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Standing acoustic waves in a channel generate time-mean Eulerian flows. In homogeneous
fluids, these streaming flows have been shown by Rayleigh to result from viscous
attenuation of the waves in oscillatory boundary (i.e. Stokes) layers. However, the strength
and structure of the mean flow significantly depart from the predictions of Rayleigh when
inhomogeneities in fluid compressibility or density are present. This change in mean flow
behaviour is of particular interest in thermal management, as streaming flows can be
used to enhance cooling. In this work, we consider standing acoustic wave oscillations
of an ideal gas in a differentially heated channel with hot- and cold-wall temperatures
respectively set to Ty + A®, and T,. An asymptotic analysis for a normalised temperature
differential A®, /T, comparable to the small acoustic Mach number is performed to
capture the transition between the two documented regimes of Rayleigh streaming
(A®, =0) and baroclinic streaming (A®, = O(T,)). Our analytical solution accounts
for existing experimental and numerical results and elucidates the separate contributions
of viscous torques in Stokes layers and baroclinic forcing in the interior to driving the
streaming flow. The analysis yields a scaling estimate for the temperature difference
A®,, at which baroclinic driving is comparable to viscous forcing, signalling the smooth
transition from Rayleigh to baroclinic acoustic streaming.

Key words: gas dynamics

1. Introduction

Since the seminal work of Rayleigh (1884, 1896), Eulerian time-mean flows generated by
standing acoustic waves have garnered significant interest. As reviewed by Riley (1997,
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2001), these streaming flows occur when the divergence of the wave-induced Reynolds
stress cannot be fully balanced by a mean pressure gradient, i.e. when the waves have non-
zero vorticity. In a channel filled with a homogeneous fluid, standing acoustic waves are
irrotational in most of the domain, and streaming flows are driven by wave-induced viscous
torques that arise in thin oscillatory boundary (i.e. Stokes) layers. The mean flows in
this Rayleigh streaming regime have a characteristic speed Uy, = U2 /a,, where Uy is the
typical value of the oscillating acoustic velocity and a, the speed of sound, and are utilized
predominantly in microfluidic applications (Bengtsson & Laurell 2004). The streaming
flows driven by standing acoustic waves in an inhomogeneous fluid differ radically.
Experiments conducted in thermally stratified gases reveal streaming patterns distinct from
those predicted by Rayleigh and streaming velocities that are two orders of magnitude
larger than Uf /ay (Loh et al. 2002; Hyun, Lee & Loh 2005; Stockwald et al. 2014). These
effects were also reported in direct numerical simulations (DNS) of the compressible
Navier—Stokes equations (Lin & Farouk 2008; Aktas & Ozgumus 2010). To explain these
features, a set of wave/mean-flow equations that captures the dynamics of streaming flows
in strongly inhomogeneous gases was derived by Chini, Malecha & Dreeben (2014).
In this framework, the temperature is assumed to vary significantly across the domain
(specifically, the imposed temperature difference A®, = O(T,), with T, the cold-wall
temperature), and the resulting streaming flows, of characteristic speed Uy, = Uy, are
found to be driven predominantly by the wave-induced Reynolds stress divergence in the
bulk. Indeed, in inhomogeneous gases, acoustic waves acquire vorticity as a result of an
inviscid process termed baroclinicity, and this regime is therefore referred to as ‘baroclinic
streaming’. Unlike Rayleigh streaming, baroclinic streaming is characterised by two-way
coupling: the streaming flow driven by the waves modifies the temperature field, which
in turn alters the structure of the waves. This approach can be extended to liquids, for
which inhomogeneities in compressibility must also be included (Karlsen, Augustsson &
Bruus 2016).

Acoustic streaming in straight channels with differentially heated walls has been
extensively studied both numerically and experimentally to document this departure
from Rayleigh streaming. Recent experiments of Qiu et al. (2021) demonstrate that
inhomogeneities in liquid microchannels induced by thermal gradients can give rise
to remarkably fast and distinctly patterned acoustic streaming. Their results underscore
the critical role of baroclinic effects, even at modest temperature gradients. Here,
we restrict our discussion to gases, for which significant density variations can be
achieved. Large temperature differences have been treated experimentally (Hyun et al.
2005; Stockwald er al. 2014; Michel & Gissinger 2021) and numerically (Lin &
Farouk 2008; Aktas & Ozgumus 2010), in which case the streaming flows can be
analysed by assuming that A®, = O(T,) (Michel & Chini 2019; Massih et al. 2024).
However, experiments also demonstrate that Rayleigh streaming patterns are modified by
temperature differences as small as a fraction of a degree (Nabavi, Siddiqui & Dargahi
2008). Although Rayleigh (A®, = 0) and baroclinic (A®, = O(T,)) acoustic streaming
have been separately studied extensively, an analytical solution bridging the transition
between these regimes has not yet been reported in the more general setting when both
processes are operative. Prior efforts to quantify the transition under the thin microchannel
approximation (k. H, < 1) offer insight in a restricted regime (Daru et al. 2021).

In the present study, such a solution is derived for an ideal gas confined in a
differentially heated straight channel and driven by a standing acoustic wave oscillating
in the wall-parallel (‘horizontal’) direction. The aspect ratio of the set-up is O(1),
and buoyancy is neglected. A systematic asymptotic analysis enables the solution to be
derived in the interior of the domain as well as in the oscillatory boundary layers (BLs).
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Figure 1. Schematic of the flow configuration. An ideal gas is confined between two horizontal, no-slip and
impermeable walls separated by a distance H,. The temperatures of the cold and hot walls are fixed at T, and
T + A®,, respectively. Gravity is neglected. In the regime where the mean flow transitions from Rayleigh
to baroclinic streaming, a standing acoustic wave of horizontal wavenumber k, generates a counter-rotating
stacked cellular streaming flow, where the cells closer to the hot wall span the majority of the channel height.

The contributions from viscous attenuation in the BLs and baroclinic forcing in the interior
to driving the streaming flow are analysed in detail, and the critical temperature difference
at which the flow transitions from Rayleigh to baroclinic streaming is determined as a
function of the governing parameters. This result should provide useful guidance for
future experimental and numerical studies by revealing whether one streaming mechanism
dominates or both BL forcing and baroclinicity must be considered.

