), or
d=16andLp ~ Op(2);

(24.3) if (D, Op(D)) =~ (Fo, G), thend < 20;

(24.4) if (D,Op(D)) ~ (F2,G), thend = 14 and Lp = —G.

PROOF. The proof is the same as that of [6], Proposition 1.1, using (1) in the place
of (0.8) of the quoted paper. ]
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PROPOSITION 2.5 (STRUCTURE OF MORI CONTRACTIONS). Let X be a non-singular
threefold embeddedin Q ®withd > 22 and K not nef. Let p: X — Y bethe contraction of
any extremal ray on X. Then Y is non-singular and either p isbirational and the blowing
up of an integral non-singular curve on Y or p isa conic bundle in the sense of Mori
Theory. In particular, if d > 0, then only the former case can occur.

PrROOF. The proof isthe same asthe one of [6], Corollary 1.2, using (1) in the place
of (0.8) of the quoted paper. As for the last statement, if dimY < 2, then X is not of
general type. We refer to the result of our paper [13] that there are only finitely many
components of the Hilbert scheme corresponding to non-singular (n — 2)-folds not of
general type. ]

Thefollowing conjectureis due, in the case of 3-foldsin P, to Beltrametti, Schneider
and Sommese. Theideaisthat, by virtue of Proposition 2.5, thefailure of being aminimal
model is detected, for d > 0, by the presence of special P*-bundles contained in X.
Pushing the methods of Adjunction Theory, it may be possible to show that the degrees
of these P1-bundles are bounded from above and this may, in turn, imply that the degrees
of threefolds X in Q ® which are not minimal models are bounded from above.

CONJECTURE 2.6. Thereis an integer do such that every non-singular threefold in
Q ° of degreed > dp isa minimal model.

3. Varietiesnot of log-general-type. Inthis section we give acoarse classification
of varieties asin the title. We still make free use of the language of Adjunction Theory.

Letrv := n—2and (X, L) beadegreed, v-dimensional non-singular subvariety of Q "
endowed with its embedding line bundle L. The “Types' we shall consider correspond
to the ones of Propositions 1.3 and 1.4.

We start by observing that Kx + (v — 1)L is spanned by its global sections (spanned
for short) except for three special pairs.

THEOREM 3.1. Let (X,L) be asabove. Then Kx + (v — 1)L is spanned unless (X, L)
is one of the three pairs A), C) or D). In particular, d < 4.

PROCOF. By thelist on[8] page 381, and by thefact that there are no codimensiontwo
linear subspacesinQ ", Vn > 5, we need to analyzethea. t. scroll over acurve caseonly.
By flatnessan a. t. scroll over acurveisascroll. Theresult follows from Theorem 1.4.=

Now we classify those pairs for which Kx + (v — 1)L is spanned, but for which
HJ(KX +(— l)L) <w.

THEOREM 3.2. Let (X, L) be as above. Assume that Ky + (v — 1)L is spanned, i.e.,
(X,L) isnot asin Theorem 3.1, but that it is not big. Then (X, L) is one of the following
pairs:

(3.2.1) (Del Pezzo variety): Type B); TypeF);
(3.2.2) (Quadric Bundle over a curve): Type G);
(3.2.3) (A.t. scroll over asurface): Typel); Type O).
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In particular, d < 12.

PROOF. Let Ky + (v — 1)L be asin the theorem. Then, by [8], page 381, (X,L) is
either aDel Pezzo variety, a quadric bundle or an a. t. scroll over asurface.

Let usassumethat (X, L) isaDel Pezzo variety. By slicing with (dim X — 2) general
hyperplaneswe get asurfaceinQ 4 withKs = —L . Since SisDel Pezzoweget x(Os) =
o(L) = 1. We plug these valuesin (3) and get:

d? —10d+24 = 0.

