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Abstract

We show how to determine if a given vector can be the signature of a system on a
finite number of components and, if so, exhibit such a system in terms of its structure
function. The method employs combinatorial results from the theory of (finite) simplicial
complexes, and provides a full characterization of signature vectors using a theorem of
Kruskal (1963) and Katona (1968). We also show how the same approach can provide
new combinatorial proofs of further results, e.g. that the signature vector of a system
cannot have isolated zeroes. Finally, we prove that a signature with all nonzero entries
must be a uniform distribution.
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1. Introduction

The concept of a signature of a system is useful in providing knowledge of the lifetime
distribution of the system in terms of its structure function and single components’ lifetimes
only; see [2] and [7] for a thorough introduction to the subject.

In this paper we provide a combinatorial characterization of signature vectors, which seems
to be an open issue in the theory of system reliability (in [5] a complete study of systems with
up to five components is provided). Our approach provides a criterion to check whether a
probability vector can be a signature. The method consists of simple tests involving entries
of the candidate signature, and, if the tests are positive, it constructs explicitly the structure
function of a system with the required signature. If the candidate signature vector does not
fulfill a certain technical requirement, the procedure yields a family of sets of components
which does not have the necessary algebraic properties so that no system can have that vector
as its signature.

The idea is to translate the problem in combinatorial terms, and then use a result of Kruskal [4]
and Katona [3], that offers a necessary and sufficient condition for a family of sets with a certain
algebraic property to exist. We show that the family of cut sets of any system enjoys such a
property so that the characterization problem is eventually reduced to counting the number of
cut sets of each possible cardinality.

The paper is organized as follows. In Section 2 we recall the main definitions and notions in
the theory of system reliability in terms of signatures, and, in particular, the relation between the
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A characterization of system signatures 509

signature and the number of cut sets of each cardinality. Section 3 is devoted to the definition of
simplicial complexes and their relation with cut sets and, therefore, with the signature as well.
In Section 4 we recall the statement of the Kruskal–Katona theorem for simplicial complexes.
Section 5 contains the main result as a summary of the observations of the previous sections: a
criterion and a procedure testing whether a vector can be the signature of some system.

We then apply techniques from the theory of simplicial complexes to our problem, which
allows us to obtain more interesting results. We prove two more properties of system signatures
in Section 6, namely that the signature cannot have isolated zeroes, and that the signature is
uniform as soon as all of its entries are nonzero. The former results follows from [6, Theorem 2]
as a consequence of the so-called increasing failure rate average property, yet here we provide
a new proof of combinatorial nature. We conclude with some comments in Section 7.

2. Review of system signatures

In this section we recall some concepts and definitions in the theory of system reliability
(see [7] for more details).

Let τ = {τ1, . . . , τn} be a set of n ∈ N binary stochastic processes, interpreted as the state,
as time evolves, of the components {X1, . . . , Xn} = X of a system. Each component Xl can
be either down (or broken/off) or up (or working/on), e.g. τl = 0, 1, respectively, l = 1, . . . , n.
We assume that all components are initially up, and when a component fails, it stays down
forever, so each component Xl has a random lifetime Tl , whose distribution is assumed to
be continuous in order to avoid ties in failures. Lifetimes of components can be assumed
to have the same distribution and to be independent, although exchangeability is enough.
A system deploys its components according to some design architecture, and is characterized
by a structure function φ that indicates whether the whole system is up or down, for any given
description of the states of individual components. In other words, the system may work even
if some components are broken, and, given a subset G ⊆ X, interpreted as the set of working
components, the function

φ : 2X → {0, 1}
tells us if the system is up (φ(G) = 1) or down (φ(G) = 0). Common sense requires φ to
be nondecreasing, which means A ⊆ B implies that φ(A) ≤ φ(B), and to satisfy φ(∅) = 0,
φ(X) = 1.

