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Lessons from the design of a Standard ML library

DAVE BERRY
Laboratory for Foundations of Computer Science, University of Edinburgh,

Abstract

We describe the Edinburgh SML Library and draw lessons from its development. These
lessons are of two kinds. The first concerns how to use SML to write a library, and shows
some of the design choices that have to be considered. Most of the paper concerns this topic.
The second kind of lesson concerns ways in which the language hinders the construction
of a library. We suggest some changes to the language as a result of this experience, the
most important being the addition of higher-order functors. We also suggest that language
designers should consider the needs of libraries early on in the design of a language.

Capsule Review

Berry addresses language design issues of ML pertaining to its use in the construction of
libraries. This is a crucial concern for a language to be successful in the development of 'real'
software. The author's remarks derive from his work on a general purpose ML library of
significant size. He comments on some of the design choices necessary when building a library,
and on some of the language shortcomings that inhibit the library construction. He discusses
the use of structures vs. functors, universal polymorphism vs. existential polymorphism,
treatment of failure, higher order functors, and other issues.

This paper provides pertinent information for the debate on how to evolve ML-like
languages into truly general-purpose languages.

1 Introduction

We had two aims when designing the Edinburgh SML Library. We wanted to
provide a range of reusable software components, so that people wouldn't have to
keep re-inventing the lever. We also wanted to define a common interface to some
operations that were not included in the formal definition of the language but that
were provided by the compilers we were using.

Both these goals arose from the paucity of primitive operations included in The
Definition of Standard ML (Milner et al, 1990). That document concentrates on
the semantics of the language itself, and quite intentionally defines only a few
basic operations. These operations, called the initial basis, are not really adequate
for real programs, so implementers of SML added their own features. As a result,
the implementations became incompatible, and we were reduced to having to port
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code between different implementations. This undermined the work that went into
producing a formal definition of the language.

In addition, there was little reuse of SML software. If you wanted a hash table,
you had to write your own, unless you knew somebody who had written one already.
The modules of SML were being used to structure individual applications, but not
to define reusable software components. The portability problems were a hindrance
here as well.

Furthermore, the implementers were extending the initial basis in a piecemeal
fashion. As they saw a need for a new operator, they would add it. There was
no attempt to provide a consistent naming scheme and a consistent use of types,
which would have provided a coherent interface to the user. And there was even
less consistency between implementations. The implementers cannot be blamed for
this, but the result was unsatisfactory.

It is impossible to predict all the operations that people will require, so we decided
to produce a well-designed framework that other people could extend as necessary.
We began by asking several people from different organisations to provide utility
functions that they had developed for their own use. We started with the most
commonly used functions from those that we were given, and formed several basic
library entries. Then we extended these entries to provide a consistent user interface.

This paper is structured as follows. Section 2 gives a brief overview of the
Edinburgh library. Sections 3 to 9 discuss some of the choices that are faced when
writing a library in SML. Some of these choices face writers of applications as well.
Sections 10 to 13 discuss aspects of the design of SML that hinder the construction
of libraries.

There are many choices that must be considered when writing a library in SML.
In this paper we discuss the following:

« When to use structures and when to use functors to implement library entries
(section 3).

• How to record dependencies between entries (section 4).
• When to use type variables for polymorphism and when to use functors instead

(section 5).
• How generic signatures may be used to structure the library (section 6).
• What conventions to use for types and identifiers (section 7).
• How to treat cases in which functions may fail (section 8).
• How to use polymorphism when passing functions as arguments (section 9).

The main change to the language that we recommend is the addition of higher-
order functors. Other language features discussed include constant references, the
relation between infix identifiers and modules, polymorphic equality, arithmetic
exceptions, and the standard I/O primitives. At a general level, we suggest that
language designers should consider the needs of libraries as well as those of appli-
cations.

The discussion in this paper is necessarily informal. Although functional languages
in general, and SML in particular, are based on a strong theoretical understanding,
there is also a need to discuss how our languages behave in practice. This involves
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matters of judgement as well as logic. The paper assumes that the reader is familiar
with Standard ML.

2 An overview of the Edinburgh library

At present the Edinburgh library contains 59 entries, and consists of 15,000 lines
of code. It provides implementation-specific versions for Poly/ML, Poplog ML,
Harlequin MLWorks, and Standard ML of New Jersey. The ML-Yacc parser
generator (Tarditi & Appel, 1991) and ML-Lex lexical analyser generator (Appel
et at, 1989) have been ported to it. It is popular both at Edinburgh and elsewhere,
and is freely distributed by FTP. It is documented by a technical report (Berry,
1991).

Most entries declare a type and basic operations on that type. Some entries
declare a group of functions that either extend the operations on a certain type or
implement a given task such as memoisation. One entry provides a make system
that can be used to load just those entries in the library that are needed, instead of
loading them all at once, or for users to specify the dependencies between their own
modules.

Most entries are defined by a signature and a structure. The signature gives the
type information of each entity in the entry, and also describes each entity with
a short comment. It also includes a general description of the whole entry. Thus
the signature can be read as an on-line manual page for the entry. The technical
report that describes the library includes all the signatures defined at the time of its
publication.

The structure defines the behaviour of the entry by giving an implementation in
terms of the standard initial basis. An entry may include alternative implementations,
for example a readable one to define the behaviour and a more efficient one for
actual use.

Some of the entries in the library are functors. The signatures used in the
parameters and result of each functor are presented in the same way as the signatures
for structure entries. The technical report includes these signatures, and also includes
the header of each functor, to show what arguments it expects and what result it
produces. These headers use the syntax of the 'functor specifications', mentioned in
The Definition Of Standard ML as being a possible future extension.

Most of the signatures used in arguments to functors are generic signatures that
may be matched by several entries. For example, the MonoSet functor uses the
EQUALITY signature in its argument, which means that it can be applied to any
structure that defines a type and an equality function on that type.

The appendix describes the current contents of the library in more detail. The
make system will be described in section 4. Some other specific entries are mentioned
where appropriate.

The following sections discuss some of the choices that are faced when writing a
library in SML. Some of these involve the use of the modules system to structure the
library. Others concern smaller scale but widespread decisions such as how functions
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should deal with failure. The first discusses the best way to use the modules system
to implement simple entries.