It follows that either d = 4 or d = 6. The conclusion follows from Proposition 1.3.
Let us assume that (X, L) is a quadric bundle. Let F ~ Q "2 be a general fiber of the
quadric fibration. Dotting (1) with F we get d = 6. We conclude using Proposition 1.3.
Let us assume that (X,L) is an a. t. scroll over a surface. By [7], Proposition 14.1.3
(X,L) isan ordinary scroll with /-;(Kx +(n— 1)L) = 2. We conclude by comparing with
Proposition 1.4. ]
Now we deal with the line bundle Kx + (v — 2)L. First we exclude the presence of
some special pairs.

LEMmA 3.3. Let (X,L) be as above. Then (X,L) cannot be isomorphic to any of
the three pairs (P4, Ops(2)), (P, Ops(3)) and (Q 2, Oq:(2)). Moreover, there are no
Veronese bundles (X/, L) associated with a pair (X,L) in Q 5.

PROOF. By contradiction assume that (X, L) ~ (P*, Op«(2)). We intersect two gen-
eral members of |L| and get anon-singular surface section (S L) whichis embeddedin
Q 4withd = 16,9 = 1 and x(Os) = 1. This contradicts (3). We exclude the casein
which (X, 1) ~ (Q 3,0q:(2)) inasimilar way.

The possibility (X, L) ~ (P%, Ogs(3)) isruled out by Remark 1.2.

Let usassumethat (X, L) isapair for which (X', L") existsand is a Veronese bundle with
associated morphism p: X — Y; in particular n = 5. By Theorem 2.3 (X,L) ~ (X/,L’).
Dotting (1) with ageneral fiber F we get d = 10. Sincefor someample line bundle L on
Y 2Ky + 3L = p*L, we have the following relation on ageneral surface section Sof X:

L|S = —2Kg+ L|S’
which “squared” givesd = 10 = 0 mod(4), a contradiction. n

THEOREM 3.4. Assume that we are out of the lists of Theorems 3.1 and 3.2 so that
(X,L) ~ (X',L). If Kx + (v — 2)L is not nef and big then (X, L) is one of the following
pairs:

(3.4.1) (Mukai variety): TypeE); Typel);

(3.4.2) (Del Pezzofibration over a curve): either TypeN), d = 10 or asin (4.5.1),
d=12

(3.4.3) (Quadricbundleover asurface): n = 5, 6, aflat quadric bundle over a non-
singular surface: if n = 6,thend = 12 and if n = 5, then either d < 18 or
d=44.
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(3.4.4) (A.t.scroll over athreefold): n = 6, the scroll mapisnot flat and d is either
14 or 20.

PrROOF. Let Kx + (v — 1)L be as in the hypothesis. Then by [8] page 381-2 and
Lemma3.3, (X, L) iseither aMukai variety, a Del Pezzo fibration over acurve, aquadric
bundle over asurface or an a. t. scroll of dimension » > 4 over anormal threefold.

Let usassumethat (X, L) isaMukai variety. By dlicing to asurface section Swefind
that Ks = Os and, since X is simply connected, it follows that 71(S) istrivial aswell; S
is thus a K3 surface. Using (3) we get, using x(Os) = 2 and 2(g — 1) = d, that either
d = 6ord = 8; accordingly g = 4, 5, respectively. The conclusion, in this case, follows
from Proposition 1.3.

We deal with the case of Del Pezzo fibrations over a curvein Lemma4.1 and Proposi-
tion 4.5.

We now deal with quadric bundles over surfaces. Again, n = 5, 6, by Remark 2.2.

Let n = 5 and assume, by contradiction, that there is a divisorial fiber F of the quadric
bundle map p: X — Y. Then F isasin [8], Theorem 2.3. This contradicts case (2.1.7)
of Lemma 2.1. It follows that all the fibers of p are equi-dimensional. By Lemma5.6 it
followsthat p isaquadric fibration in the sense of Section 5. The statement follows from
Proposition 5.4 and Remark 5.5.

Let n = 6. Since (X,L) is a quadric bundle over a surface, p: X — Y, soisits general
hyperplane section. By what was proved for the case n = 5, the base surface Y is non-
singular and by Corollary 5.7 we deducethat pisflat. If we cut (1) with a general fiber
of pwegetd = 12. Case (3.4.3) follows.