Initially all components (hence the whole system) work, and then one at a time they fail (and
stay broken) so that at some point the system stops working, say this occurs as the lth failure of
a components takes place. The order in which components fail is a permutation σ : N → N of
the set {1, . . . , n}, encoding that φ({Xσ(l), . . . , Xσ(n)}) = 1, but φ({Xσ(l+1), . . . , Xσ(n)}) = 0.
We may rephrase this by saying that (for a given system φ) one and only one breakdown index
l ∈ {1, . . . , n} is associated with any given ordering of the failures (permutation)σ . LetNl(φ)be
the number of permutations with breakdown index l, i.e. such that φ({Xσ(l), . . . , Xσ(n)}) = 1,
but φ({Xσ(l+1), . . . , Xσ(n)}) = 0. Define N(φ) = (N1(φ), . . . , Nn(φ)) ∈ N

n.

Definition 2.1. The system signature is the probability vector s(φ) = N(φ)/n!, whose lth entry
sl(φ) is the probability that the system stops working exactly as the lth failure of a component
takes place.

An important question arises: given a vector, how can we determine whether it is the signature
of some system? If so, what is a procedure to yield an explicit system inducing that signature?
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Further questions on the distributions of zero and nonzero entries have been raised by the
observations of actual systems [5]. We intend to address such questions in this paper.

In the rest of this section we will recall the standard notations for the families of sets that
determine the state of the system, revealing the combinatorial nature of the signature, which
allows one to study the system reliability [7] combinatorially rather than as a stochastic process.

Definition 2.2. A subset B ⊆ X is called a cut set if the system cannot work when all its
components are broken. A subset G ⊆ X is called a path set if the system works whenever all
its components work. A set of either type is said to be minimal if none of its proper subsets
enjoys the same property.

As the system evolves in time, choose from the set of all total orderings of {1, . . . , n} the
element σ that indicates the order in which the components failed. Say σ has breakdown index l,
meaning that the system goes down as soon as the component Xσ(l) breaks. Then (see [1]),

Sl(φ) = s1(φ) + · · · + sl(φ) = 1(
n
l

)
|B|=l∑
B⊆X

(1 − φ(B)), (2.1)

since
∑|B|=l

B⊆X (1 − φ(B)) counts the number of subsets B of X with cardinality l on which the
structure function takes value 0, i.e. the cut sets of cardinality l. Elements of each cut set B and
of those of its complement X \B can be (separately) freely permuted, so this term is multiplied
by l! (n − l)!.
Definition 2.3. We will call the complement of a cut set a co-cut set. By co-path, we will
indicate the complement of a path set.

Remark 2.1. From (2.1) we see that the signature depends only on the number of co-cut sets
of each cardinality. Equivalently, the signature depends only on the number of cut sets, or of
path sets, or of co-path sets.

Consider an ordering σ of component failures with breakdown index l. This means that the
set of the l−1 components that fail first does not contain a cut set, and that the remaining n−l+1
components include a path set (the system is still working at the time of the (l − 1)th failure)
and, therefore, a minimal path set as well. We also know that the set of the l components that
fail first does contain a cut set (and, therefore, also a minimal cut set), and the remaining n − l

components do not include any path sets. The component Xσ(l) giving place to the lth failure
belongs then to both a minimal cut set and a minimal path set. Since σ indicates the order in
which the components fail, the component Xσ(l) is the common element to the minimal cut and
path sets that appear in the first l and last n − l + 1 positions of the vector (Xσ(1), . . . , Xσ(n)),
respectively. This is a general fact.

Remark 2.2. Each minimal cut set intersects all minimal path sets, and the intersection consists
of exactly one element. Conversely, each minimal path set intersects all minimal cut sets, and
the intersection has cardinality 1.

It is not difficult to see that the structure function is fully determined by the family of the
minimal cut sets or, equivalently, by the family of the minimal path set. The system is thus
completely defined by its structure function or by its family of minimal cut or path sets. This
one-to-one correspondence that associates nondecreasing functions 2X → {0, 1} with subsets
of 2X admitting no proper inclusions will be denoted by �, and justifies the following notation.
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Definition 2.4. Given a structure function φ, the corresponding family of minimal cut sets is
�(φ) and given a family �̄ of subsets of X without proper inclusions, the corresponding unique
structure function will be denoted by φ�̄ = �−1(�̄).