The remainder of this article is organised as follows. The two-time-scale wave/mean-
flow system is introduced in § 2. The asymptotic analysis of and the explicit analytical
solution to this system are presented in § 3. This solution is then validated against existing
theoretical work, numerical results and experimental observations (§ 4). A summary of
our key findings, which are contrasted with Rayleigh streaming and baroclinic acoustic
streaming occurring in isolation, is given in § 5.

2. Problem formulation
2.1. Flow configuration

We investigate streaming of an ideal gas in a differentially heated horizontal channel
subjected to standing horizontal acoustic-wave oscillations having a wavelength
commensurate with the channel height, as illustrated in figure 1. Except for the temperature
difference A®, that is assumed much smaller, this set-up is similar to that used
to investigate baroclinic acoustic streaming in Massih et al. (2024). The dimensional
variables and parameters, defined in table 1, are indicated using tildes and asterisks,
respectively. Gravity is neglected and only two-dimensional dynamics is considered.
Periodic boundary conditions are imposed along the horizontal (x) direction, setting
the horizontal wavelength 27 /k,. The hot and cold walls are modelled as no-slip, no-
penetration, isothermal boundaries maintained at constant but different temperatures,
respectively T, + A®, and T,. In the absence of the acoustic wave, heat simply diffuses
across the channel: there is no fluid motion, and the steady temperature profile is linear
in the wall-normal (y) coordinate. A wall-parallel conservative acoustic body force of
angular frequency w, excites and sustains the acoustic waves without directly driving
a mean flow. The system is governed by the compressible Navier—Stokes equations,
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Dimensional variable or parameter

Definition

u=(u,v) Gas velocity
o Gas density
)4 Gas pressure
T Gas temperature
F External force density
x, ) Wall-parallel, wall-normal coordinates
(referred to as horizontal and vertical, respectively)
f Time variable
H, Channel height
27 [ ks Horizontal wavelength of acoustic wave
s Dynamic viscosity
Ky Thermal conductivity
R, Specific gas constant
(cu,» Cp,) Constant volume, pressure specific heat coefficient
ax =/(cp,/cv,) RiTx Background sound speed
Px Background pressure
Uk Typical acoustic wave velocity
Usonax Maximum interior horizontal wave velocity

Table 1. Dimensional variables and parameters.

supplemented with conservation of mass and internal energy, and with the ideal gas
equation of state:

ploziL + (i - VYit] = —V p + 14 [6212 + %6(6 . a)} +F(%, 1) ey, 2.1)
¥p+V - (pit) =0, (22)

P[0T + (it - V)T = —p(V - it) + i, V2T, (2.3)
p=pRT, (2.4)

where §, p, T and @& = (if, D) denote the density, pressure, temperature and velocity
fields, respectively, and V = (9, d5). Bulk viscosity and viscous heating are neglected for
convenience and analytical tractability, as is the temperature dependence of the viscosity
and thermal conductivity (see the discussion in Michel & Chini (2019)).

2.2. Scaling and non-dimensionalisation

The scalings and the definition of dimensionless variables and parameters are reported in
table 2. Except for the imposed temperature difference, these scalings are similar to those
reported in Massih et al. (2024). The acoustic Mach number €, which is also the inverse
of the Strouhal number associated with the oscillatory flow, is assumed small and is used
to order the subsequent asymptotic analysis. In this study, the dimensionless temperature
differential is assumed to be finite but weak: I" = O(€). As will become evident, this
scaling enables the streaming flow generated by viscous torques in oscillatory BLs and
that from baroclinic torques in the interior of the domain to arise at the same order in €.
The remaining parameters, including the aspect ratio é, are taken to be O(1).

Note that the Reynolds and Péclet numbers Re = O (1) and Pe = O(1) here compare the
nonlinear terms with viscous and thermal diffusion in the body of the fluid. Note that other
definitions of these coefficients can be found in the literature: a ‘wave’ Reynolds number
(Rey,) based on the sound speed is sometimes introduced (Rey, = pxas/(k«its) = Re/€,
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Variable Scale Parameter Definition Scaling

X kg 1 Acoustic Mach number € U /ay ekl

y H, Aspect ratio § ki H, §=0()

t (asks) ™! Temperature difference r AO, /Ty F=el= O(¢)

u Ay Reynolds number Re P U/ (k) Re=0(1)

v (ki Hy)ay Péclet number Pe 0+Cp, Us [ (kyhcy) Pe=0(1)

P i = Ps/ (R Ty) Prandtl number Pr s Cpse [ K Pr=Pe/Re=0()
® Ty Specific heat ratio y Cp,/Cu, y=0(1)

P D+ Acoustic wave amplitude A Y Useyy, [ Us A=0()

F ki P+

Table 2. Dimensionless variables and parameters, similar to the previous analysis of Massih et al. (2024)
except for the dimensionless temperature difference ", which in the present work is asymptotically small.

here Re,, > 1), which compares unsteady inertia with net viscous forces and confirms that
viscous terms do not affect the waves at leading order; or a streaming Reynolds number
(Rey) based on the appropriate velocity scale for the streaming flow Us, = €?a, (Rey =
px€2ay ] (ksit) = € Re, here Reg < 1), showing that nonlinear advection plays no part in
the dynamics of the streaming flow in the regimes we investigate (Lighthill 1978). Using
the scalings detailed in table 2, the dimensionless set of equations can be expressed as

plou+ (u-Vyul= —le + < [Vzu + lV(V . u)] + F(x, t)ey, (2.5
y Re 3

dp+V-(ou)=0, (2.6)

o[0T + - V)T]=(1 —y)p(V-u)—i—%VzT, 2.7)

p=pT, (2.3)

where dimensionless variables are not decorated with tildes, V = (04, 8_18y) and
the velocity field u = (u, §v). No-slip and no-penetration boundary conditions are
complemented with the thermal boundary conditions T (x,y=0,7)=1 and T(x,y =
1,t)=14€rl.

The scaling of the Reynolds number Re = O(1), implying Re,, = O(1/€), ensures
that viscous forcing is negligible in the interior of the domain for the leading-order
acoustic wave dynamics. However, these viscous forces drive oscillatory BLs of typical
dimensional width §;, = v/ s/(psws) =k INZZ /Re. The dynamics in these oscillatory
BLs near the cold and hot walls, hereafter referred to as C-BL and H-BL, is captured
by introducing rescaled wall-normal coordinates 7. =e~1/2y and n, =€~ 1/2(1 — y),
respectively. In the analysis that follows, the rescaled wall-normal coordinates in both BLs
are commonly represented using 1 without a subscript.

