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Abstract

When studying deep convection in a compressible medium the effects of
viscous dissipation can become important and must be taken into account in
any realistic model. But even in shallow convection, for which the Boussin-
esq approximation is valid, the viscous dissipation effects will become
important at high Rayleigh numbers. These effects are estimated with the
help of asymptotic methods and the results are compared with those
obtained by numerical integration.

1. Introduction

In a linear analysis one can neglect the viscous dissipation term in the
energy equation because it is of the second order in the velocities. It is
common procedure to neglect such terms in a non-linear analysis of convec-
tion although some of the numerical integrations have been carried out to
very high values of the Rayleigh number and corresponding high values of the
velocities. The relative importance of the viscous dissipation term is governed
by a parameter of the form VR = gad/C, which, in the Boussinesq approxi-
mation, can be written VR = gd/(C,T). The factor g/C, is the adiabatic
temperature gradient and [g/(C,T)]™" is therefore the temperature scale
height Hy. It follows that the parameter VR = d/Hy. If d > Hr the influence
of the viscous dissipation can be quite large and as shown by Turcotte et al. [4]
the viscous dissipation has an inhibiting effect on convection and can, in
extreme cases, stop convection altogether. Unfortunately the effects of the
pressure variations were not considered and the computations should be
repeated within the framework of an anelastic model. This should certainly be
carried out if one wants to investigate deep convection in the outer layers of
stars, for example, in a study of the supergranulation, since the temperature
can change by a factor of ten over the top 8000 km of the convective layer.
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Fortunately, in applications to convection in the earth’s atmosphere, the
earth’s outer mantle and even the outer layers of the sun (to a depth of 300
km) the parameter VR = gd/(C,T) is much smaller than one and the
application of the Boussinesq approximation is well justified.

The effect of dissipative heating on convective flows have recently been
studied by Hewitt et al. {1] who have derived an approximate expression for
the ratio of dissipative heating to the conductive heat flux. It is our purpose to
study in this paper the effects of viscous dissipation on the flow characteristics
in convection cells, at high Rayleigh number, and to compare these results
with those obtained by numerical integrations of the basic equations.

2. Basic equations

The basic equations of the problem have been derived elsewhere and
these can be reduced to the following form in the case of incompressible fluids
(Van der Borght [5])

(D*— a?PW = Ra’F+§{WD(D2— a’)W +2DW(D*— a)W} (1)

D*T, = D(FW)— V{4(DW)2+ <W + D;zw>2a2} @)
(D?— a?)F = WDT, + C(FDW +2WDF)
- VC{S(DW)2+ az(W + D;W)z} 3

where D = 3/dz.
The velocity and temperature distributions within the fluid are given by
the following expressions

_ (DW 3f DW of )
v ( a® ax’ a® ay’ wf )
and
T=T,+F )

where W, T, and F are functions of z to be obtained from the integration of
the above differential equations, subject to the following boundary condi-

tions:
W=0 at z=0 and z=1
D*W=0 at z=0 and z=1
F=0 at z=0 and :z=1 (6)
To=0 at z=0
and To= -1 at z=1.
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The function f which appears in expression (4) is a solution of the
following differential equation

A LY )

and its actual functional form depends on the assumed planform of the
convection cells. For hexagonal cells C = 1/V/6; in this paper we shall restrict
ourselves to rolls and convective cells with square and rectangular planforms
for which C=0.

Other parameters appearing in the basic equations are defined as
follows:

o = v/xk = Prandtl number

3
R =824°8T_ povleigh number ®)
- yleig
VK
V=acatt

Terms derived from the inclusion of viscous dissipation in the basic
equations are identified by this last factor.

If we use the Boussinesq approximation the coefficient of volume
expansion a and specific heat at constant volume C, are replaced by 1/T, and
the specific heat at constant pressure C, respectively; T, is the temperature at
some point within the layer.

The important controlling parameter is then

VR = gd/(C,T,). )

In the earth’s upper mantle VR =0.117 (Hewitt et al. [1]) whereas in the
outer layers of the sun VR =0.162. To arrive at this last value we have
adopted @ =2x107*°K"", d =3x 10" cm, g = 2.7 % 10* cmsec™® (Ledoux et
al. [3]) and C, = 10° cm’sec™°K ™" (Waters [8]).