Finally Case (3.4.4) follows from Proposition 1.4 which ensures us of the absence,
in Q 8, of adjunction theoretic scrolls over threefolds for which the map p is flat: for if
p were flat then Y would be non-singular by [21] Theorem 23.7 and then X would be a
projective bundle, a contradiction. If one of these scrolls occurs, since p is not flat and
—Kx isp-ample, Lemmab.6 and [21], Theorem 23. 1 ensuresthere must be afiber F such
that either F containsadivisor or, by [7], 14.1.4, F isasurfaceS asinLemma2.1. In the
latter case we get d = 14. In the former, by slicing with a general hyperplane section,
we get a threefold X together with the morphism p := pz: X — Y, where Y is the base
of the scroll. p is the second reduction morphism for (X, L‘;(). In particular, by slicing
the fiber F with the same general hyperplane section, we obtain a scheme F’ C X which
contains a divisor D contracted by p to a point. This divisor D fits the assumptions of
Lemma2.1, by virtue of the structure theorem of the second reduction morphism (cf. [5],
Theorem 0.2.1). This concludesthe proof. ]

4, Fibrationsover curveswith general fiber a Del Pezzo manifold. In order to
prove Theorem 3.4, we need to analyze adjunction-theoretic Del Pezzo fibrations over
curves. In this section we study a class of fibrations which includes the ones above. The
main result is Proposition 4.5.

We now study codimension two non-singular subvarietiesof Q ", n > 5, which admit
amorphism f: X — Y, with connected fibers, onto a non-singular curve'Y, such that the
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line bundle Kx + (n — 4)L istrivial on the general fiber. The general fiber will thus be a
non-singular (adjunction-theoretic) Del Pezzo variety of the appropriatedimension n—3.
By Remark 2.2 we haven = 5, 6.

A priori, not al such varieties are adjunction-theoretic Del Pezzo fibrations over a
curve. We study these a priori more general objects for completeness. Section 4.1 con-
tains some upper bounds for the degree of other specia classes.

The following lemma ensuresthat these fibrations coincide with the Del Pezzo fibra-
tions over curves of Adjunction Theory. Let Sbe a surface section of X.

LEMMA 4.1. Let X be a fibration as above. Then Kx + (h — 1)L is ample and
k(Kx+(—2)L) = (9 = 1.

PROCOF. By the above discussion, either n = 5 or n = 6. Without loss of generality
we may assumethat n = 5, for otherwise we could consider ageneral three-dimensional
hyperplane section of X and it is easy to show that if the statements we want to prove
hold for the threefold hyperplane section of X, then they also hold for X.

The generic fiber of f is anon-singular Del Pezzo surface F. Since Ky + L is trivial on
the fibers we define

A:=17-F=Li =K
Cut (1) with F, using the facts that Kxjr = Ke and that x; - F = 12— A. We get

24
A= 16—-d
Since F is a Del Pezzo surface and L is very ample, weget 3 < A < 9. SinceAisan

integer we have only the following possihilities:
(7 (A,d) = (3,8), (4,10), (6,12).

Using the above invariants, and the lists of Adjunction Theory, it is easy to show that

Kx +(n — 1)L is ample and that x(Kx + (n — 2)L) = 0,1. By Theorem 3.4 the case

Kx = —(n—2)L cannot occur, sincethese manifolds do not carry any nontrivial fibration.

It follows that Ky + 2L isample, x(Kx + L) = 1 and, by adjunction, x(S) = 1. ]
We need the following facts.

FACT4.2. Letf:X — Ybeasabove. By relativevanishingwehavehi(Ox) = hi(Oy),
Vi.

FACT 43. g(Y) = q(S), 20— 2—d = (pg(S + (S — 1) A; moreover the elliptic
fibration S— Y has no multiple fibers.
The assertion about g(Y) = (S follows from the Lefschetz Theorem on hyperplane
sections, g(S) = h*(Ox), and from Fact 4.2; the other assertion follows from [24], 0.5.1.