3. Simplicial complexes and cut sets

In this section we recall some notions in the theory of simplicial complexes. A simplicial
complex K is a set of simplices such that any face of a simplex from K is also in K and so
the intersection of any two simplices �1, �2 ∈ K is a face of both �1 and �2. A simplicial
d-complex is a simplicial complex where the largest dimension of any of its simplices is d.
The f -vector of a simplicial d-complex is the vector (f0, f1, . . . , fd) whose lth component is
the number of (l − 1)-dimensional faces in the simplicial complex, and, by convention, f0 = 1
unless the complex is empty.

It is important to note that not all integral vectors can be f -vectors of a simplicial complex.
In fact, there are constraints on the number of lower-dimensional simplices one must obtain
when removing vertices from a given simplex in the complex. The Kruskal–Katona theorem
provides a full characterization of f -vectors of simplicial complexes.

Now we want to relate the family of cut sets to the concept of simplicial complex. Let �̃

be the family of cut sets of a system with structure function φ, and consider C ≡ 2X \ �̃,
i.e. the family of co-cut sets. Then C = φ−1(0) is a simplicial complex. In fact, since
adding an element to a cut set yields a cut set of increased cardinality, removing an element
from a co-cut set yields a co-cut set of decreased cardinality: this is just the very essence of
simplicial complexes. Similarly, using path sets instead of cut sets, the family of co-path sets
P ≡ 2X \ φ−1(1) = φ∗−1(0) is also a simplicial complex (see Appendix A for the notation
regarding φ∗).

We will focus on cut sets only, but our considerations stay unchanged if we consider path sets
instead. In simpler terms, a superset of a cut or path set is still a cut or path set, respectively.
Denote by Cl and �̃l the set of elements of C and �̃, respectively, of cardinality l so that
C = ∪lCl and �̃ = ∪l�̃l . Clearly, Cl ∪ �̃l = (

X
l

)
and |Cl | + |�̃l | = (

n
l

)
. If A ∈ Cl and x ∈ A,

then A \ x ∈ Cl−1. Therefore, the vector (|C1|, . . . , |Cn|) is the f -vector of the simplicial
complex C.

Knowledge of this vector is equivalent to knowledge of the family of cut sets, since �̃l =(
X
l

) \ Cl . However, as noted in Remark 2.1, the vector (|�̃1|, . . . , |�̃n|) is the nonnormalized
cumulative signature whose lth component coincides with

(
n
l

)
Sl(φ) = (

n
l

)
(s1(φ)+· · ·+sl(φ)).

Therefore, the f -vector of C, with components fl = (
n
l

)
(1 − Sl), l = 1, . . . , n, is trivially

related to the signature. Clearly, 1 − Sl equals sl+1 + · · · + sn by definition.
In the next section we will introduce the theorem of Kruskal–Katona, which provides a

characterization of f -vectors and, hence, of signatures.

4. Kruskal–Katona theorem

We recall here the Kruskal–Katona theorem, which provides a characterization of f -vectors
of simplicial complexes, that we will later apply towards understanding system signatures.
Given two integers k ≥ 0 and l > 0, it is known that there is a unique way to expand k as a
sum of binomial coefficients as

k =
(

nl

l

)
+

(
nl−1

l − 1

)
+ · · · +

(
nj

j

)

with nl > nl−1 > · · · > nj ≥ j ≥ 1.
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As an example, consider n = 25, l = 3. The largest integer of the form
(
n3
3

)
smaller than or

equal to 25 is 20 = (6
3

)
. The largest integer of the form

(
n2
2

)
smaller than or equal to 5 = 25−20

is 3 = (3
2

)
. The largest integer of the form

(
n1
1

)
smaller than or equal to 2 = 5 − 3 is 2 = (2

1

)
.

This completes the example, since
(

6

3

)
+

(
3

2

)
+

(
2

1

)
= 20 + 3 + 2 = 25.

Note that ni ≥ i for every i so all binomial summands are necessarily positive; as a consequence,
when k = 0, the unique admissible expansion is the empty one.

Now, for the given k and l, define

k+(l) =
(

nl

l + 1

)
+

(
nl−1

l

)
+ · · · +

(
nj

j + 1

)
(4.1)

and

k−(l) =
(

nl

l − 1

)
+

(
nl−1

l − 2

)
+ · · · +

(
nj

j − 1

)
(4.2)

from the previous expansion. When k = 0, this forces k+(l) = k−(l) = 0.
The next proposition is a version of the Kruskal–Katona theorem and offers a minimality

constraint for simplicial complexes with emphasis on the combinatorial aspects of the sets
composing the complex. In fact, the term ‘complex’ is not even used in the terminology.