The numerical integrations have been carried out for VR = 0.25.

3. Comparison between analytic and numerical solutions
Introducing a new variable W defined as follows
W =VRa’NW (10)

where N is the Nusselt number corresponding to the case where the viscous
dissipation is neglected, this new variable satisfies the equation
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(D*- a?*W = i_+§——l—V’;/“2£' [4(DW)"+ (w+ Dzw)zaZJ dz. (11)

w a’

This reduces to the usual expression (e.g. Van der Borght and Murphy 1973)
when VR =0, i.e. when the effects of viscous dissipation are neglected.
Applying an expansion of the form

W = W,sin mz + W,sin 27z (12)

one gets, after some very lengthy but straightforward algebra,

3= 2(m + @ = 4VR b2+ ¢, Wa/ W) (13)
1
and
W, _ 16(VR){ = 2b,/m* + 4by/3} 19)
W, @m*+a’)+ 2w+ a’y
with
_a1r2 (az_ﬂ,z)z
b 5t 3
_am_ 1. o
be= T - —(a*~ ) (15)
_ b 8m, , 2b, 2b,
¢ 2 3b4+ 7 3w
where 1
- 2, 1 /4 4_ 2_2
b;=2ma +4ﬂ(a +4n*—5a’nw?)
(16)

2 2___1- 4 4 __ 2_2
ma 127'_(a +4n*—5a*w?).

b5=3

If we adopt a horizontal wave number a = n-/\/_2_, which corresponds to the
critical value of the Rayleigh number, it follows from the previous expressions
that

2o _6.8223% 107, a7

This shows that the effect of the inclusion of viscous dissipation will result in a
slight asymmetry of the velocity curve, with the maximum displaced towards
the upper part of the convective layer.

A comparison with the results of numerical integrations at high Rayleigh
number (R = 1.121 x 10%) shows that the asymmetry given in (17) is of the
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right order of magnitude. The inclusion of higher order terms in the
expression (13) would lead to a closer approximation to the value of
—8.688 x 107 obtained by numerical methods. The amount of algebraic
manipulations which would be required is prohibitive and is not warranted by
the small order of the effect.

The Nusselt number N, corresponding to the case when the viscous
dissipation is neglected, can be determined using a method first introduced by
Howard [2] and it can be shown that

N = (2.124) **k,**(a*R)"” (18)
where
ko=mA,(1+3A5/A) (19)
i g -3
and
A_(rra) 21)
A, 97+ a’d)

The value of N, as given by (18), represents the Nusselt number for extremely
large values of the Rayleigh number. For a = 7w/V2 and R = 1.121 X 10° this
gives

N = 141.4087 22)

which is somewhat larger than the computed value of 140.6333.

As we have seen the inclusion of the viscous dissipation term in the
equations has only a small effect on the distribution of the vertical velocity W;
the same applies to the temperature fluctuation F. If one compares the
distribution of the average temperature in the two cases one sees that there is
a more marked effect, especially if the parameter VR is of the order of 0.25.

When the viscous dissipation is taken into account the temperature
gradients DT, at the upper and lower boundaries are no longer equal and we
denote the absolute values of these gradients by N, and N, respectively.

The average temperature at the midpoint is given by the expression

1/2 172 z 2
To(1/2)=f FWdz — vf dzj {4(DW)2+ (w+ Dazw)zaz} -2,
(1] o 0
23)

keeping in mind that W,/W, <1, it follows after some lengthy transforma-
tions and integrations that

https://doi.org/10.1017/50334270000001065 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000001065

170 R. Van der Borght (6]

To(1/2) = — 0.5+ 16(VRYa’NW, Wz{§+ -67T—12a—2[a‘ —Sma’+ 277‘]}. Q4)
For a = w/V2 this gives a value of T(1/2) = — 0.4218 which can be compared
with the computed value of —0.442.