3 Use of the modules system

The SML modules system is powerful, and offers a range of facilities. Some of these
directly support the task of specifying and implementing a library entry. For example,
we use signatures to specify an entry, and leave the details of its implementation
to a structure or functor. Other choices are more difficult. For example, we have
found that the widely-recommended approach of building SML software entirely
from functors is not appropriate to a library. This section discusses these issues.

One straightforward decision is to describe the type information of each entry
with a signature. This signature can then be used to constrain the implementation as
well as act as documentation. Since signatures, structures and functors are separate
entities (unlike module interfaces and bodies in many other languages), the library
may provide alternative implementations, each emphasising a different aspect such
as readability or efficiency.

The behaviour of the entries must also be specified. Ideally, this would be done
using a formal specification language such as Extended ML (Sannella, 1991). How-
ever, this seems to be beyond the current state of the art, of users and contributors
as much as of programming environments and specification languages themselves. A
less ambitious solution is to use a combination of natural language and a reference
implementation.

The remaining question is whether to use structures or functors to implement the
entries. Several authors recommend that application programs should be written
entirely in terms of functors and signatures (Harper, 1986; Tofte, 1989; Paulson,
1991). However, this approach doesn't work so well for libraries. The rest of this
section explains why.

When programs are built with functors and signatures, structures are only used
in the final build sequence, in which the application is constructed by applying the
functors to their arguments. The advocates of this approach claim that it allows
modules to be reused and makes it easier to compile modules separately. It also
ensures that all dependencies between modules are explicit.

For example, the following code builds a Vector module from functors:

functor MkListO: LIST = . . .

The MkList functor doesn't depend on other modules, and produces a structure
that matches the LIST signature.

functor MkVector (structure L: LIST . . . ) = . . .

The MkVector module depends on the specification of the List entry, but not on
the implementation.
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local
structure List = MkListO;
structure . . .

in
structure Vector = MkVector (structure L = List; . . . )

end

The final structure is built from functor applications. The dependency between
the Vector and List structures is explicit in the arguments and application of the
MkVector functor. The List structure is hidden from the user.

If this approach is not followed, then someone developing a new module could
accidentally refer to an already loaded structure without documenting this depen-
dency. For example, if the List and Vector structures were declared directly, the
programmer might fail to document the dependency between them. Later attempts
to build the system could then fail because the modules weren't loaded in the same
order. If the writer uses only functors, there will be no existing structures to refer to
in this way, and all links to other modules must be made using the parameters of
the functor. This produces more reliable software.

Unfortunately, this approach is not suitable for building a library. An application
program typically presents the user with a single structure, with all the other
components of the system hidden, as in the above example. This means that the
dependencies between the other components are also hidden. By contrast, a library
consists of many entries, each of which may depend on several others. All the entries
are visible, even though the dependencies between them should still be hidden. If
the above example were part of a library instead of an application program, then
the List structure would probably be made visible to the user. But a user's program
should not need to know whether the Vector entry is implemented in terms of lists
or of arrays, especially as the implementation may change in a later version of the
entry.

This implies that even if entries are implemented using functors in preference to
structures, the functors should be applied to their arguments before users see them.
In other words, users should see each entry as a structure. Otherwise the arguments
to the functor will make the dependencies visible. (Of course, if a functor has some
arguments that the user should see, this reasoning does not hold. An example of
such a case is a functor used to implement a generic type.)

The Edinburgh Library implements entries directly as the user will see them,
which means that most entries are structures. Two alternative approaches have been
suggested. The first is to implement all entries as functors, and to put an application
of each dependent functor inside the body of the parent functor. In our example,
the Vector functor would contain an application of the List functor:

functor MkVector () =
struct

structure L = MkList ( ) ;
. . . L.apply . . .

end;

https://doi.org/10.1017/S0956796800000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000873


532 Dave Berry

This hides the dependency between the two modules from users, since the List
entry is not mentioned in the arguments of the Vector entry. But it has the
disadvantage that it creates a new copy of the List module in every entry that uses
it. With current implementations of SML, this uses too much space to be practical.

The second alternative is to implement every entry as a functor, and to use the
make system to apply the functor to generate the required structure when the user
loads the entry. This would allow separate compilation under the same conditions
as an application written entirely in functors. It could also partially protect writers
from introducing accidental dependencies on other modules. However, the possibility
is still there. This is especially true when writing an entry that the user sees as a
functor.

In this case references to other entries that are only used to implement the functor
cannot appear as parameters to the functor, because we don't want the user to see
them. For example, if the MonoVector functor is parameterised on a structure that
matches the EQ_PRINT signature, and is implemented in terms of lists, we can't add
the List entry to the arguments without making this dependency visible to the user.
So in this case the List entry must be loaded when developing the MonoVector
functor, setting up the possibility of a later definition referring to the List entry by
mistake.

It could be argued that careful use of a make system would prevent such mistakes.
But this argument also applies to the approach of implementing entries directly as
structures.

In the interests of uniformity and simplicity, the current implementation of the
Edinburgh library defines all entries directly as the user sees them. This has the
added advantage that some compilers compile structures into smaller, more efficient
code than they do functors.

4 Loading dependent entries

The discussion on the previous section shows that most dependencies between
library entries should be hidden from users. Therefore when a user loads an entry,
the library must automatically load all entries that the requested entry itself requires.
Also, entries should not be re-loaded if they have been loaded earlier. Lastly, since
the SML modules system allows alternative implementations of the same entry, we
would like the dependency system to support this.

Some SML compilers provide their own dependency management tools. But we
wanted a portable system, which ruled out the use of features specific to a particular
compiler. We were happy to settle for a simple system that did the basic task,
because we couldn't afford the time to implement a more sophisticated tool. Even
so, there were design choices to be made.

The system is based on information about which files depend on which others.
Two common approaches are to put this information in a separate file, as in the
UNIX make system (Feldman, 1979), or to include it in each file.

An advantage of the UNIX approach is that all the dependency information is in
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one place, where it can be analysed. However, it should be possible to generate this
information from the second system when it is required.

Our make system puts all dependency information in the appropriate files. It
actually allows more than one compilation unit per file, but the library itself follows
the convention of one compilation unit per file. This means that if the ability to
check the modification time of each file is added to SML in the future, the library
can easily make use of it.