3. Asymptotic analysis

The steady streaming and oscillating fields are disentangled by introducing the time
average g of any field ¢g(x, y, t) over an acoustic wave period. Fields therefore can be
split into mean and fluctuation components:

g,y )=q(x,y)+q (x,y,1), (3.1
1017 A32-5
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where ¢’ is the fluctuating component and ¢’ = 0. Further, each field is asymptotically
expanded in one-half powers of € as shown below:

(u, v) =€ (u, 0) + €72 (us . V3 p) + € [(h, v3) + (2. )] + O, (3.2)
P=1+4en + 63/2n§/2 + €2 [né —{—ﬁg] + 65/2[7'[5//2 +ﬁ5/2] + 63[n§ —{—ﬁg]
+0("?), (3.3)
O=1+e [[y+0(]+e70],+€ [02+05]+ 07, (3.4)
p=1+¢ [p1+p]+205+€ [pr+ 0]+ 0@, (3.5)
F=eF} (x, 1) + O(e?). (3.6)

Here, we consider a plane horizontal standing acoustic wave of O(e) amplitude. Note
that expansion in fractional powers of € results from the existence of thin BLs of
dimensionless width O(4/€). Since, by construction, the leading-order wave fields are
O (¢), the corrections are even smaller (i.e. approach zero faster than O(€)), and no
O (/€) corrections to the mean fields are forced. The external force that sustains waves
of wavenumber k, and inverse angular frequency (a.k) !, respectively used as the scales
for x and ¢, is chosen to be of the form

F 5 (x, 1) =F32sin (x) €' +c.c., (3.7)

where c.c. denotes the complex conjugate. An explicit analytical expression for the
coefficient [F3,, is derived in §3.5. The expansions for the various fields are then
substituted into the dimensionless governing equations, and the dynamics at sequential
orders in the small parameter ¢ is independently analysed.

3.1. Acoustic and steady dynamics at O(1)

At this order the gas is steady (all fluctuating and mean flow speeds are smaller than the
speed of sound) and homogeneous (the imposed temperature difference is assumed to be
small compared with the cold-wall temperature).

3.2. Steady dynamics at O (€)

No streaming flow arises at this order. The imposed temperature difference between the
boundaries maintains the linear temperature and density profiles €I'y and €p;, with

pr=—1Iy.

3.3. Acoustic dynamics at O (€)
The O (€) dynamics in the interior satisfies

dquy +y o =0, (3.8)
dym] =0, 3.9)

301 + dxuy =0, (3.10)

O+ (y — 1) d,u =0, (3.11)
) —py — O] =0, (3.12)
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which can be collapsed to the one-dimensional second-order wave equation:

Izl, ©]=10 -y Hn|.

(3.13)
Since the oscillatory flow driven by the plane wave does not satisfy the no-slip and
isothermal boundary conditions at the walls, Stokes layers are generated.
The O (€) dynamics in the BLs is governed by

Oy = Oxxmry, with atu’lz—y_laxrr{, pr=y"

duy +y oy — (Red?) ' a,u| =0, (3.14)

Iy =0, (3.15)

3oy + dxu'y £ 3,03, =0, (3.16)

001 + (v — 1) (Oxut}y £ 0yv} p) — ¥ (Pes?) ™' 9,,0] =0, (3.17)

T —p—O;=0, (3.18)

where the first-order wall-normal partial derivatives in the C-BL are +09, and those in the

H-BL are —9,,.

The complete acoustic wave solution at O (¢), which satisfies the isothermal, no-slip
and no-penetration conditions at the boundaries and asymptotically matches with the
horizontal standing-wave solution obtained in the interior, is found to be

A )
711/ = 0 cos (x) e’ +c.c. (interior and BLs), (3.19)
A ; L
—12— sin (x) el 4 c.c. (interior)
u) = Y (3.20)

A . .
_12_(1 — e~ U+DVRD) gin(x)el’ +c.c. (BLs),
14

_AQHD cos@et | Eny B 4 (y — 1)(1 — e=+HVET) VR]

4y /RP
) +c.c. (C-BL)
V32 = . i
Al 1t . )
( :1) C[;;X)e [(1 — e FVRIY /P 4 () — 1)(1 — e~ 1+DVPn) /R]
Y
+c.c. (H-BL),
(3.21)
(1—y Hr 1 (interior)
0= A . ‘ (3.22)
a- V_I)E(l — e~ +DVPN) cos(x)el’ +c.c.  (BLs),
A (interior)
Py = (3.23)

A . .
y‘15(1 1 (y — De~U+DVPn) cos(x)el’ +c.c.  (BLs).

Here, R = Res?/2 and P = Pes? /2 are the aspect-ratio-dependent Reynolds and Péclet
numbers and A is the O(1) acoustic pressure wave amplitude. The expression for v} 2

in the interior is derived in the higher-order analysis that follows. At O (¢), the acoustic
velocity field in the interior is irrotational, and acoustic wave vorticity is confined
to the BLs.
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3.4. Steady dynamics at O (€3/?)
No corrections to the streaming fields arise at this order.

3.5. Acoustic dynamics at 0(3/?)

The vertical velocity that emerges in the leading-order BLs does not vanish as n — oo;
see (3.21). The oscillating field it generates would, in the absence of forcing, lead to a
slow decay of the leading-order wave amplitude. Here, a stationary state is sustained by
the weak external forcing I /o in the interior.