FACT 44. S P*.
To prove this, assumethat S C P4. We use jointly the double-point formula for surfaces
in P4, see [19], page 434, and (3) to compute the values of g and X(O(S)) to conclude
that, d = 8,10 would yield non-integer values, a contradiction, and that if d = 12 then
g = 25, and x(Os) = 13; this system of invariants is inconsistent by Fact 4.3. This
proves the assertion.
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PROPOSITION 4.5. LetX C Q ", n > 5, be anon-singular, codimension two subvari-
ety which admits afibration f: X — Y in Del Pezzo manifolds onto a non-singular curve
Y; in particular (KX +(dimX — 2)L)|F ~ Ok, F a general fiber.

Then Y ~ P! and either (X, L) is of Type N) of Proposition 1.4 or only the following
systems of invariantsis possible:

451)n=5d=12 K2 =6,g= 10, py(S = 2,q(S = 0, hi(Ox) = 0, Vi > 0.

PROCOF. By the proof of Lemma 4.1 and by the information of the cases of degree
d = 8,10 varieties stemming from Proposition 1.3, we only need to rule out the case
d = 8 and make precise the invariants in the case d = 12. Moreover, by the same
lemma, k(S = 1.
Firstletn= 5.
Now we determine the invariantsin the case d = 12.
We apply formula (3) inthe case d = 12. We get

(8) 2(g—1)—3x(09 = 0.

By Fact 4.4 and by [13], Proposition 1.4 we arein the position to apply the Castelnuovo
bound for curvesin P*, which gives g < 13.

(8) implies that x(Os) is not a non-negative integer, unless (g, x(Os)) = (7,1), (10,3),
(13,5). We can rule out the cases: d = 12 and (g, X(Os)) = (7,1), (13,5) using Fact 4.3
which givesg — 7 = 3(py + q — 1); this last equality together with the given values of
x(Os) and g gives a non-integer value for g, a contradiction. It follows that if d = 12,
then (g, X(Os)) = (10, 3). To compute the values of py and  we use again Fact 4.3 which
gives the number pg + g. Since we know x(Os) we get the values of pg and .

Sinceg = qweseethat Y ~ PL. The assertions about h'(Ox) follow from Fact 4.2.

The proposition is thus proved for n = 5.

Let n = 6, the only remaining case, by virtue of the Barth-Larsen theorem. By slicing
with ageneral hyperplane we get athreefold with afibration onto a curve whose general
fiber is a Del Pezzo manifold so that the above analysis applies. The only differenceis
that the case d = 10 does not occur by Proposition 1.3.

Now we prove that the cased = 12 also does not occur.

Thegenera fiber of f isaDel Pezzo threefold with Kg = —2L - and L|3F = 6. By explicit
classification, see [16], page 72, either F ~ P! x P! x P! or F ~ P(Tp2). In both cases
formula (2) dotted with F gives x3 - F = x3(F) = 24. But in the former case x3(F) = 8,
in the latter x3(F) = 6. ]

4.1 More upper bonds. This section is not needed for Theorem 3.4.

We now prove an upper bound for the degree of codimension two, non-singular sub-
varietiesof Q n, n > 5, which admit amorphism onto a curve such that the general fiber
isaFano variety. Again, by virtue of Remark 2.2, we need to worry only about the cases
n=>5,6.
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PROPOSITION 4.6. Let X C Q " a non-singular subvariety of codimension two and
degree d which admits a morphism onto a curve such that the general fiber is a Fano
variety.

If n=5,thend < 20.
If n=6,thend < 30.

ProOF. Letn=5andL := L. Assumethatd > 22.
We cut (1) with afiber, F, and obtain, on F:

(11— d/2)L? +5KeL + KZ — co(F) = 0.
Since cp(F) = 12 — K2, we get:
(9) (d/2—11)L2 +2KZ — 12+ 5KeL = 0.
Now we use KZ < 9to get
(10) (d/2—11)L? < 6+5KeL.