Proposition 4.1. (See [4] and [3].) Let X be a set of n elements k and l be given integers such
that

1 ≤ l ≤ n, 0 ≤ k ≤
(

n

l

)
,

and let
A = {A1, . . . , Ak}, Ai ⊆ X, |Ai | = l for i = 1, . . . , k.

If
A− = {B : |B| = l − 1, there exists j : B ⊂ Aj } (4.3)

then
min
A

|A−| = k−(l),

where the minimum runs over all collections A of k subsets of X of cardinality l, and k−(l) is
defined as in (4.2).

Here and in what follows, for the original proof and a more general analysis, see [4] and [3].
From (4.3) it follows that families A of increasing or decreasing cardinality form a simplicial
complex. The next proposition is probably the most common version of the Kruskal–Katona
theorem, equivalent to Proposition 4.1, and provides a necessary and sufficient condition on
the number of l-simplices in order for them to be induced from a complex. These numbers are
the entries of the so-called f -vector of the complex, whose definition has been was stated in
Section 3.

Proposition 4.2. (See [4] and [3].) A vector (f0, f1, . . . , fd) is the f -vector of a simplicial
d-complex if and only if

0 ≤ f −
l (l) ≤ fl−1, 1 ≤ l ≤ d. (4.4)

https://doi.org/10.1239/jap/1437658612 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1437658612


A characterization of system signatures 513

In the case of the application to a system signature with n components, we will consider
d = n − 1, and any total ordering can be chosen for the system components. Choosing, at
level l, initial segments (according to the reverse lexicographic order) of size fl makes the
number of implied elements at level l −1 minimal. There is a dual maximality condition which
is equivalent to (4.4),

0 ≤ fl+1 ≤ f +
l (l), 0 ≤ l ≤ d − 1.

The reverse lexicographic order simply reads the strings in reverse order, then sorts
lexicographically. The advantage of considering the reverse lexicographic order is that the
list of the first (according to this order) r ∈ N elements does not depend on the size of the
alphabet (the size n of the system, in our case).

5. Characterization of system signatures

In this section we sum up all observations made so far into the main result of this work. Let
us start with a preliminary well-known observation, basically equivalent to what we presented
in Section 3. Consider the signature vector s of some system with n components {X1, . . . , Xn}.
The entry sl is the probability that the system fails at the lth failure of a component. In other
words, the lth entry of the cumulative signature Sl = s1 + · · · + sl is the probability that the
first l components that broke form a cut set. This probability is in turn nothing but the fraction
of cut sets of cardinality l among all subsets of {X1, . . . , Xn} with cardinality l.

Let us see how this applies in the context of system signatures when translated in terms of
simplicial sets. Recall that if we add a component to a cut set, we again obtain a cut set, i.e.
all supersets of a cut set are cut sets. The algorithm that we are about to present is, in fact, the
translation of the proof of the Kruskal–Katona theorem, where the role of f -vectors is played
by the ‘complement’ of the cumulative signature multiplied by the number of permutations of
components, roughly speaking.

Theorem 5.1. Let the probability vector s̄ ∈ R
n be the candidate signature. When l =

1, . . . , n − 1, define fl = (
n
l

)
(s̄l+1 + · · · + s̄n). Then s̄ is the signature of a system if and

only if all fl are nonnegative integers and they satisfy

0 ≤ f −
l (l) ≤ fl−1, 1 ≤ l ≤ n − 1. (5.1)

Proof. From the candidate signature s̄ we also know the nonnormalized candidate cumulative
signature S̄. Clearly, 1 − S̄l = s̄l+1 +· · ·+ s̄n by definition. Then the number fl = (

n
l

)
(1 − S̄l)

must be the number of co-cut sets of cardinality l, as we discussed in Section 3, if there is some
system with signature s̄, and is thus a nonnegative integer; note that, by definition, if fl = 0
then fk = 0 for all k ≥ l, hence (5.1) is satisfied for all such indices.