The governing equations at O (¢3/?) in the interior are

du’y p + V_laxﬂ?:/z =3 sin (x) e 4 c.c., (3.24)

0rv3y + (V‘Sz)_lay”é/z =0, (3.25)

01 P33 + Oxtty )y + By 035 =0, (3.26)

at@é/z + (V - 1)(83614/3/2 + 3yvl3/2) — 0’ (327)
M3 = P3p — O35 =0. (3.28)

In the BLs the waves must satisfy

By ) + v~ 0xmy ;y — (Red?) ™' Opguy ) =3y sin (x) € +c.c., (3.29)

73, =0, (3.30)

303 + Bty p £ 3yvy =0, (3.31)

8105 + (v — 1) (Bsul o £ 0yv)) — y (Pes®) ™' 9,05, =0, (3.32)
30— Pyp — O3 =0. (3.33)

This set of equations can be solved analytically with appropriate boundary and matching
conditions; see Appendix A. In particular, the balance between external forcing and
diffusion is explicit:

Fap=(1 - i) o <(y_1)+ : ) (3.34)
3p=U-1))—|—F—+—7—=). .
/ 2y U VP VR

At O(€3/?), acoustic wave vorticity remains localised in the BLs (SZ/3 n= V x u’3 n= 0in
the interior, as shown by taking the curl of the momentum equations (3.24)—(3.25)).

3.6. Steady dynamics at O (€?) (part 1)
The O (€?) equations characterising the steady pressure field 77> in the interior are

y 10,7 = —p Oy — udyu’y = (3, p))uy — u)dyuy = —0, ()2, (3.35)

0y =0, (3.36)

where (3.35) has been simplified using (3.10). Thus, to within an arbitrary constant, the
mean pressure 72 = —y (u})?.

A streaming flow emerges as the consequence of nonlinearity. Specifically, in the BLs,
/ / 1 ’ !/ / /
(u-V)u:V(Eu-u>+(qu)xu (3.37)

includes an O (€2) component (V x u’) x u’ that (i) is non-zero since the O (€) acoustic
vorticity is non-zero in the BL, (ii) cannot be completely balanced by a pressure gradient
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and (iii) consists of both an oscillating term proportional to e> that generates harmonics
and, crucially, a steady component. As first established by Rayleigh, this term drives a
streaming flow in the BL that is viscously communicated to the interior and that can be
computed through the momentum equations only. The inertial term in the x-momentum
equation can be transformed using (3.16) and recast as

P19’y + uy 'y £ V5 dyuy = 3 (o)) + Oy (u'7) = 8, (i v} ) (3.38)

and we therefore consider

—y 1072 + (Red®) ™ oyiiy = 0, (W) + 9, (W] 05 ), (3.39)
3,72 = 0. (3.40)

This reduced set of equations is unaltered by the imposed temperature difference and
can be solved explicitly for u, given the acoustic fields already derived, the expression
for 7, in the interior and the boundary and matching conditions u(x, 0) =0 and
lim;,_, 5352 (x, n) = 0. The full solution is reported in Appendix B and has a non-zero
limit as n — oo that corresponds to an effective slip velocity g, acting on the interior
flow, which is independent of the aspect ratio § and given by

_ 342 2(y -1 :
Uslip = —m (Pe + T\/ PeRe + Re) sin(2x). (3.41)

Since y > 1, the slip velocity is directed towards the acoustic wave velocity nodes
(located at x = pm, p € Z) (Lighthill 1978). Its dimensional expression in the absence of
thermal diffusivity is more commonly reported: setting Pe — oo results in a dimensional
slip velocity uyip, = —[3U§/(8a*)] sin(2k.x), with Ug = (A/y )ea, the amplitude of the
leading-order acoustic wave velocity in the interior.

The streaming velocity field u, in the interior is found by solving the time-averaged
momentum equation at O (%) and the continuity equation at O (€?):

vrs Vi —
7 Re () - V) + (u - V)ul ) + () - V) + 75, (u) - V)u
+ p1 Oy + p3 0ty + Py O (3.42)
V. =0, (3.43)

where the nonlinear term 9, (0} u/) has not been included in (3.43) because p{u; = 0. Most
of the nonlinear terms in (3.42) can be balanced by a pressure gradient and those driving
streaming flows are readily identified by taking the curl of this equation. Since acoustic
vorticity vanishes in the interior at O(¢) and O (€3/%), substantial simplifications occur,
detailed in Appendix C.1. With uy = —V X (¥,e;) (i.e. (U2, v2) = 8’1(—8y1ﬁ2, 0x¥r)),
where e, = e, x ey, the stream function 1, can be obtained by solving the following
equation:

|-
2o Ve =V x (25 x ) + (Vp1/2) x [V (u] - u)) ] +uj ) x (8,F per)

+ V x [p}0;ul + pyou]]. (3.44)

The O (€?) acoustic fields are required to proceed.
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3.7. Acoustic dynamics at O (€2)
The momentum equations governing the O (€2) acoustic dynamics in the interior are

dub +y o ) = (I'y — py) du'y + p| Oy — ' 0u’y + ) dxut

+ (3Re) 49,1 + Fa(x, 1), (3.45)
d vy + (y8%)'a,my =0, (3.46)
0,3 + dxtty + dyvy = =0y [ (o1 — I'y) ] + 8 (pju}), (3.47)

3O+ (v — 1) (3cus + dyvy) = (C'y — p) 01 + p}0,0] — u) 0O + 0,0

+ yPe 18,00 + (1 — Y 0cu’ — m{ou),
(3.48)

= py— Oy =(0]+I'y) p} —O)p; — 'yO] . (3.49)

Since the leading-order acoustic fields in the interior do not depend on y, using (3.45)
and (3.46) it can be seen that acoustic wave vorticity $25 = 89,v, — 819 u), is generated
according to
/ -1 1 —1 / / r u/l

0,82 = =383y (Fyduy) =—8""T'du| — 2= - e (3.50)
In contrast to corresponding results at O(e) and 0(€3/?), at O(€?) the wave vorticity is
non-zero as a result of the imposed temperature difference I". This solution can be used to
evaluate certain nonlinear forcing terms already introduced, e.g.

(Vp,/2) x [V(u’1 . u’l)] +V x (.Q’2 X u’l) = —(Bxu’l).fl’z + 8X(M/1.Q/2) =u' 0, 2.
(3.51)
Moreover, as detailed in Appendix C.2, using these results we can show that

V X (0|0l + phd,u’) =0. (3.52)

3.8. Steady streaming at O (€?) (part 2)

Now that the forcing terms involving the O (e?) acoustic fields have been computed, the
streaming flow can be evaluated. The equation for the stream function reduces to

1 _
— VY, =uf 0,25 =8 v} ,0,F (3.53)
— —

Re
B F

with the baroclinic and external forcing terms respectively defined as
2

48y2

— 1
B=u\d:82)=— sin (2x),  F =—803 50 F; , = —8 (y - 5) |F3,2|” sin(2x).