Dependencies between files are specified in special comments, called tag declara-
tions, at the start of the relevant piece of code. A tag declaration begins with the
string (*$. Since comments begin with the string (*, the compiler itself ignores tag
declarations.

The body of the tag declaration consists of an alphanumeric tag, usually followed
by a colon and a list of other tags. The first tag names the code that follows the
tag declaration. The optional list specifies the code that this piece of code depends
on. The make system scans the tag declarations in the files specified by the user (or
in our case, the library build file), and builds a dependency graph. When a piece
of code is requested, all the necessary code is extracted and compiled. If a piece of
code has been loaded earlier, it is not loaded again.

Another possible approach to the question of dependency information is for
the system to discover the information by analysing the code of each file before
loading it. This approach has the advantage that there is no separate dependency
information that could get out of step with the code. It is more complicated to write
than the other systems, and it is possible that some features of SML (such as the
ability to open structures) will increase this complexity.

Any of these dependency systems are good enough for the basic task.
It should be possible to adapt existing more sophisticated systems to SML as

well. The important thing is that a dependency system is essential to support an
SML Library. The system is also useful to users, and so increases the usefulness of
the library.

5 Polymorphism

The ML family of languages have always supported polymorphic datatypes and
functions using type variables. This is called universal polymorphism. With the
addition of the modules system, Standard ML also supports polymorphism using
functors. This is called existential polymorphism, and is similar to the generic
packages of ADA (Ada, 1989) or the generic classes of Eiffel (Meyer, 1991). This
raises the question of which approach to use when. This depends on the needs of
the programmer, so the Edinburgh library supports both approaches.

A related question concerns the use of equality types, another new feature of
Standard ML. Equality types can make some code simpler, but are not truly
general, and their use is not encouraged in the Edinburgh library.

A final question concerns the possibility of using existential polymorphism to
provide versions of polymorphic types that are optimised for particular instances.
The Edinburgh library provides a framework for such entries.

21 FPR 3
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An example of universal polymorphism is the Vector type. This can be denned
in terms of lists. (In most compilers it is implemented directly, for greater efficiency,
but its behaviour can still be defined in terms of lists.) Here is one possible definition
of the type, with a map function for this type:

datatype 'a Vector = V of 'a l i s t

fun map f (V 1) = V (List.map f 1)

For simple datatypes like lists and vectors, universal polymorphism is usually more
flexible. The same type may be instantiated to several different instances without
having to apply a functor each time, and the same function can be applied to each
instance.

However, some polymorphic types need operations on their elements. For example,
the implementations of sets in the Edinburgh library require an equality function on
the elements. Other types, or alternative implementations of sets, might require an
ordering function. This changes the balance between the two types of polymorphism.

If we use universal polymorphism, then we have to give the set operations access
to the equality function on the elements. One way to do this is to pass the function
as a parameter to the operation. This makes the operations cumbersome to use.
It also fails to prevent different functions being used in different places. For an
implementation of sets based on an ordering function, this would give erroneous
results. For example, someone could write:

val s = Set.fromList I n t . l t [7, 3, 9] ;
(* Now s i s implemented as the l i s t [3, 7, 9] *)

val s ' = Se t . inser t In t .g t 5 s;
(* s ' i s implemented as the l i s t [5, 3, 7, 9] *)

Set.member In t . g t 7 s ' ;
(* This ca l l incorrectly returns false. *)

An alternative is to make the ordering part of the value, by passing it to the
creation function. Then operations will always use the correct function, and only the
creation operations will have the encumbrance of taking the function as a parameter.
The drawback to this approach is that it doesn't prevent operations from combining
two values with different ordering functions, as both functions will have the same
type. As in the previous case, this could lead to errors.

However, the drawback is not so severe with this approach. Often, access to the
ordering functions will be limited to the person writing the library entry. If that
person can code the entry correctly, then users of the entry will not see any problems.
For example, the set union function might be defined as follows:

fun union (Set (f, 1)) (Set (_, 1')) =
Set (f, remove_duplicates f (1 @ 1'))
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This definition picks one of the ordering functions to use in the result set, but
ensures that this function is used to order the elements in the set. Thus the result
of the union operation is consistent. This approach still isn't completely safe, and
there may be functions that can't be written safely at all with this approach, but it
is better than the previous approach.

The effect aimed for by passing operations to the set creation function can be
achieved easily using a functor. For example, the MonoSet functor of the Edinburgh
library takes two arguments, a type and an equality operation on that type. Applying
the functor produces a new type, so any attempts to combine sets with different
equality operations will give a type error. Also, the result signature of the functor
doesn't mention the equality function at all, and so is simpler than either of the
alternatives for universal polymorphism. So existential polymorphism is generally
better when a polymorphic type requires some operations on its types. For example,

functor MonoSet (

type T

val eq: T -> T -> bool

) : sig

type Set

type Element

val fromList: Element list -> Set

end = . . .

The drawback of this approach is that each application of the functor creates a
new type, and new functions on that type. Any functions on sets written outside the
set entry itself will have to be parameterised on the result signature of the set entry
if they are to be polymorphic. This adds more functor calls to the program.

The choice of which approach to use depends on the program. If several instan-
tiations of a type are needed in a module, then the universal approach is probably
easier. If only one instantiation is required, the existential approach is often easiest.
The existential approach also has the advantage that type safety is guaranteed,
while the universal approach sometimes requires care on the part of the library
implementer. The Edinburgh library provides both sorts of entries for sets, so that
programmers can select the version most appropriate to their needs.

When one of the operations required by a type is equality, another option is to
use equality types. This approach seems to combine the advantages of the first two
approaches. It does not require an equality function to be passed as an argument,
and so the result signature is simpler than for ordinary universal polymorphism. If
equality is the only operation required, then the implementation is fully type-safe
without having to use functors.

However, a set entry that uses equality types can only be used with elements that
support the built-in definition of equality. So a general-purpose library must provide
a version with explicit equality as well, and a truly polymorphic application must
use that entry. Polymorphic equality only solves some of the problems some of the
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time. The Edinburgh library does provide an implementation of sets with equality
types, but its not clear how useful this will be.