Moreover, the family of co-cut sets of our (hypothetical) system inducing s̄, forms a simplicial
complex whose f -vector equals (1, f1, . . . , fn−1). The Kruskal–Katona theorem provides a
test to check whether this vector can actually be the f -vector of a simplicial complex. The test
consists of (5.1), as explained in Proposition 4.2.

Example 5.1. Consider the probability vector

s̄ = (s1, s2, s3, s4, s5) = (
0, 3

10 , 2
5 , 3

10 , 0
)
.

The corresponding vector is f = (f0, f1, f2, f3, f4) = (1, 5, 7, 3, 0). We have

f −
1 (1) = 1, f −

2 (2) = 5, f −
3 (3) = 6, f −

4 (4) = 0.
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For instance, f2 = 7 can be written as
(4

2

) + (1
1

)
, hence f −

2 (2) equals
(4

1

) + (1
0

) = 5. We see
that (5.1) is satisfied, as 1, 5, 6, 0 are not greater than, respectively, 1, 5, 7, 3, and we conclude
that s̄ is a signature vector.

Sometimes an equivalent procedure might be easier to perform, especially for small systems.
The following is such a procedure. Let N̄ ≡ n! s̄ ∈ N

n.

(i) For each l = 1, . . . , n, sort in lexicographic order the subsets of {1, . . . , n} of cardinality l.

(ii) Take the family �l of the first (N̄1 + · · · + N̄l)/(n − l)! l! = (s̄1 + · · · + s̄l )
(
n
l

)
subsets,

with respect to the lexicographic order.

(iii) Take the union ∪n
l=1�

l of all the �l , l = 1, . . . , n, and extract the minimal family �̄.

(iv) The function φ�̄ is the structure function of a system X with n components and signature s̄.

Now considering Proposition 4.1, the arguments of Theorem 5.1 also prove the following test.

Criterion 5.1. The family �l+1 should contain all the supersets (of cardinality l + 1) of at
least one element from �l . If this is not the case then the vector s̄ cannot be the signature of a
system, since ∪h�

l is not a simplicial complex.

This criterion is equivalent to Theorem 5.1, and the algorithm we presented is simply
the Kruskal–Katona algorithm adjusted to work directly with the candidate nonnormalized
cumulative signature as opposed to its ‘complementary’vector with components

(
n
l

)
(1−S̄l(φ)),

l = 1, . . . , n. This is the reason why we sort strings lexicographically, because the collection
C is a simplicial complex, as opposed to �̃. So, instead of taking, as in the original Kruskal–
Katona algorithm, initial segments in each Cl according to reverse lexicographic order, we take
final segments, i.e. initial segments according to the reverse ordering, which is the lexicographic
order, in each �̃l .

We want to show that this second algorithm can be fairly fast in an explicit detailed example.
The reader may want to compare this example with the systematic study of small systems in [5].

Example 5.2. Consider the vector (0, 3
10 , 2

5 , 3
10 , 0). We pass easily to the nonnormalized vector

(0, 36, 48, 36, 0) by multiplying by 5!.
Start with l = 1. We must take the first 0

1! 4! = 0 singletons.
Take l = 2. We must take the (lexicographically) first 36

2! 3! = 3 subsets with two elements.
They are {1, 2}, {1, 3}, and {1, 4}.

Take l = 3. We must take the first 36+48
3! 2! = 84

12 = 7 subsets with three elements. These are
{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, and {2, 3, 4}.

Take l = 4. We must take the first 36+48+36
4! 1! = 120

24 = 5 subsets with four elements. These
are {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, and {2, 3, 4, 5}.

Take l = 5. We must take the first 120
120 = 1 subsets with five elements. This is {1, 2, 3, 4, 5}.

From these subsets we must extract a minimal family. It is not difficult to obtain �̄ =
{{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. In fact, all other listed sets are supersets of these four selected
sets.

Even calculating �̄ can be automatized: in general, if fl subsets are missing at level l, one
should take, at level l + 1, all subsets that come after the first

(
n

l+1

) − f +
l (l). Let us perform

this computation explicitly in the above example: since

(f0, f1, f2, f3, f4) = (1, 5, 7, 3, 0),
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we obtain

f +
1 (1) = 10, f +

2 (2) = 4, f +
3 (3) = 0, f +

4 (4) = 0.