(3.54)
This equation is supplemented with the following no-penetration and slip velocity
conditions:

Wy (1, y=00=8Y (x, y=1=0, 39 (x,y=0)=0y¥, (x,y =1) = gpp,
(3.55)

with ug;, reported in (3.41). An explicit solution for Jz can be computed; a representative
velocity field is shown in figure 2(a) for a specific set of dimensionless parameters.
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Figure 2. Visualisation of the strength and orientation of the streaming velocity field in the channel interior.
(a) The total velocity field u3, (b) the homogeneous Rayleigh streaming component #>x, (¢) the baroclinic
contribution #,p and (d) the inhomogeneous component u,r resulting from the specified external body force.
Components u>y and usr have stacked multicellular structure while a single pair of cells that spans the channel
interior is manifest in #,p. The components u»y, Usr and up possess wall-normal symmetry about the mid-
plane, which is not reflected in the total velocity field #,. The parameters correspond to A =1, Re =500,
Pr=0.71,6=1,y=14and I' = I, =0.278 (I is defined in § 4.2).

To gain physical insight into the various contributions generating this streaming flow, it
is instructive to split the stream function into three components:

Yo=Vou+ ¥+ V¥ar. (3.56)

where these functions (explicitly reported in Appendix D) have the following properties.

(i) Component ¥,y is the solution of the homogeneous partial differential equation
V4W2H = 0 with the full boundary conditions (3.55). This component corresponds
to the extension to O(1) aspect ratio of the solution obtained by Rayleigh for fluids
of uniform (mean) temperature. As shown in figure 2(b), the velocity field consists
of stacked counter-rotating cells and is symmetric with respect to y =1/2. This
contribution is independent of the imposed temperature difference I".

(i) Component {55 is the solution of the inhomogeneous partial differential equation
V*,5 = Re B, with no-penetration and no-slip boundary conditions (8, ¥ ,5(x, y =
0) =8, ¥ap(x, y=1) = dyop(x, y=0) = dyyp(x, y=1)=0). It is the only
component v/, that involves the temperature difference I and therefore describes
the baroclinic component of the streaming flow. This component consists of a cellular
flow that spans the entire height of the channel; see figure 2(c).

(iii) Component ¥, is the solution of the inhomogeneous partial differential equation
V4, = ReF, subject to no-penetration and no-slip boundary conditions. This
component of the flow depends on the details of the wave forcing mechanism, and
would differ if the acoustic wave were generated by an oscillating wall rather than
by an external body force. (A periodic motion of a solid boundary also generates
streaming (Lighthill 1978).) However, this contribution is found to be negligible
for the set of dimensionless parameters considered here, as for instance evident in
figure 2(d).
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Figure 3. Comparison of the present analytical solution with the (@) x and (b) y components of the streaming
velocity field (at X = wr/(4k,) and X = O respectively) from the DNS performed by Lin & Farouk (2008) (their
cases 1A and 1B). The full composite solution representing the dynamics in the BLs as well as the interior is
shown by the solid curves. The parameters correspond to A = 6.37, Re = 631, Pe =448, 6 =0.2252, y =5/3,
e=102and I' = {0, 6.67}. For these parameters, the critical temperature difference I =4.45,i.e. A®, ~
13.4°C (I is defined in § 4.2).

4. Validation, results and discussion
4.1. Comparison with previous studies

The streaming flow derived in § 3.8 is now compared with other theoretical and numerical
solutions reported in the literature. In the absence of an external temperature difference
and thermal diffusion, the solution converges to that derived by Rayleigh in the limit
of narrow channels. Specifically, as discussed in § 3.6, the slip velocity in the absence
of thermal diffusion reads uy;,, = —[3U§ /(8ay)] sin(2k.x). Since, in the limit § — O,
EZH — —SUgp y (2y? —3y+1), the corresponding leading-order dimensional stream-
ing velocity becomes

= 3UF (H:/2) =5’

ugy 16a* Sln(Zk*x) 1-3 (W) s (41)
=305 [ He o (H/2-5)
VH ™~ 6a(1 2](* COS(2k*X) |:7 -y — W}, (42)

which are the same as (93)—(94) in Rayleigh (1884) (except for the signs since Rayleigh
considered an acoustic velocity field o< cos(k.X) whereas it is here o< sin(k,x)).

When a finite temperature difference is imposed (I # 0), the solution derived in the
current work can be compared with DNS of the compressible Navier—Stokes equations
performed by Lin & Farouk (2008); see figure 3. To account for the finite width of the
oscillatory BLs of the DNS, a composite analytical solution (Van Dyke 1969) is obtained
by adding the streaming velocity profile in the BLs (§ 3.6) with that in the interior (§ 3.8).
Reasonable agreement is observed, some discrepancy being expected since the DNS
employs a different forcing mechanism (an oscillating wall) and incorporates variations
of viscosity and thermal conductivity with temperature. In this regime, a qualitative
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Figure 4. Comparison of the present analytical solution with the (a) x and (b) y components of the streaming
velocity field (at x = /4 and x = 0 respectively) obtained using the two-way coupled numerical algorithm of
Massih et al. (2024) that assumes = O(1) (instead of r= O (¢) for the present analysis). The parameters
correspond to A =0.01, Re =2500, Pe=1775,6=1,y =14, e =3 x 104 and ' =el" =0.03 >el, (I,
defined in § 4.2, is 0.056 for this set of parameters).

comparison also is subsequently made with the experimental observations of Nabavi et al.
(2008).

For even larger imposed temperature differences I'=A®,/T,, we compare the solution
derived in this work assuming [=er , with I" = O(1), with the numerical results
obtained by Massih et al. (2024) in the asymptotic limit ["= 0(1). For this comparison,
we consider a finite temperature difference of I =0.03, treated as O(1) in the numerical
algorithm of Massih ef al. (2024) and as I" =0.03/¢ in the current framework, all the
other dimensionless parameters being identical (A =0.01, Re = 2500, Pe = 1775, § =1
and y = 1.4). The small parameter ¢ is arbitrarily set to 3 x 107*. The wall-normal
profiles of the x and y streaming velocity components in the interior of the domain are
shown in figure 4. The new asymptotic model captures the numerical results, with the
accuracy improving in the limit € — 0, as expected. In this strongly stratified limit, the
streaming velocity field is largely dominated by the baroclinic component u,p, with the
other components being orders of magnitude smaller for the chosen parameter values.