Since KeL < —1, we seethat either d = 22, ord = 24 and L2 = —KegL = 1. Inthe
latter case F ~ P? and the Hodge Index Theorem, applied to the surface F, says that
Kn§2 = 1, acontradiction. In the former case we use (9):

2K2 —12+5KeL =0,

which gives a contradiction for each value Ké =1,...,9. Itfollowsthat d < 20.
The proof of the statement for n = 6 is analogousto the proof of Proposition 4.7, where
we use (1) with n = 6 cut with the cycleKy - F. ]

In the same spirit we prove an upper bound on the degree of Fano threefoldsin Q °.
PROPOSITION 4.7.  Let X C Q 5bea non-singular Fano threefold. Thend < 20.

PROOF (CF. [6], COROLLARY 1.2). We cut (1) with Kx and get, using the fact that
X1Xo = 24X(Ox) = 24:

(11 — d/2)L?Kx +5LKZ + K3 + 24 = 0.

Let
A= LKZ, 2u = —L%Ky = —2g+2+2d;

clearly A and . are positive integers and the above becomes:

(1) (d — 22)p + 5p) + 24 = —K3.
By the Generalized Hodge Index Theorem, see[4], we get (—K3)(—KxL?) < (KZL)?, or

(12) (—Kx)*(2n) < A%
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By combining (11) and (12) we get
(13) A2 —10pX — [2(d — 22)u2 + 48u] > 0.

If we solve the above in A we get either A < 0, a contradiction, or A > 10u. This
implies, in turn, that A > 11. Since, by the classification of Fano threefolds, —Kf’( < 64,
(11) becomes

(d—22)u +55+24 < 64,

acontradiction for d > 22. n

5. QuadricFibrations. Inorderto prove Theorem 3.4, we need to analyze adjunc-
tion-theoretic quadric bundles. In this section we study a class of fibrations which in-
cludes the ones above.

The main results are Proposition 5.4 and Remark 5.5.

Theterm quadric bundleisto beintended in the senseof Adjunction Theory. Theterm
quadric fibration is introduced below. A priori, not all quadric fibrations are quadric
bundles. We study these, a priori, more general objects for completeness. Section 5.1
ensures us that a quadric fibration with one-dimensional fibersis a conic bundle with a
non-singular base.

By quadric fibration we mean a non-singular projective variety X C P, of dimension
X, together with afibration p: X — Y onto a(a fortiori) non-singular variety Y of positive
dimensiony, all of which fibers are quadrics, not necessarily integral, of the appropriate
dimension (x — y). One has non integral fibersonly if the relative dimension is one.

ThecasedimY = Qistrivia. By virtue of Remark 2.2 we have:

FACT 5.1. There are no codimension two quadric fibrationsin Q ", for n > 7 and,
for n = 6, any suchis simply connected.

We restrict ourselvesto the case of n > 5.

We begin by fixing some notation and establishing some simple facts.
Let L denotethe restriction to X of the hyperplanebundle. The sheaf E := p,L islocally
freeonY of rank (x —y+2). It iseasy to check that E is generated by its global sections.
Thesurjection p*p;: L — L definesan embedding : X — P(E), whereL = §Ejx and Xis
defined by anonzero section of theline bundle 2¢ — 7*M , for some M € Pic(Y), where
m:P(E) — Y isthe bundle projection.

The following gives a sufficient condition for ageneral hyperplane section of X to be
aquadric fibration over Y. Itisawell known “counting dimensions" argument.

LEMMA 5.2. Let X — Y bea quadric fibration as above. Assume 2y < x + 2. Then
a general hyperplane section X’ of X is a quadric fibration over Y viapx: X' — Y.