Then we can recover �̄ by omitting the (lexicographically) first
(

n
l+1

) − f +
l (l) subsets of

cardinality l +1, from the above lists. This means we should omit the first 0 = (5
2

)−10 subsets

of cardinality 2, and take the remaining three; omit the first 6 = (5
3

)−4 subsets of cardinality 3,
and take just the last one; and then omit all subsets of higher cardinality. We obtain, as above,
�̄ = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}.

This fully determines the system, and we can use the definition of minimal cut sets to
determine the structure function φ�̄ and verify that N(φ�̄) = (0, 36, 48, 36, 0).

6. Two more properties of signatures

In this section we provide two properties of system signatures.

6.1. Signature vectors cannot have isolated zeroes

In the next theorem we provide a new combinatorial proof of a previously established
property of signatures. Namely, system signature cannot have isolated zeroes, which follows
from [6, Theorem 2].

We use the same notation as in the previous section: X is the set of system components,
�̃ is the family of cut sets, and �̃l is the family of all cut sets with cardinality l. Recall that
|�̃l | = (

n
l

)
Sl(φ), where Sl(φ) = s1(φ) + · · · + sl(φ) is the cumulative signature, if s(φ) is

the signature vector of a system with structure function φ. Should sl(φ) be 0, we would have
Sl(φ) = Sl−1(φ). Therefore, the condition

|�̃l |(
n
l

) = |�̃l−1|(
n

l−1

)
is equivalent to the vanishing of the lth entry in the signature. We want to show that this cannot
occur unless all subsequent (or preceding, by duality) entries are all 0.

Theorem 6.1. Let Cl be the number of cut sets of cardinality l. If

Cl−1 �= 0

(
n

l − 1

)

then
Cl−1(

n
l−1

) <
Cl(
n
l

) .

Proof. We know from the previous section that Cl = (
X
l

) \ �̃l is a simplicial set so the
Kruskal–Katona theorem applies. Therefore. we have

|Cl | =
(

cl

l

)
+

(
cl−1

l − 1

)
+ · · · ,

for suitable integers n ≥ cl > cl−1 > · · ·
We can assume that n > al , since |Cl | �= (

n
l

)
. Our aim is to show that

1 − |Cl |(
n
l

) > 1 − |Cl−1|(
n

l−1

)
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or, equivalently,
|Cl |(

n
l

) <
|Cl−1|(

n
l−1

) .

In order to make the notation lighter, let us put Cl = |Cl | so that, according to the notation of
the previous section,

C−
l =

(
cl

l − 1

)
+

(
cl−1

l − 2

)
+ · · ·

and
Cl−1 ≥ C−

l .

Hence, we have only to prove that
Cl(
n
l

) <
C−

l(
n

l−1

) ,

which is the same as
C−

l

Cl

>

(
n

l−1

)
(
n
l

) .

In other words, we want to show that the function Cl �→ C−
l /Cl , Cl > 0, takes its only

minimum at Cl = (
n
l

)
. We now use Lemma 6.1 below, the proof of which we postpone for the

sake of clarity, with

a =
(

cl

l − 1

)
, a∗ =

(
cl

l − 2

)
, a′ =

(
cl−1

l − 2

)
+ · · · ,

b =
(

cl

l

)
, b∗ =

(
cl

l − 1

)
, b′ =

(
cl−1

l − 1

)
+ · · · .

By assumption, a′/b′ > a∗/b∗. Moreover, b∗ > b′ and a∗ ≥ a′. Since a/b = l/(cl − l + 1)

and a∗/b∗ = (l − 1)/(cl − l + 2), then a/b > a∗/b∗. Lemma 6.1 yields

C−
l

Cl

= a + a′

b + b′ >
a + a∗

b + b∗ =
(

cl

l−1

) + (
cl

l−2

)
(
cl

l

) + (
cl

l−1

) =
(
cl+1
l−1

)
(
cl+1

l

) ≥
(

n
l−1

)
(
n
l

) ,

which concludes the proof.

We are left with proving only the following easy lemma.