4.2. Critical non-dimensional temperature difference I,

Figure 5 shows the interior streamlines of the streaming flow, with the magnitude of
the streaming velocity |u»| shown in colour, for domains of aspect ratio 6 =1 and
6 =10. The analytical solution captures the evolution of the structure and intensity of
the streaming flow as the temperature difference increases. A parametric threshold can
be defined to quantify the transition from the stacked multicellular Rayleigh streaming
to the unicellular baroclinic acoustic streaming, i.e. from uyg =V x (WZHeZ) to urp =
V x (,pe;). To that end, we define a kinetic energy parameter for each component of the
streaming flow:
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Figure 5. Streaming flow for A =1, Re =500, Pr =0.71,y = 14,58 ={1, 10} and (a) " =0, (b) I =0.07, (c)
I'=0.28,(d) ' =0.5,(e) I' =1and (f) I' = 5. The streaming velocity increases with the imposed temperature
difference, while the cells closer to the hot boundary expand vertically and those closer to the cold wall
shrink. For this set of parameters, I (6 = 1) =0.28 and I',.(§ = 10) = 0.07. The (x) width of the domain plotted
corresponds to one half of an acoustic wave wavelength.

1 2 1 5 1 27 1 . )

ku== [ [malacay =1 [0 [ v e @)
T Jo 0 T Jo 0
1 2 pl ) 1 2r pl — 2

KBE—/ / [uop|” dx dy=—/ / |Viap|” dxdy, (“.4)
T Jo Jo T Jo Jo
1 27 1 ) 1 27 1 _

ke=— [ [ mlaray=— [7 [ 90 . (4.5)
T Jo 0 T Jo 0

The analytical expressions for these coefficients are reported in Appendix E. Note that
Iﬁgl2 * IEQHI2 + Iﬁygl2 + IﬁzFlz. Since only Kp depends on I, a critical temperature
difference I, can be defined such that

KH(aaRevPr7yaA)=KB(F=F6789RevPr’VaA)' (46)
For the set of parameters reported in figure 5, I = 0.28 for 6 = 1 and I = 0.07 for § = 10,
which qualitatively corresponds to a hot cell that spans around 80 % of the height of the
channel. The dependence of I, on other independent parameters can also be investigated.
Using the expressions reported in Appendix E,
2
K= %[ 14 Pr+2/ = DVPr/3]" (14 P2 Fy 6),
Kg=A*T?Re?y ~F(8), 4.7

and therefore

A1 2(y — DN/ Pr
I.=el.= <1+ 301 P )FC(S) (4.8)

is notably independent of the wave amplitude A and inversely proportional to Re,, =
P« ax/ (ks py). The terms grouped in parentheses represent the dependence of I on the
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Figure 6. (a) Aspect-ratio dependence of the function F, to which the critical temperature difference I
is proportional (see (4.8)). As the imposed temperature difference increases, the transition from Rayleigh
to baroclinic streaming first occurs at § = §,,;, =4.74. In the narrow channel limit the critical temperature

difference I, = O(8~2), while in the tall channel limit the critical temperature difference I, = O(«/S) (see
(4.9)). (b) Kinetic energy parameters Ky, Kr and Kp as functions of the aspect ratio § (A=1, I'=0.5,
Re =300, Pr=0.71 and y = 1.4).

fluid properties. The dependence of I, on the channel geometry (§) is non-monotonic: F,
has a minimum for § = §,,,;,, = 4.74 and satisfies

Fe(8min) = 26.68, Fo(8) ~ 18442572, Fe(8) ~ 63/24/5. 4.9)
sl 5>1

The dependence of F, and each of the kinetic energy parameters on the aspect ratio ¢ is
shown in figure 6. In particular, the kinetic energy parameter corresponding to the specific
acoustic wave forcing mechanism, K, is found to be several orders of magnitude smaller
than the others. The most consequential result is that I, is minimum for §,,;, =4.74
independently of all the other dimensionless parameters and significantly increases as
8 departs from this value. This knowledge should prove valuable for the design of an
experimental set-up aiming to show this transition near §,,;,. In cases where streaming
flows are undesirable, our result highlights the extreme sensitivity of channels of aspect
ratios near this value to external temperature differences.

To further emphasise the role of I, in dictating the flow morphology, we qualitatively
analyse the observations of Nabavi et al. (2008), who report experimental measurements
of the streaming flow in an acoustic resonator subject to external temperature differences.
For the set of dimensionless parameters considered by those authors (A =7, Re = 1236.5,
Pe=953,56=0.7, y=14 and € = 1073), we compute [, =0.214, corresponding to a
dimensional critical temperature difference A®., =0.06 °C across the channel. Although
the experimental regime (particularly Re = 1236.5 ~ 1 /€ and Pe =953 & 1/¢) seemingly
falls outside the range of asymptotic validity of the current analysis, the analytical results
presented here nevertheless capture the transition that was found to occur between A®, =
0°Cand A®, =0.3 °C. In fact, knowledge of the critical temperature difference I could
be used to inform future experiments aiming to precisely track the transition in flow
morphology. Figure 7(a) compares the wall-normal structure of the interior horizontal
streaming velocity u; for different temperature differences A®, = {0, 0.06, 0.3} °C. The
corresponding normalised velocity fields are also shown in figure 7(b). The fields obtained

1017 A32-15


https://doi.org/10.1017/jfm.2025.10450

https://doi.org/10.1017/jfm.2025.10450 Published online by Cambridge University Press

R. Mushthaq, G. Michel and G.P. Chini

(a) (b)
1.0 — == . 1 O 1
/_,—" — AO®*=0°C ﬁ’
Kel - -AO®*=0.06°C y ®
—--AO*=0.3°C 2
\N
N | 0 5
\.\. S
o _=
1 % §
y 0.5¢ 1 y < <
' L [ £
Sl t@ i
\,\~\\ O < §
N, =
L j 1 OQ _g
- e O
s y A
____ o}
: “ . < 0
-20 -10 10 20 0

(x=1/4,y)

Figure 7. Streaming flow predicted for the dimensionless parameters reported in Nabavi et al. (2008):
A =7, Re=1236.5, Pe=953,5=0.7, y=1.4 and € = 1073. (a) Vertical profile of the interior horizontal
streaming velocity u>(x = /4, y) and (b) normalised streaming velocity field |#2|/|#2|max and velocity
vectors for I' =0 (A®, =0°C), I' =1, =0.214 (AO,, =0.06°C)and I =1 (AB®, = 0.3 °C). For this set of
parameters, I = 0.214 (A®., = 0.06 °C) lies in the transition range evident in figure 4 of Nabavi et al. (2008).

for A®, =0°C and A®, =0.3 °C compare well with the experimental results reported
in Nabavi et al. (2008).