Proor. Since E isgenerated by global sections and, by assumptionrank(E) >y, a
general section of it does not vanish on'Y. Such a section will define, for everyz € Y, a
hyperplane/\; of the correspondingfiber 7=1(z) C P(E). Inthe caseinwhichthequadrics
p~1(2) wereintegral Vz € Y, we would be done. This s, in general, not true. However,
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the singular quadrics of the fibration are parameterized by a proper closed subset D of Y
with dimD < (y — 1). The hyperplanes of P which contain the reduced part, Z ~ P*7,
of one of the components of one non-integral quadric of the fibration form alinear space
of dimension (dimP — x +y — 1) contained in PV. The space of these bad hyperplanes
isof dimension at most (dimD +dimP —x+y — 1) <dimP — x+2y — 2 <dimP". It
follows that the general section of E gives a hyperplane section of X which cuts every
quadric of thefibration in a quadric of dimension one less. ]

PROPOSITION 5.3. There are no quadric fibrations over curves in Q 6. The only
quadric fibrations over curvesin Q ° are of Type G) of Proposition 1.4. If there is a
quadric fibration over a surfacein Q 8, then it has degreed = 12.

PROCOF. As to quadric fibrations over curves, we cut (1) with a non-singular fiber
F ~ Q "3, wegetd = 6. We conclude by comparing with Proposition 1.3.
As to quadric fibrations over a surface we cut (1) with a non-singular fiber F ~ Q "—*
andgetd = 12. ]
The following proposition and remark describe our knowledge of the situation for
threefoldsin Q ° which quadric bundles over surfaces.

PROPOSITION 5.4.  Let X C Q ® be a threefold quadric fibration (conic bundl€) over
a surface Y. Then either d < 98 or X is contained in a hypersurfaceV € |OQ 5(3)| and
d < 276.

PROOF. We denote the Chern classesof X and Y by x; and by, respectively. We omit
the symbol “p*" for ease of notation. Wefollow closely the paper [10]. First weintroduce
the following entities and wereport from [10], for the reader’s convenience, therelations
among them which are essential to the computations below (one warning: some of the
equalities are only numerical equalities):

M was defined at the beginning of the section;

D € |2e; — 3M |, it is called the discriminant divisor; its points correspond to the
singular fibers of p;

2R C Y the branching divisor associated with a general hyperplane section, S, of X,
which, in view of Lemma5.2, isacyclic double cover of Y;

e = 3R-D;
M =2R—-D;
X1=L+b;—R;

Xo=L?+L-(by —2R+D)+(—2R2 —R-b; +D - R+ by + &);
X3 = 2b, — D2 + Dby;

L-W-W =2W- W, for every pair of divisorsWand W on'Y;
L2-W= (4R—D) W,

& = 1(12R? + D? — 7DR—d).

Now we plug in the above values of x; and X, for x; and X, in (1):

(14) (6— g)L2—4Lb1+5LR+b§— bjR—LD+3R? —DR—b, — e, = 0.
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Next we equate the expression above for x3 to the one of (2), using again the above
expressionsfor x; and X,:

(15) —(2d+10)b1R+2dR2+(g +4)Dhy +D?— 10b, +2b2 — (g +5)DR— d(g —13)=0.

Now we set
x:=b? and y:=DR,

we cut (14) with R, —by, D and L, respectively, so that we obtain four linear equationsto
which we add (15), after having substituted in x and y. The result is the following linear
system of equations:

(16) MV = ¢,
where
-8 34-2d 0 0 0
—2d-34 0 -g+8 o0 0
M = 0 0 -8 4-8 0 |,
—18 14 +4 0o -2
\—2d—10 2d d+4 1 -10

V.= (blR, RZ, Dbl, Dz, bg)
and
ci=((8— g)y —8x, (2d — 34)y, 2x+4y + ol(g —7), —2x+ (9 +5)y+ ol(g — 13)).
2 1 il ) 2 ) 2 2

Since P := —3 detM = 3d® — 27d? — 1520d + 18976 > 0, ¥d > 0, we can solve the
above system (16) and obtain the unique solution:
bR = —%[(— 1280 + 4480d — 39168)x + (2d° — 111d? + 2020d — 12096)y
+(2d° — 120d* + 2678d° — 2630402 + 95744d)] / P,
R = %[(—1024d +18432)x + (3d® — 8d? — 2112d + 23552)y