Lemma 6.1. Let a, a′, a∗, b, b′, and b∗ be positive integers such that a∗ ≥ a′, b∗ > b′. If
a/b, a′/b′ > a∗/b∗, then

a + a′

(b + b′ >
a + a∗

b + b∗ .

Proof. It is well known that the mediant (r+t)/(s+u) of any two given fractions r/s and t/u,

lies in-between, provided that r, s, t, u > 0. Let us use this fact with a/b and (a∗−a′)/(b∗−b′)
to obtain

a∗ − a′

b∗ − b′ <
a∗

b∗ <
a′

b′ .

Therefore,
a

b
>

a∗

b∗ >
a∗ − a′

b∗ − b′ .
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Now, both a/b and a′/b′ are strictly larger than (a∗ − a′)/(b∗ − b′), and, hence, so is
(a + a′)/(b + b′). Then

a + a′

b + b′ >
a + a′ + a∗ − a′

b + b′ + b∗ − b′ = a + a∗

b + b∗

and the proof follows.

6.2. Singleton cut sets correspond to uniform signatures

Let us conclude with a final observation for which we use the notation presented in Ap-
pendix A. The signatures we have computed so far, and almost all those appearing in the
literature, have initial or final entry equal to zero. An exception is the signature of a system
with structure function φ1 associated with a minimal family of minimal cut sets consisting of
the only subset �1 = {X1}. This is no coincidence. So the following result holds.

Theorem 6.2. For any system, if both the first and last entry of the signature differ from zero,
then all entries coincide (and equal the inverse of the size of the system).

Proof. If both the first and last entry of the signature are different from zero, then, if φ is the
structure function, both �(φ) and �(φ∗) contain a singleton, say {X1}. Now all elements of
�(φ∗) must intersect all elements of �(φ), and, therefore, they all contain X1. For the same
reason, all elements of �(φ) contain X1 so the only minimal cut set is �(φ) = {{X1}}. This
means that φ = φ1 and we know that s(φ1) is the uniform distribution (over the components
of the system).

7. Conclusions and outlook

We have employed results obtained in the context of simplicial complexes to address
questions in the theory of system reliability with a particular focus on system signatures. We
have introduced a procedure, making use of the celebrated Kruskal–Katona theorem, that checks
if a given probability vector can be a system signature, and, in this case, constructs a system
with that signature. This completely characterizes the set of possible system signatures.

We have proved three properties of system signatures that followed observations in many
numerical studies carried out in the literature (see, e.g. [5]). Namely, we have showed in a new
combinatorial way that no isolated zeroes may appear in the signature vector and that the only
signature with first and last component both different from zero is the uniform one. Further
applications can be given, for instance about the (partial) unimodal property of the signature,
and we plan on reporting on some of them soon.

Appendix A. Duality of systems

Let us recall a definition that is needed only in order to introduce a notation that is used in
Section 6.2.

Definition A.1. Given a system with structure function φ, the dual system has structure
function φ∗,

φ∗(A) = 1 − φ(X \ A) for all A ⊆ X.

Let us study some elementary families of cut sets. Given a family �̄ of subsets of X without
proper inclusions, and recalling Definition 2.4, we may define its dual family by

�̄∗ = �(φ∗̄
�
)
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independently of whether it is interpreted as a family of cut or path sets. The family of minimal
cut sets of a system is also the family of the minimal path sets of the dual system (and vice
versa, because duality is an involution). Duality is in essence the relation between minimal cut
sets and minimal path sets, which ultimately consists of a time reversal (reading the signature
in reverse order). Translated in terms of structure functions, this means that

φ�̄∗ = φ∗̄
�

.

Now we can learn how to find dual families of minimal cut or path sets. Let us introduce a
basic example. If, for some positive integer h < n, we choose �h = {{X1}, {X2}, . . . , {Xh}}
then �∗

h = {{X1, X2, . . . , Xh}}. This is the special case of series-parallel duality. Now let
φh = φ�h

. Using for simplicity the unnormalized signature N(φ) = n! s(φ), it is immediate
to recognize that

Ni(φh) = (n − h)! h!
(

n − i

h − 1

)
, i < n − h + 1

and

Ni(φ
∗
h) = (n − h)! h!

(
i − 1

h − 1

)
, i > h .
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