5. Conclusion

In this investigation we analyse the streaming flows generated by a standing acoustic wave
in a channel with hot and cold walls held at fixed but differing temperatures (respectively
T« + A®, and T)). Using asymptotic approximations, an analytical solution is derived
that characterises the smooth transition from Rayleigh streaming to baroclinic acoustic
streaming. This solution accounts for prior experimental and numerical observations:
as the temperature difference increases, the stacked cellular structure characteristic of
Rayleigh streaming transforms to a unicellular structure, in which the cells span the height
of the channel and streaming velocities are enhanced significantly. The present study
enables the extensive exploration of this transition by providing an analytical expression
for the associated acoustic wave and streaming fields.

In this intermediate regime, the streaming flow u; is expressed as the sum of three
contributions. The first, u;y, is driven by viscous torques in the oscillatory BLs and
extends the solution derived by Rayleigh to O (1) aspect ratios. The second, 33, is directly
proportional to the imposed temperature difference and, in particular, is directly related to
the acoustic wave vorticity generated baroclinically in the interior of the channel. The third
contribution, u»r, depends on the details of the wave forcing mechanism and in practice
is found to be negligible. A critical temperature difference A®,, can be defined based on
equating the kinetic energies of the viscous and baroclinically driven streaming flows to
quantify the transition from u,y to uzp as A®, is increased. We show that

[1 + MxC px +z <CL* _ 1) [ M%C px :|
ks s K 3 \cux K

P 1+ M
Kx

AOc, =€l Ty = Fe(k«Hy) Ty, (5.1)
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Attribute Rayleigh streaming (RS) Transition from RS to BAS Baroclinic acoustic
streaming (BAS)
Schematic <>
Temperature AO, LK AO, AO, = 0(AB,,) AB > AB,,
difference
Streaming velocity Us, =U2/a, Uy, = U2 /ay Us, = Ux
scale
Driving Attenuation (BLs) and wave  Baroclinicity (interior), Baroclinicity (interior)
mechanism forcing mechanism attenuation (BLs) and
wave forcing mechanism
Features Stacked cells and symmetry Stacked cells and no  Single cell and no symmetry
about y = H, /2 symmetry about about y = H, /2 (see Massih
y=H,/2 et al. 2024)
Solution Asymptotic analytical Asymptotic analytical Numerical solution only
approximations exist approximations exist
Dynamics The waves drive a mean The waves drive a mean The waves drive a mean
flow. No feedback from flow. No feedback from flow. The mean flow
the mean flow the mean flow affects the waves

Table 3. Summary of acoustic streaming regimes in a differentially heated channel. Recall that U is the typical
acoustic wave velocity, a, the speed of sound, A®, the temperature difference across the channel of height H,
and A®,, the critical temperature difference given in (5.1).

where F, is an explicit function that has a minimum value of 27 for k.H, =4.74.
For air at standard temperature and pressure as a working fluid (7, =273 K, u,=
1.7 x 1072 kg (ms) ™!, pe = 1.3 kgm™>, ¢ = 1.0 x 103 T (kg K) 7L, cpue = cpu/ 1.4, ki =
0.024 W (mK)~!, a, =331 ms~1), a channel of height H, = 1 cm and an acoustic wave
of wavenumber k, =4.74/H, =474 m~! (and, thus, fi =k.a,./(2mw)=25kHz), we find
A®., =0.15K. Larger channel heights with the same aspect ratio would further reduce
this critical temperature difference (for H, = 10 cm and k., =4.74/H,., A®., = 15 mK).
This estimate demonstrates the extreme sensitivity of streaming flows in a gas to
temperature inhomogeneities.

The estimation of this transitional temperature gradient also aids in the design of
experiments. First, A®,, should be computed and compared with the actual temperature
difference A®,. If A®, K AB,,, baroclinicity can be neglected and Rayleigh’s approach
for homogeneous fluids used. For A®, = O(A®.,), the present analytical solution should
be employed, whereas a larger temperature difference A®, > A®,., generates two-way
coupling between the waves and the streaming flows that is captured in the framework
developed in Chini ef al. (2014), Michel & Chini (2019) and Massih et al. (2024). Table 3
compares these various regimes of acoustic streaming in a gas and highlights the transition
from Rayleigh streaming to baroclinic acoustic streaming.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Analytical solutions for the acoustic waves at O (¢/?)
The O (e3/2) acoustic fields in the interior are
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30 = [(8°yF3/2/2)y* + C1y + Ca] cos (x) e’ +c.c. (interior), (A1)
wyy =iy ' [(8*yF32/2)y* 4+ Ciy + C2 + F3 2y I sin (x) e’ +c.c. (interior), (A2)
vy =i(y8?) (8% ¥ F32)y + Ci] cos (x) e +c.c. (interior), (A3)
@3, =(1—y 3, (nterior), (A4)
pyp=vy~'m, (interior). (A5)

The vertical velocity field vé , evaluated at y =0 in the interior (A3) must match the

value obtained in the cold-wall BL as n — oo (3.21) and analogously at y =1. This
matching is achieved by setting

8%y LA (y-1D 1
C 5 3,2, F3p=01 1)2)/ ( N +\/@) . (A6)
The constant C; seemingly remains undetermined at this stage. We determine C» by noting
that the corresponding acoustic field has exactly the same form as that obtained at O (¢),
consisting of a plane horizontal wave with BLs to satisfy the no-slip and isothermal
boundary conditions. Thus, the wave solution associated with the constant C; merely
corresponds to an O(€) modification of the leading-order acoustic wave amplitude A
and does not encapsulate any new physical phenomena. Accordingly, we choose to set
Cy = —y[F3); to ensure a zero oscillatory horizontal velocity in the interior close to each
boundary and thereby obviate the need for mechanical BLs at this order. The thermal
boundary layer, however, remains and the following expression for the fields close to the
walls is obtained:

né/z = —yF3/cos(x)e’ +c.c. (BLs), (A7)
Wy, =0 (BLs), (A8)
14i . ‘
F3,2 [in + d+D (y - — e—<1+l>ﬁn)] cos(x)e’ +c.c. (C-BL)
o — 2P