+(16d* — 688d° + 972802 — 45056d)] /P,
biD = —2[(—152d? + 4440d — 32128)x + (2d° — 113d? + 2099d — 12852)y
+(2d° — 122d* + 2766d° — 2757402 + 101728d)] / P,
D? = —4[(—1216d + 16064)x + (—3d° + 46d° + 893d — 13736)y
+(16d* — 7200 + 10608d? — 50864d)] /P,
b, = %1[(120|3 +20d? — 3648d + 13952)x + (d® — 30d? + 152d + 960)y

+(d® — 27d* + 274d* — 4448d? + 46016d)] / P.
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Since E is generated by global sectionsand D is effective we see that ; > 0, &.D > 0.
Also, [10], Lemma 2.9 givesy = DR > 0. We can make explicit e; and e; by the
formulae given at the beginning of this proof and deduce:

DR=y >0,
&P = (896d—4480)x—(§d2—366d+3616)y—(?d4—%d3+5864d2—24656d) >0,

e:D - P = —(4864d — 64256)x — (3d® — 103d? + 988d — 1984)y
+ (64d* — 2880d° + 424320 — 203456d) > 0.

These three inequalities define a region of the plane (X, y). It is straightforward to check
that the two linese, = 0 and ;D = 0 have slopes a and b whose signs do not change
with dif d > 20. One can check easily that a > 0 and b < 0. Theintersection of thefirst
line above with the x-axisis

_/(19/ 2)d* — (843/2)d? + 5864d? — 24656d

0, 0)e, = ( 896d — 4480 ’O)
the intersection of the second line with the x-axisis

64d* — 2880d° + 42432d? — 203456d
02, 0)ep = ( 4864d — 64256 'O>'

One can check, that, sinced > 20, x; < X. The region we are interested in isatriangle
with vertices (x1, 0)e,, (X2, 0)e,p0 and (X3, ¥3)(e,=0)(e:D=0)-
Now we compute the genus of ageneral curve section, C, of X. By adjunction x; - L2 =
2d + 2 — 2g, so that by what above:

d Dby DR
g—1=3— 2R+ —2+2R— —
_ Db]_ Yy d
——2b1R+T+2R2—§+E

= [(24d? — 472d + 2176)x + ((23/2)d” — 375d + 3044)y
+((23/2)d* — (891/2)d® + 5374d” — 19024d) | /P.
Again it is not difficult to check that the absolute value of the slope of the abovelineis

bigger than |b|. It follows easily that the maximum possible valuefor g— 1 in our region
is achieved at (X2, 0)e,p, While the minimum is at (X1, 0)e,. We thus get
19d2 — 187d? + 416d 4d® — 77d? + 321d

17 <g-1<
(17) 24d— 1120 =97 =7 38d—_502

Assume that C is not contained in any surface of Q 2 of degree strictly lessthan 2 - 11.
Then by (1.6) and by the left hand side inequality of (17), we get

19d® — 1870 + 416d < & 7

— 4+ _d,
224d — 1120 -2 2
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which, remembering that d is even and that we are assuming d > 20, impliesd < 98.
Assumethat C is contained in a surface of degree 2k, withk = 10,9, ..., 3. By Proposi-

tion 1.5 weinfer:

1od° — 187d? +416d _ o k-3
224d— 1120 4k 2

which implies, asabove, that for k = 10,9, ...,3,d < 64, 58 54, 48, 44, 40, 40 and 276,
respectively.

Finally, assume that C is contained in a surface of degree four or two. Using the right
hand side inequality of (17) and Lemmal.7 wegetd < 42 andd < 16, respectively.
Actualy in the last case we get a contradiction, since we are assuming d > 20.