Existential polymorphism can also be used to provide versions of polymorphic
types that are specialised to their argument type. For example, the Edinburgh library
includes a MonoVector functor that takes a type and produces a vector of elements
of that type. In the generic case, these vectors will usually be implemented as a
sequence of machine words, either integers or pointers to more complex values.
However, we can provide structures that implement a boolean vector as a bitset, or a
real vector as a sequence of double-word values, in such a way that these structures
match the same result signature as the functor. Provided the vector type is abstract,
the specialised cases will be indistinguishable from structures generated by applying
the functor, except that they will be more efficient.

A sophisticated compiler might be able to optimise the representation of the type
automatically, by delaying the compilation of the functor until it is applied. In this
scenario, we would not need to supply the specialised implementations.

This idea could be extended to support the implementation of vectors on spe-
cial hardware. For example, Blelloch's vector processing system requires that the
elements of a vector are stored sequentially (Blelloch, 1990). A hardware-specific im-
plementation of the MonoVector functor could implement the desired representation
for any datatype.

6 Generic signatures

The use of functors to implement existential polymorphism can be aided by con-
ventions about the names of types and functions. For example, if the MonoVector
functor requires a type T and functions eq, s tr ing and print, we can ensure that
all entries that define a type give the type the name T in addition to the usual name,
and we can also ensure that we always use the name eq for the equality function,
s t r ing for the string conversion function, and print for the print function. For
example, in the Edinburgh library the Int structure contains, inter alia, entities that
match the following specifications:

eqtype int

eqtype T

sharing type T = int

val eq: T -> T -> bool

val print: outstream -> T -> unit

val string: T -> string

With this convention we can apply the MonoVector functor to any such entry.
For example, we can apply it to the Int structure directly. We can also apply other
functors that follow this convention.

As a further step, the argument signatures of these functors can be given names.
For example, in the Edinburgh library the argument signature of the MonoVector
functor is called EQ-PRINT. We call these generic signatures. Other examples define
orderings, print functions, parse functions and equality types. For example:
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signature EQUALITY =

sig

type T

val eq: T -> T -> bool

end

signature PRINT =

sig

type T

val print: outstream -> T -> unit

val string: T -> string

end

These signatures can be combined using the include feature of SML. This
includes the components of a previously declared signature in the current signature.
The general way to combine these signatures is shown by this example:

signature EQ.PRINT =
sig

local type T' in
include EQUALITY
sharing type T = T'
include PRINT
sharing type T = T'

end
end

We have to ensure that the type T from the second inclusion doesn't hide the type
T from the first inclusion. This is done by using the sharing specifications to make
them both be the same as the local type T'. Since they are both the same as T',
the two types must be identical. Since T' is local, it doesn't appear in the resulting
signature value.

Unfortunately, Standard ML of New Jersey doesn't support local specifications
or the include construct. (The implementers seem to be omitting these constructs
largely on ideological grounds). Since this compiler is widely used, the Edinburgh
library implements signatures such as EQ.PRINT directly.

We also give a name to the result signature of the functor, which we use to
document the entry in the same way as signatures of other entries are used as doc-
umentation. In the Edinburgh library we also use the convention that all arguments
to functors are written using the expanded form s t ruc tu re S : SIG . . . . The final
definition of the MonoVector functor looks like this:

functor MonoVector (

structure Element: EQ.PRINT

): M0N0_VECT0R =

22 FPR3
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7 Name and type conventions

The naming conventions introduced in the previous section are useful for more than
just making functors easier to use. They also provide users with a consistent naming
scheme, so that they don't have to remember different names for similar functions in
different entries. In short, they are part of the user interface of a library. This section
considers related aspects of a consistent naming scheme, such as the choice of case
for identifiers, and whether functions should be curried. Although these aspects of
library design seem almost trivial, there are some constraints on sensible choices,
and some useful guidelines that can be followed.

The choice of which case to use for identifiers is largely arbitrary, but the language
does impose some constraints. SML has seven types of identifiers: record labels,
variables, constructors, types, structures, signatures and functors. Except for variables
and constructors, these groups have distinct name spaces. Therefore most identifiers
can use the same conventions without fear of clashes. However, variables and
constructors should have different conventions to help users distinguish between
them. Also, when pattern matching with records, a commonly-used abbreviation
allows the same identifier to be used for both a record label and a variable.
Therefore variables and record labels should follow the same conventions.

The Edinburgh library uses the convention that most identifiers capitalise the
first letter of each word. Variables and record labels differ in that they begin with
a lower-case letter. Thus the library inherits the long-standing SML tradition of
distinguishing variables and constructors by the case of their first letter. The library
also follows the tradition of using all upper-case letters for signature identifiers.
Although it isn't strictly necessary, it does have the advantage that, on most operating
systems, structures and signatures with the 'same' name (e.g. Vector and VECTOR)
can be stored in files of the same name without causing name clashes.

The choice of which names to use is not restricted by the language; any con-
ventions are up to the library designer to suggest. The Edinburgh library follows
the approach taken by the Eiffel and Smalltalk libraries (Meyer, 1990; Goldberg
& Robson, 1983) and uses consistent names for the same operations in different
entries. For example, the function to create a compound value from its components
is always called create. Functions that convert values from one type to another
are given names of the form Array, l i s t or Array.fromList, depending on where
they are defined and the direction of the conversion. An alternative to the latter
convention, used before the modules system was added to ML, is to use identifiers
such as arrayFromList. But when the modules system is used, the extra occurrence
of the string array in Array .arrayFromList is redundant.

Another decision to be made in a higher-order language such as SML is whether
functions should be curried or whether they should take a single tuple argument.
Providing both would greatly increase the size of the library for little gain. Curried
functions have the advantage of flexibility, and allow the use of many functional
programming techniques. This is the approach that we took in the Edinburgh library.
On the other hand, curried functions can be less efficient, since the implementation
must build a new closure for each curried argument.
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Most compilers try to optimise the case when a curried function is applied to all
its arguments at once. If this can be done, it makes the curried version as efficient as
the the tupled version. Unfortunately, this optimisation isn't always safe. Consider
the following expression:

f x (g y)

The optimised version evaluates both arguments before calling the function. But the
curried version applies f to x before evaluating (g y). If both these applications
produce a side-effect, then the optimised version will perform the side-effects in the
wrong order. Often it isn't possible to tell whether an expression will produce a
side-effect. This is especially true in the body of a functor, when the function to
be applied may be specified only by the argument signature. It may be possible to
develop this optimisation further, but at present curried functions do seem to be less
efficient than their tupled equivalents.