’ —F32 |:in + d+D (y —DhHd - e_(l+i)‘/@’7):| cos (x) e +c.c. (H-BL)

23/P ’
(A9)
0%y = —F3p(y — D[1 —e VP cos (x) e +cc. (BLs), (A10)
Pin=—Fap[1+ (r — De VP cos (x) e +c.c.  (BLS). (Al1)

Appendix B. Leading-order streaming flow in the BLs
The leading-order streaming flow in the BLs is explicitly given by

_ AZsinx)e I VPHVR+VRIY
2= 8,2P(P + R)
+ PP+ R)e[(lﬂ)«/@rix/ﬁ]n +i(y — DR(P+ R)G[Zi\/@+(2+i)\/ﬁ]n
— (y = DR[(VPR + iP)e VE+2VEN (/PR _ jp)e1+20vRN
+ VPP +R)[(y — DVR + (1 + 3i)v/PlelVE+H1+)VER
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“PR(»y — DVPR + 3(P + R)Jel I+ VP+HVRI+VRIy
+VPP+R)[(y — DVR+ (1 — 31)@]6[(1+i)ﬁ+(1+2i)m]n}. B

Appendix C. Simplification of the torques driving the streaming flow
C.1. Using vector identities and equations at lower order

Various nonlinear terms in the expression for the stream function (obtained by taking the
curl of (3.42)) can be simplified. In particular, since the acoustic vorticity in the interior
vanishes at O (e3/2),

1

V x [(u’3/2 . V)ug/z] =V x |:§ V(u’3/2 . "/3/2) +(V x ug/z) X ug/z} =0. (CD

Similarly, exploiting vector identities and that £2] = 0 in the interior yields both
V x [(w) - V)uh+ (s VIui ]| =V x [V(uh-u)) + (V xuy) xu) + (V x ul) x uh]
=V x (2} x u}) (C2)

and
2V x [py () - V)u | =V x [0 V(u} - u)) +20,(V x u}) x u!]

=V x [ V(u] -u))]= (Vo) x [V(u) - u})]. (C3)

The nonlinear term involving the O (e3/?) acoustic fields does not vanish and can be
related to the external force density ]F’3 P with the use of (3.24) and (AS5):

V x (030t n) =V x (y s p[ — v T Vg s + F3 pes])
=—y 718710y (m} oS ) e = — (¥8) ' (BymS )F pe;  (C4)
=TF5,0, (8 v35) e (C5)

Hence, V x (pé/zatug/z) =—38v5, F; ;.

C.2. Using acoustic equations at O (€2)

The nonlinear terms V x (péatu/l) and V x (piatu/z) require a special analysis but their
sum is found to vanish. First, note that y_l 0y((3.47) + (3.48)) leads, with (3.49), to

By (3xtth + 3yv5) = —y 'y = 620,05, (C6)

and, therefore, with the use of (3.47), (3.50) and (C6),

V x (pyoru’) = =V x ()9, p5) = =V x [u| (Fydu| — 0,uly — 0,v))e,]

= —(S_lay[u/l (Fyaxu/l — dxub — Eiyv’z)]eZ (C7)

= 5! [1,1/11“8xu/1 —u}dy (8xu/2 + ayvé)]eZ

= Q[0 uje; + u' 9, vhe, = 250,u’ e, — Suvle,. (C8)
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The other nonlinear term can be simplified as well, using successively (3.10), (3.50)
and (C8):

V x (pj0iuy) = =V x (wyd,p]) =V x (whocu') = (S*1<9y(bt’26)xz/1)eZ — 80, (vy0,u))e;
= (8- 10yub — 80,v))dcu e, — SV 0y ue; = —$25dcu e, + Svhule;

=-V x (péatu/l). (C9)

Appendix D. Expression for the leading-order stream function

As detalled in §3. 8 the leading-order streaming flow can be expressed as (uz =
-5 19 1//2, U2 =8719,1,), where the stream function ¥, = ¥,y + Y5 + ¥, and

Vo = —Sinhf;‘ﬁ{(y — 1) sinh(28y) + y sinh[25(1 — )]}, (D1)
_ AZI'R sin(2x) . .
Yop= 645372 [5 T cosh(3) sinh(8)] {— sinh(28) + cosh(26y)[25(1 — y) + sinh(2§)]
+ 28y cosh[28(y — 1)] — 2[6 + sinh(8)? sinh(28y)]1}, (D2)
RF3/2F§/2 sin(2x)

Yop = 326 [ — cosh(3) sinh(3)] {cosh(26y)[26(y — 1) 4+ (1 — 2y) sinh(24)]

+ 28y cosh[25(y — 1)] — (2y — 1)[26 — sinh(2§) — 2 sinh(8)? sinh(28y)]},

(D3)
with #g;, and F3; given in (3.41) and (3.34).
Appendix E. Kinetic energy parameters (Ky, Kr, Kp)
The parameters (Kp, Kr, Kp) defined in (4.3)—(4.5) are given by
_ A*sinh(9)2(y — DVPVR + 3P + 3R)?
"= 7512694(P + R)2(5 — sinh(8) cosh(s))2
{—(88% + 1) cosh(8) + 46 sinh(8) + cosh(38)}, (E1)
A*(y = DVR +V/P)* 3
Kp= 108(8° + 8) cosh(28
F = 1228865, 9F2(5 — sinh() cosh(8))2 | 080" +9) cosh(28)
— 3(58% + 7) sinh(48) + 25(5% + 18) cosh(48) + 25(88* + 2982 — 72)
— 2(208* + 11182 — 21) sinh(25)}, (E2)
K, AR {25(88% 4+ 9) + 2(125% + 5) sinh(26)
= sin
B = 102457425 + sinh(25))2
— 5sinh(48) — 208 cosh(28) + 28 cosh(48)}. (E3)
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