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Abstract

Let 1 S a, < • • • < a l g x ; t 1 < • • • < b,Sx. Assume that the number of solutions of a,^ = m

is less than c. T h e authors p rove that then

They also give a simple proof of Szemeredi's theorem: If the products a,b, are all distinct then

(2) fc/<iofl Oe. /(l) = 0).

They conjecture that (2) holds for c2 = 1 + e if x > xo(e )• Several other unsolved problems are stated.

Let ai < • • • < ak § x be a sequence of integers for which the products afa,
are all distinct. Erdos proved that

TT(X) + c2x
3/4/(log xf'2 < max k < n(x) + c,xV4/(\ogxf'2.

Perhaps there is an absolute constant c so that

(1) maxfc = 77 (x)+cx3'4/(log xf'2 + " ^

but we can not prove (1). (c, cu • • • denote absolute constants not necessarily the
same.)

Erdos (1964a) also proved that if a} < • • • < ak S x is such that the number
of solutions of a,^ = t is less than 2' + 1 then

o\ ; /i , ^^n(log log n)'~'
(2) maxfc=(l + g ( l ) ) - ; » ' ; ^

In fact (2) holds if the number of solutions is g 2' ' + 1.
Let ai < • • •, denote by g(«) the number of solutions of n = aia,. (2) easily
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[2] Representations of integers 419

implies that if g(n)>0 for all n then limsupn^g(n) = °°. It is curious to remark
that the additive analogoues of this result present great difficulties. An old
problem of Erdos and Turan states: Denote by f(n) the number of solutions of
n = a, + a,. Then if / ( n )>0 then limsupn-~f(n) = <*. The proof or disproof of
this conjecture seems to present surprising difficulties and Erdos offered 300
dollars for a proof or disproof of this conjecture.

Raikov proved that if a, < • • • is such that g(n)>0 for all n then

'2

> 0

where A(x) = 2ai<xl. P. Erdos asked: Is there a sequence al < • • • for which
g(n) > 0 and A (x) < ex /log x for infinitely many x. Wirsing (1957) answered this
question affirmatively, in fact he showed that g(n)>0 for all n > no implies
A(x)> jc/logx (1 + e)for some e >0 and that this result is best possible; that is,
for every e > 0 there is a sequence a, < • • • satisfying g(n) > 0 for all n > n0 and
A(x)< x/Iogx (1 + e) for infinitely many x.

Let 1 § a, < • • • < ak § x, 1 § b, < • • • < b, S x. Assume that there are
at least ex distinct integers not exceeding x of the form abj. Then
max(A(x),B{x))> x*+e and if the number of distinct a,-ft>'s is x + a(x) then
max(A(x),B(x))> x'" for every e > 0 . We do not discuss the proofs here
which are not difficult.

It might be worth while to investigate that if g(n)>0 and A(x)< cx/logx
holds for infinitely many x is it then true that A(x)> ex for infinitely many x, or
if this would not be true, how fast must A(x) increase for a suitable infinite
sequence x, —»<».

One more question in this direction:. Let a, < • • • < ak =S x be a sequence of
integers for which the products n?=, aV, e, = 0 or 1 are all distinct. Erdos (1966)
proved k < ir(x)+ ex1'2/logx and probably

maxfe = TT{X)+TT{XII2)
log*

[n fact, perhaps the following more precise statement can be made: Let
1 g M, < • • • < uk be a sequence of integers for which all the sums Sf_, e,uh s, = 0
ar 1 are all distinct. Put min uk = ak. Erdos-and Posa observed that

3) m a x / e g ^ Tr(xUa")

ind there could be equality in (3). A very old problem of Erdos asks: Is it true
hat ak >2k~c for every k where c is an absolute constant?