8 Failure and exceptions

Another design decision concerns functions that can fail. One example is a function
that searches for a symbol in a dictionary. Another is a function that parses a value
from a string. A third is a function for extracting an element of an array. SML
provides two ways of indicating failure. Functions can either encode the success or
failure in the type of the result, or they can represent failure by raising an exception.
The Edinburgh library uses both approaches, depending on the situation.

The first of these approaches uses a type to encode the success status. Here is an
example from the Edinburgh library:

datatype 'a Option =

None I Some of 'a

val lookup: ( ' a , Jb) Table -> ' a -> 'b Option

The returned value can be extracted with a case expression:

case lookup t x of

Some y => y
| None => code for fail case

This approach has the advantage that the type of the function shows that the
function may fail. It also ensures that programmers are warned if they don't test the
success status, because the result can only be obtained using a case expression, and
the compiler will report that the case expression isn't exhaustive. (Note: Standard
ML of New Jersey provides a built-in type similar to this, but other compilers do
not. Therefore the library defines its own version.)

The second approach signals a failure by raising an exception, and just returns
the desired value in the successful case. The following example is equivalent to the
previous one:
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exception Lookup of unit

val lookup: ( 'a, 'b) Table -> 'a -> 'b

The failure case is dealt with by trapping the exception:

lookup t x
handle

Lookup () => code for fail case

This approach may be slightly more efficient in some cases, because the success
status doesn't have to be built in to the result by the function and then decoded
by the caller. This advantage will be most noticeable when the error occurs deep
in a nested function call and is signalled back to the original caller without being
modified along the way. In such cases this approach may yield a neater program as
well. However, the possibility of failure is not indicated by the type of the function,
and the compiler won't warn users if they forget to add the exception handler or if
they put it in the wrong place.

For cases like this, the Edinburgh library uses the first approach. This is mainly
for the extra safety, but also because we expect that the success status of library
calls will usually be tested by the immediately enclosing caller, either because the
caller is the user's own function, or because the caller will be adding information
to the error value. An example of the second case is the function for parsing lists,
which returns the elements of the list that were successfully parsed before the error
occurred. We believe that any loss of efficiency won't be important in real programs.
If necessary, a more efficient version of these functions could be provided for those
cases where the extra efficiency is needed.

The library takes a different approach when a function is called with an argument
that falls outside the range that it can handle. An example is a function for accessing
an array element called with an index greater than the size of the array. We hold this
problem to be a genuinely exceptional case; in a correct program a function should
not be called with incorrect arguments. Therefore the Edinburgh library raises an
exception in such cases. The exception is given arguments that suggest the cause of
the error. For example, if a subscript is out of range, the subscript is returned as
part of the exception. This gives programmers some indication of what caused the
problem.

Another possible cause of failure is a function that is specified but not imple-
mented. This can occur when the function relies on the compiler providing an
operation that isn't denned in the standard initial basis. For example, most compil-
ers provide a function to change the current directory, but this is not part of the
definition of the language. Rather than omit the function altogether, the Edinburgh
library specifies the type of the function in the signature of the entry, and uses the

appropriate call to the compiler. If the compiler doesn't provide this function, or
if the user compiles the portable version of the library (which only uses features
defined in the initial standard basis), then the implementation of the function raises
the Notlmplemented exception instead.
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9 Higher-order functions and polymorphism

SML provides both higher-order functions and (universally) polymorphic datatypes.
The interaction of these features constrains the definition of certain types, such as
the Option type denned in the the previous section. To be practical, these types
must be denned centrally, rather than in each module.

An example of this is provided by the functions that the library provides to
parse values. Parsing values of simple types such as integers, booleans and strings is
straightforward. But parsing polymorphic sequences such as lists and vectors is more
problematic, because the parameters of these functions must include a function to
parse the elements of the sequence.

The complication arises with the result type of these function parameters. As
explained in the previous section, we prefer to encode the success status of a
function in its result value. The parse functions encode this status using an Option
type, as denned in the previous section, and a Result type, which is denned as
follows:

datatype ( ' a . ' b ) Result =
OK of 'a I Fail of 'b

One approach would have been to define a Result type and an Option type in
each library entry. This would have been the most modular solution. For example,
with this approach the parse function for integers could have the following type:

val parse: string ->
(int * s tr ing,
int Int.Option * string) Int.Result

This function takes a string, and returns one of the following values:

OK (j, s) A successful parse of the integer i, with the rest of the string being s.
Fail (None, s) An unsuccessful parse. The first argument provides the possibility

of returning a partially read value, but in this case there is nothing to return.
As before, the rest of the string is returned is s.

If there was a partial value to return in the second case, the value None would be
replaced with a value of the form Some (i) .

This function would be fine if it were only used on its own. (Indeed, if that were
the case it need not use the Option type.) However, if it were passed to the function
for parsing lists, the latter function wouldn't be able to refer to the Int.Option and
Int. Result types directly, because it is polymorphic. The best it could do would be
to treat the result type as an abstract type, and take extra arguments for extracting
the components of the type. This would be cumbersome.

Instead, the Edinburgh library defines a single Result type and a single Option
type. These are defined in a structure called General. The types in this structure
are shared by all the other library entries. In particular, all parse functions return
values of this type. With this approach, the type of the parse function for integers
becomes:
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val parse: s tr ing ->
(int * str ing,
int General.Option * string) General.Result

With this convention, we can give the type for the function to parse lists. Its first
argument is a function to parse the elements of the list, such as the above function
for parsing integers. The other arguments are the same as for the simple function. If
this function encounters an error during the parse, it returns a list of the elements
parsed so far.

val parse: (str ing -> ( 'a * s t r ing, 'a Option * string) Result) ->
str ing -> ( 'a l i s t * string, 'a l i s t Option * string) Result

Similar considerations apply to the definitions of exceptions. If failure were
signalled by exceptions instead of using the Result type, it would be most practical
to define these exceptions centrally.

This concludes our discussion of library design issues. Clearly there are many more
detailed decisions to be made when writing a library, from general conventions such
as how to specify field widths in print functions, to application specific aspects such
as which operations to include and which to leave out. All software design includes
such decisions, and although they are important they are too detailed to discuss in
this paper.