Finally if Cisin asurface of degreesix, then X isin a hypersurface of degreesix in Q °,
provided, d > 18 (cf. [13], Proposition 1.4). n

REMARK 5.5.  We have checked with a Maple routine what are the possible degrees
of athreefold in Q ° which is a quadric fibration over a surface. For d > 20, the results
of this paper impose the following restrictions on the triples (d, x, y):

(1) 20<d < 276;
(2) for every fixed d as above (x, y) must belong to the triangle of the proof of
Proposition 5.4;
(3) bR R2, biD, D? bz, g — 1, x(O(Y)) and x(O(9) must beintegers;
(4) (g— 1) must satisfy inequality (17) and the bound of Theorem 2.3 in [18];
(5) x(O(8) must satisfy the two inequalities of Proposition 1.1;
(6) variousinequalities stemming from the Hodge Index Theorem appliedto Y
as, for example, (KyR)? > KZR?;
(7) ifd >98theng — 1 < (1/12)d?, see Proposition 1.5;
Theresult isthat the only possible degree, for d > 20isd = 44.
By taking double coversof thefour scrollsof [23], we seethat there areflat conic bundles
over surfacesfor d = 6,12, 14, 18. We do not know whether the cased = 44 occurs.

5.1 Digression.

In the course of the proof of Theorem 3.4 we used the fact, due to Besana [9], that
the base of an adjunction theoretic quadric bundle over a surface is non-singular. The
following lemma is a result with a similar flavor. It is probably well known. The first
corollary is used in the proof of Theorem 3.4. The second oneis, in a sense, a converse
to the lemma.

LEMMA 5.6. Let X a non-singular projective variety of dimensionn, p: X — Y a
mor phismonto a normal projectivevariety Y of dimension n— 1 such that all fibershave
the same dimension, the general schemetheoretic fiber over a closed point isisomorphic
to a conic and —Ky is p-ample. Then all the scheme-theoretic fibers are isomorphic to
conics, pisflat and Y is hon-singular.

PrOOF.  The proof is the same as the one of [22] Lemma 3.25. The only necessary
changes are the following: @) replace the line bundle H of [22], by a pull-back p*A of
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any ample line bundle A on Y and use Kleiman’s criterion of ampleness to obtain the
result analogousto the last assertion of [22] Lemma; b) replace[22] Lemma3.12 by [1]
Lemmal.5. L]

COROLLARY 5.7. Let X be a non-singular projective variety together with a mor-
phismp: X — Y, whereY isanormal variety of dimensionm. Let D;,i = 1,...,n—m—1
be divisors on X such that they intersect transversally; denote by X’ their intersection.
Assume that px: X' — Y satisfies the hypothesis of Lemma 5.6. Then piisflat and Y is
non-singular.

PROOF. By the lemma, pjx is flat. We can “lift" this flatness to p by virtue of [21],
Corollary to Theorem 22.5. As above the flatness of px, (or of p) implies the non-
singularity of Y. n

COROLLARY 5.8. Let X anon-singular projective variety of dimensionn, p: X — Y
a morphism onto a normal projective variety Y of dimension n — 1 such that all fibers
have the same dimension. If the general fiber of p is actually embeddable as conics with
respect to an embedding of X, then all scheme theoretic fibers are actually embedded
conics, pisflat, Y isnon-singular and —Kx is p-ample.

PrOOF. We argue as in the proof of the lemmawith the simplifications due to the
fact that a flat deformation of a conic in projective space is still a conic. The assertion
about —Ky follows by observing that, if L denotesthe line bundle with which we embed
X, Kx + L isapull-back from Y. n

REMARK 5.9.  Theassumption —Ky isp-ampleisessential in thelemma, as the blow
up of aP* bundleover acurveat two distinct pointson afiber shows. Moreover, the above
Lemmadoesnot follow directly from [22] or [1], sincethere are conic bundlesfor which
the structural morphismisnot aMori contraction. Finally, the abovetheoremis certainly
faseif onehasdimX = dimY. It isa purely local question: consider the quotient of A?
by the involution (x,y) — (—x, —Y).
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