The magnitude of the average temperature gradient N, = (DT) at the

bottom of the convective layer is given by the following expression

D*W
a2

1 1 z 2

N,,=1+f FWdz—Vf dzf {4(DW)2+<W+ ) az}dz 25)
[¢] 0 0

from which it follows that

2T

N.,—N, ! z - - D*W\2
= 2VRa2[ dzf {4(DW)2+ <W+ pe: ) a’} dz. (26)
0 1]

N

Substituting the expansion for W in this equation one gets after a few

integrations
Nu — N 8 B
A ="2"2= VR +32(VRYa* (W, Wz){g + 2] @7
where
B= Ziz[a‘—5w2a2+2#4]- (28)

It is seen from this expression that, for VR < 1, the ratio A is independent of
the horizontal wave number. For higher values of VR the higher order terms
would have to be taken into account. At large Rayleigh number, for example
1.121 x 10°%, and for VR =0.25 the numerical integratious yield a value of
A = 0.2482. This is in very good agreement with the value predicted from
equation (27) for which A = 0.2489.

The parameter A can be defined as the ratio of the internally generated
heat @ to the average heat flux Z. The ratio of ® to the heat flux through the
upper boundary %, can be calculated and one finds that for large R

®/F, =0.22 (29)

and is lower than the one predicted by expression (27).

It is also seen from formula (27) that the ratio A is independent of the
Rayleigh number. This result is of course derived from an asymptotic theory
and only applies at high Rayleigh number. Table 1 shows the variation of A
with Rayleigh number.
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TABLE 1
Variation of the ratio A of internally generated heat to the average heat flux with Rayleigh
number R
R A R A
657.5 0.0000 1953.0 0.1589
700.0 0.0273 3906.0 0.1868
800.0 0.0674 7813.0 0.2011
900.0 0.0910 1.563 x 10* 0.2125
1000.0 0.1067 125 x10° 0.2321
1200.0 0.1267 1.0 x10° 0.2410
1400.0 0.1393 1.121 x 10® 0.2478

It follows from equations (13) and (14) that
[ 2b, 4b4]

2 % nt 37r:
(m*+a’)" (@n*+a*V +2(7+ a?y

wW,W,= 30)
is of the order of VR. The second term in expression (27) for A is therefore of
the third order in this quantity and consequently quite small. For VR = 0.25
and a = w/V/2 this term is negative and of the order of 10>,

For a given value of the Rayleigh number, for example R = 1.121 x 105,
one would expect A to tend to zero as a is either increasing or decreasing.
Zero values of A would occur for values of a, and a, corresponding to the
points of intersection of the line R = constant with the neutral stability curve.
Nevertheless the results of this paper indicate that these changes would be
very slight for values of a in the neighbourhood of the critical value
a = w/V2. This can be seen from the results, derived by numerical integra-
tion, given in Table 2.

TABLE 2
Dependence of the ratio A of internally generated heat to the average heat flux on the horizontal
wave number a, for a given value of the Rayleigh number R = 1.121 x 10°

a A a A
0.0222 0.2187 2.221 0.2482
0.2221 0.2435 11.11 0.2484
0.4443 0.2459 17.77 0.2483

1.111 0.2476 | 24.44 0.2483

4. Conclusions

It has been shown in the previous pages how it is possibe to estimate the
effects of viscous dissipation on non-linear convection at high Rayleigh
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number with the help of asymptotic methods. The analysis has been confined
to the case where the Boussinesq approximation holds and for rolls and
square and rectangular planforms of the convection cells. The amount of
asymmetry in the vertical velocity and average temperature distributions has
been estimated and an accurate expression derived for the ratio of internally
generated heat to the average heat flux through the layer.

If the thickness of the layer is of the order of the temperature scale height
the Boussinesq approximation is no longer valid and one has to make use of
the anelastic approximation. Such a procedure would have to be undertaken
for instance in a study of the role of viscous dissipation in deep convection,
associated with supergranulation, in the outer layers of the sun. Recently a
start has been made with the investigation of non-linear convection in a
compressible medium using the anelastic approximation (Van der Borght [7])
and it is hoped to extend this work to include the effects of viscous dissipation
in the near future.
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