10 Higher-order functors

The remainder of the paper discusses the second kind of lesson that we have learnt
from the design of the Edinburgh library; those aspects of SML itself that obstructed
a clean library design. The first such issue that we discuss, and the main call for
change in this paper, is the issue of higher-order functors.

Section 3 raised the problem of hiding the dependencies of a functor on other
entries in the library. Ideally, we would like these dependencies to be made via
parameters of the functor, but we don't want the users to know about them.
We can't do this with the language as it stands, because we can't separate the
implementation dependencies from the arguments that the user sees. Research by
Tofte and others on higher-order functors may be able to help.

What we need is the possibility of defining curried functors, just as we can define
curried functions in the core language. The idea is that a functor could be applied
to one set of arguments, used to implement the functor, and return another functor
that could later be applied to the user's arguments. For example, the implementer
could define the curried functor MkMonoVector:

functor MkMonoVector (structure L: LIST)
(structure Element: EQ.PRINT) = . . .

When the user loaded this entry, the make system would automatically apply it to
the first argument:
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functor MonoVector (structure Element: EQ_PRINT) =
MkMonoVector (structure L = Lis t ) ;

The user would then see the desired functor, and the dependency on the List entry
would be hidden. The user could apply the functor in the normal way:

structure IntVector = MonoVector (structure Element = In t ) ;

Curried functors are a particular form of higher-order functors, and would be
allowed if higher-order functors were added to the language.

A related question is why the library entries aren't contained in a single Library
structure. The advantage of such a scheme would be that the library could be
manipulated as a whole, and name clashes would be avoided when another package
used the same name as a library entry.

This would indeed be desirable. The problem is that the library includes signatures
and functors as well as structures, and SML does not allow these to be contained
in structures. Structures are the only constructs of the modules system that can be
contained in each other. This limitation would be removed by admitting higher-order
functors and signatures.

Higher-order functors are also useful for structuring applications. Tofte gives the
following example in his paper (Tofte, 1992). We define a signature for monoids,
and a functor Prod that takes two monoids and produces their product (another
monoid). Then we want to define a functor Square that uses Prod to produce
the product of a monoid with itself, which we can use to define a plane. Without
higher-order functors, we can only define Square if we have already defined Prod,
as shown here:

signature MONOID

type t

val e: t

val plus: t *

end;

= sig

t -> t

functor Prod (structure

structure

struct

type t = M.t *

val e = (M.e,

fun plus ((xl,

(M.plus (xl,

end;

N.t
N.e)

M:
N:

x2), (yl,

yi), N

MONOID

MONOID): MONOID =

y2)) =

.plus (x2, y2))

functor Square (X: MONOID): MONOID =
Prod (structure M = X; structure N = X);

With higher-order functors we can parameterise Square on a functor signature
PROD that is matched by Prod. Now Square is more modular and can be compiled
without reference to the Prod functor:
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signature PROD =
(structure M: MONOID
structure N: MONOID): MONOID;

functor Square (structure X: MONOID
functor Prod: PROD): MONOID =

Prod (structure M = X; structure N = X);

The Definition of Standard ML did not include higher-order functors because
they presented significant theoretical problems. Tofte shows how most of these
problems can be resolved. The few remaining problems seem to have been resolved
since the publication of Tofte's paper, and there exists a trial implementation. In my
opinion, it would be desirable to add higher-order functors to the language. Their
utility outweighs the disadvantages involved in changing the published definition.

11 Identifier attributes

In SML, value identifiers can have several attributes. They may be infix or nonfix,
constructors or variables, overloaded or not. Each of these options causes problems.

The problem with infix status is that it isn't exported from a structure when the
structure is opened. So a library can design a certain identifier to be infix, but if
users want to use it this way they have to type the infix declaration themselves.

The problem with constructor status is that it is lost whenever the constructor is
bound to a new identifier. This means that it isn't possible to include, for example,
the constructors of the l i s t datatype in the List structure. This would be desirable
for several reasons, including the ability to access these constructors even if the
identifiers were rebound at top level, and for completeness.

The problem with overloaded status is that it is lost if the identifier is rebound,
and it can't be reintroduced. This has the same effect as the limitation on constructor
status; overloaded identifiers can't be included in library entries without losing their
overloaded status. (Users can't define overloaded operators - they exist only in the
initial basis.)

This is a known limitation, but the designers of Standard ML thought that the
advantages of overloading the arithmetic operations outweighed the disadvantages.
Generalising the ability to overload functions in the context of polymorphic type
inference is a hard problem, as the development of Haskell illustrates (Hudak et al.,
1992; Wadler & Blott, 1989). More work yet would be required to integrate the
Haskell scheme with the modules system of Standard ML, and it is unclear whether
the extra complexity would be worth the gains.

These problems have been noted before, for example by Appel (Appel, 1992).
They affect application programs as well as libraries. However, their effect on the
design of libraries is particularly noticeable.
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12 Equality

The SML notion of polymorphic equality has been widely criticised. We have already
noted in section 5 that library entries should use an explicit equality function, so
that they are as general as possible. Polymorphic equality offers little to the library
implementer. Even at best it is little more than a distraction.

Unfortunately it can be worse than just a distraction. Given that the language
includes a definition of equality, we would like it to apply correctly to types that we
define. However, it doesn't always give us the behaviour that we desire. During the
development of the Edinburgh library this became apparent in the cases of abstract
types and of constant references.

An example of the first case is the Set entry. We can implement a set as an
unordered list. (There are other, better, representations, but this simple one might
be used for reference purposes, and shows the problem well.) If we don't use the
abstype construct to implement the type, but rely on hiding the constructors with
a signature to make the type abstract, then the built-in equality applies to this type.
Of course, the built-in equality compares the representations of two sets as lists,
which is not the desired behaviour.

On the other hand, if we use the abstype construct, then the built-in equality
doesn't apply to the new type. While this is better than the alternative, it reduces the
utility of the built-in equality. There is no way to integrate a user-written equality
function with the built-in version. This is another advantage of the Haskell type
system, which was mentioned in the previous section with respect to overloading.

The second case arises when defining constant references. A SML reference value
is an imperative construct: it can be assigned new values of the appropriate type.
Two expressions with a reference type are only equal if they evaluate to the exact
same reference. Sometimes it is useful to have values with the same definition of
equality as references but which cannot be assigned to. We call these constant
references.

At first sight it seems that we could implement constant references in terms of
ordinary references, restricting the operations available on the type with a signature,
so that only creation and equality were permitted. Ideally, we would like this type
to have a visible constructor const, analogous to the constructor ref for ordinary
references. Even if this is not possible, we would like it to have the same behaviour
with regards to equality as ordinary references.

Unfortunately neither of these are possible. If we made the constructor visible,
then users could get at the underlying implementation. If constant references were
implemented in terms of ordinary references, this would let them assign new values
to a supposedly constant reference.

We can define a type for constant references that admits equality, but it will only
do so when its argument does. There is no way to tell the type system that the
equality status of the argument is unimportant. The best we can do is to provide
an equality function that does the right thing, for the cases when the built-in
polymorphic equality function doesn't apply.

When polymorphic equality was introduced, it seemed to simplify some examples,
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even though it was never expected to solve all the problems of defining equality on
user-defined types. Experience has shown that its use is limited, and that it greatly
complicates the semantics and implementation of the language. It also complicates
the design of a library. The evidence suggests that it causes more problems than it
solves.

13 The initial basis

The types, functions and exceptions defined to be part of SML itself are col-
lectively called the initial basis. The existing definition has several shortcomings.
Compiler writers have already agreed on extensions for one-dimensional arrays and
one-dimensional constant vectors. The development of the Edinburgh library has
encountered several more problems with the existing definition. This section briefly
mentions several of these limitations.

The numeric types have a couple of problems. One that is widely recognised con-
cerns the exceptions raised by the arithmetic operators. The Definition of Standard
ML defines a separate exception for each operation. This doesn't match the hard-
ware exceptions provided by most processors, and typically reduces the efficiency of
implementations. It also doesn't match the proposed Language Compatible Arith-
metic Standard (Wichmann et al., 1990) or the IEEE standard for floating point
numbers (IEEE, 1985), and would be unlikely to match any similar standard.

Therefore the Edinburgh library uses a different scheme, also used by some
compilers, in which any arithmetic operation that results in overflow raises the
Overflow exception. This can be defined in terms of the official exceptions, and can
be implemented efficiently. (This is similar to the way the Vector and Array types
are defined in terms of lists but implemented directly.)

The numeric type rea l has other problems as well. Although basic arithmetic
operations are provided on reals, there are no functions to extract the mantissa and
exponent, or to create a real number given these components. This makes printing
and parsing real numbers difficult, at best. At present, the Edinburgh library only
specifies these operations in a signature. It only implements them in the structure
if the compiler provides them; otherwise calls to these functions will raise the
Notlmplemented exception as described in section 8.

A different problem arises with the Array type. The other sequence types that
the Edinburgh library provides each have an associated empty constant value that
contains the empty sequence. Unfortunately it isn't possible to provide this constant
for arrays. The problem is that arrays are imperative data objects. This means that
the form of polymorphism that they can support is limited (Milner & Tofte, 1991).
However, the empty array can never contain any values, so it could have a fully
polymorphic type without causing any problems. The type system can't detect this
fact; the best that could be done would be to define the type of the empty array in
the definition of the language (as was done for the dereference operator).

The last problem considered in this section concerns the I/O primitives. The
Definition of Standard ML defines what happens when these primitives are called
on streams that are closed, but it doesn't define what 'closed' means. In particular, it
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doesn't say what happens when the user types an end-of-file indication on a terminal
and the program then attempts to read from that stream again.

In practice, we want the ability to clear an EOF condition on a stream. Several
compilers did this automatically, so that the first attempt to read from the terminal
when the user typed the EOF character encountered the end-of-file indication,
and later attempts read the next characters typed. They also made the lookahead
function (and hence the end_of .stream function, which is defined in terms of
lookahead) clear the end-of-file status when they encountered it.

However, this is a problem when reading a sequence of elements that is delimited
by an end-of-file indication, such as a vector of integers. The obvious way to
define the read functions is simply to return the read value when end_of .stream
returns true. However, if the call of end_of-stream from the function that reads the
elements also clears the end-of-file indication, a subsequent call from the function
that reads the sequence won't detect the end-of-file. Therefore it will try to read
another element. This behaviour is not what we desire, so the implementation of
lookahead should be corrected.

In any case, the Definition of Standard ML and the implementations differ on
the behaviour of the input function. The Definition says nothing about clearing an
end-of-file indication. It should be changed, either to agree with the approach taken
by the compilers or to include a specific function to clear the end-of-file status. The
latter approach would be similar to that taken by the ANSI C standard.

One aim of the Edinburgh library was to specify extensions to the initial basis
that would be portable between different compilers. Some of these extensions were
implemented in compiler-specific implementations of the library, when compilers
provided suitable functionality. Some features remain unimplemented because they
require extra compiler support. For a few features, such as constant references,
we faced a choice between a completely desirable implementation that we couldn't
implement without further compiler support, and a less desirable specification that
we could implement. In these cases we chose the version that we could implement.

This ends our discussion of the language design lessons learned from the imple-
mentation of the Edinburgh library. This has not been a complete discussion of
the shortcomings of the language. It has concentrated on those aspects of the lan-
guage that particularly affected the design of the Edinburgh library. Appel's critique
mentions several problems that didn't affect the development of the library (Appel,
1992). Some other shortcomings of the language exist because the supporting theory
for certain topics was not well developed when the language was designed. Research
into these topics has advanced in recent years. Two particularly interesting areas are
dynamic types (Abadi et al, 1989) and local polymorphic references (Leroy & Weis,
1991; Wright, 1992).

The most important issue for the development of libraries is the lack of higher-
order functors. Work is progressing on this topic, and we may see them added to
the language sometime in the next couple of years. This extension should not cause
problems to existing code. Work is also progressing on a revision of the initial
basis, and this should be finished in 1993. We are probably stuck with polymorphic
equality, because removing it would invalidate existing code.
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14 Future developments

Since the release of the Edinburgh library, most of the ML team at Edinburgh have
moved on. Cuts in funding mean that Edinburgh can no longer support the library.
I have provided some stop-gap cover, but I can not develop it further.

On the other hand, the library has a liberal copyright. Users are free to extend or
modify the library as they see fit, and are encouraged to add new entries. Thus new
revisions can be added as particular groups of users see fit. The text of the technical
report is distributed with the library. Indeed, it is partly generated from the library
entries themselves, so users can get up-to-date documentation easily. We hope that
the flexibility of this copyright will enable someone to take this work and develop it
further.

Since the library is in active use at several sites, it faces the familiar tension of any
published software between stability and evolution. Users don't want the framework
or existing entries library to change, because they don't want to rewrite their code.
On the other hand, some parts of the library could do with being improved. The
library may also have to change to keep up with developments in the language.

One way that the library could be improved without changing the current spec-
ification would be to provide support tools. One useful tool would be a browser
with the capability of searching for operations by name and by type. Research by
Runciman and Toyn (Runciman & Toyn, 1991) and by Rittri (Rittri, 1991) has
shown that functions can be located given only partial type information; this would
be more useful than requiring users to know the exact types of the functions they
are trying to find. Simpler tools would be useful too. One possibility is a program
to check that entries are in the correct format, which would simplify the tasks of
writing and checking in new entries. Another is a program to list the entries in each
signature by name alone.

The library may also have to adapt to changes in the language. The language
itself faces tension between stability and evolution, and although the tendency is
(correctly) to resist change for the sake of change, there are two areas where changes
could occur that would affect the library. The first is the addition of higher-order
functors. As described above, these would be very useful. However, the library would
have to be restructured to take advantage of them.

The other change to the language that would affect the library would be a revision
of the initial basis. As mentioned in the previous section, a working party is currently
looking at this. If the new basis adds new types, such as the types of characters or
files, then the library should also support these types. Also, one aim of the library
was to specify extensions to the standard initial basis. If the revised basis adds
similar functionality, it will make sense to change the library to match in order to
minimise confusion.

15 Conclusion

Designing a good, consistent library turned out to be much harder than we expected.
However, the Edinburgh SML Library is popular at several sites. The library is freely
distributed with all SML compilers and by FTP, and has a liberal copyright.
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The initial choice of entries for the library was based on utility functions that
programmers had already written for themselves. The interesting work was to design
a framework for these functions, that would provide a consistent user interface and
scope for extension.

This design was strongly influenced by the design of the language. The SML
modules system allows the specification of each library entry to be separated from
its implementation, and allows multiple implementations of an entry. The modules
system extends the support for polymorphism in the core language, so that types
can be parameterised on operations as well as other types. It also supports the use
of generic signatures to structure both the library and users' code.

The presence of powerful constructs in the language raises questions about when
and how to use them. We had to decide when it was suitable to use exceptions to
signal failure and when it was best to encode the success status in the result. The
presence of two forms of polymorphism meant that we had to decide which form
to use when. We also had to consider the general structure of the library, and came
to slightly surprising conclusion that we should use structures instead of functors.

The design of the library has also highlighted some shortcomings in the language.
This suggests that language designers should attempt to write some libraries in their
languages, as well as applications, so that problems can be caught early on.

The most important of these shortcomings is the lack of higher-order functors.
The SML modules system was explicitly designed to support programming in the
large, yet it is now clear that without higher-order functors it does not fully achieve
that goal.

One aim of the library was to specify extensions to the standard initial basis. Sites
that use the library have found that this does indeed help programmers to write
portable code. We also hoped that widespread acceptance of the library would result
in the adoption of these extensions by compiler writers. Instead, compiler writers are
working on a comprehensive revision of the initial basis, which will be independent
of the library.

The other aim of the library was to provide a framework for reusable software
components. We believe that we have succeeded. The test of our success will be
how widely the library is used, and how many people extend it with their own
components. We hope that it will stimulate people to develop libraries for their
particular application areas.
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Appendix: The current contents of the library

Types, exceptions and functions that are widely
used. In particular, the types Result and Option
mentioned in the main text.

Bool, Instream, In t ,
List , Outstream,
Real, Ref, String.

BoolParse, IntParse,
ListParse,
StringParse.

Ascii, StringType,
StringListOps.

ListSort.

AsciiOrdString,

LexOrdString,

LexOrdList.

Array, ArrayParse,

Byte, ByteParse,

Vector, VectorParse.

Pair, PairParse,

ListPair,

StreamPair.

EqSet, Set.

Hash, EqFinMap.

User.

Make.

Const.

Basic operations on the pervasive (built-in) types.
The Ref entry includes a random number
generator.

Functions to parse the basic types from strings or
instreams. The ListParse structure matches the
SEQ_PARSE generic signature; the others match the
PARSE generic signature.

Ascii defines constants for the non-printing Ascii
characters. StringType defines functions for test-
ing whether the first character in a string is a
letter, digit, control character, etc. StringListOps
defines functions on strings that mimic those in
the Lis t entry.

Functions to sort and permute lists.

Orderings on sequences. AsciiOrdString com-
pares strings when case difference is significant;
by contrast LexOrdString ignores case.

Types and functions for bytes, arrays and constant
vectors.

Operations on pairs of objects. StreamPair also
includes suggested functions for interacting with
the host file system using pairs of one instream
and one outstream.

Polymorphic sets. EqSet defines sets over equality
types. Set defines sets over arbitrary types.

Hash tables and finite maps. The keys to finite
maps must be equality types.

Functions to prompt the user for input.

The Make system.

Creates unique copies of objects.
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System. Some suggested functions for interacting with the

host file system and the SML compiler. Many

of these functions are not implemented in the

portable version of the library.

Combinator . Simple combinator functions.

Memo. Memoising functions.

The library also provides the following functors:

MonoArray, These return monomorphic equivalents of the

MonoArrayParse, Array, Ar r ayPa r se structures, etc.

MonoList , MonoSet,

MonoVector,

MonoVectorParse .

The library provides the following generic signatures:
PARSE. A type with functions for parsing values of the

type from strings and instreams.

ARRAY .PARSE, Variants of the PARSE signature for arrays and

SEQ-PARSE. types with one type variable.

MONO-SEQ_PARSE. The result signature for the MonoVectorParse and

MonoLis tParse functors.

EQUALITY, ORDERING, A type with a function for testing equality, testing

PRINT. ordering or for printing values of the type.

EQTYPE-ORD, An equality type with a function for testing order-

EQTYPE_PRINT. ing or for printing.

EQ-ORD, EQ-PRINT, Various combinations of EQUALITY, ORDERING and

ORD_PRINT, OBJECT. PRINT.

SEQUENCE, SEQJ3RD. Variants of the above signatures for types with one

type variable.
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