Let 1 S a, < • • • < ak § x; 1 S b{ < • • • < b, § x be two sequences on inte-
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gers. Assume that all the products aib,, 1 ^ i! ^ k; 1 g / i / are distinct. Erdos
conjectured and Szemeredi proved that then [Szemeredi (to appear)]

(4) kl < —-.
logx

First of all we give a simpler proof of (4), which nevertheless uses many of
the ideas of the original proof. We conjecture that in fact

(5) «^(1 + ^

It is easy to see that (5) if true is best possible. To see this, let the a's be the
primes in (x/f, x) and the fc's are the integers not exceeding x all whose prime
factors are S x/t. Clearly the products a^ are all distinct and the prime number
theorem implies kl s (1 + <r))x2/logx if t = tx —*°° but t/x' —»0 for every e >0.
In fact by choosing t = logx (1 + o-(l)) we maximize kl and we then get
sequences at < • • • < ak; b,< • •• < bi with the products a,fr, all distinct and

(6) kl>— s2loglogx /x2loglogx\
( 6 ) ' l o g x (logx)2 +<r{ (logx)2 )•

It would be of interest to see if (6) can be improved. Conceivably it is best
possible, but we have no evidence for it.

In this paper we prove the following theorem. To every c there is an /(c) so
that if 1 g a, < • • • < ak S x; 1 g fo, < • • • < b, § x are such that g(n)^c for all n
then

(7) fc/<^

(7) is best possible apart from the value of f(c). The proof is not entirely
trivial and we only outline it. Let r > 1 be given. The sequence B consists of all
the squarefree integers b satisfying x/2 < b < x, and v(b) g r (v(b) is the number
of prime factors of b). The sequence A consists of all the integers a < x which
do not have two divisors d,< d2<2di, v(di)^r, v(d2)^r.

It is not difficult to show that

A (x) > CiX, B(x)> c2x(log log x)71og x

and the number of solutions of a,/>, = n is less than c, where c, depends only on r.
We do not discuss the details.

We further outline the proof of the following two theorems:
1. Assume A ( x ) > c x , B(x)>c2x. Then

(8) max g(n)> (log x)c\
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Again apart from the value of c3 this is best possible. (To see this, let the a's and
6's have S log log n prime factors). Finally assume A U B is the set of all
integers and A(x)>cx, B(x)> ex. Here

(9) maxg(n)>(logjc)c*logl°8*
nSx2

and apart from the value of c4 this is best possible. To see this, let the a's have
S log log n prime factors and the b 's have > log log n prime factors. Perhaps (9)
holds for every c4 < 1 - e. The above example shows that it can not hold for
c4 > 1 + e.

Now we are ready to prove (4). In other words we prove the following.
i

THEOREM 1. Let 1 S a, < • • • < ak S x; 1 S b, < • • • < b, g x be two sequ-

ences of integers. Assume that the products aibj are all distinct. Then for some
absolute constant c

log*'

Denote by A respectively B the sequences {ai,---,ak} and {bx, • • •, b,}.
A(y) will denote the number of terms of A not exceeding y. A prime p is
associated with A if there are at least k/lOOp log p multiplies of p in A, similarly
p is associated with B if there are at least //(100p logp) multiples of p in B. Let
Pi<p2< • • be the primes which are not associated with A —omit all the a 's
which are multiples of any of the p's . Thus we obtain the new sequence At

having kt terms. Repeat the same process and also apply it to B with the primes
not associated with B. Since 2P (1/(100 p log p ) ) < 2 , eventually we obtain a
sequence {/ = { « , < • • • < MAI}, UCA, A,>fc/2 and V = {« ,<• • • < uAJ, V C B ,
A2 > //2 with the property that if p | u, then p is associated with U and if p | u,-
then p is associated with V. To prove our theorem it clearly suffices to show

(10) A,A2<c,Jc7logJt.

Let now t (2' < x1/2) be the greatest integer for which there are more than
2"2 p's in (2', 2'+1) which are associated with both U and V. Denote these primes
by p,,---,ps.

(11) 2 ' < p , < - - - < p s <2 '+ 1 , s>2"2.

Consider the set of all pairs of integers

(12)

where M, = 0 (mod/?,), v, = 0 (modp,). Since p, is associated with both U and V
there are by (11) at least (A, = U(x),X2= V(x))
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n-i\ cA[A2 cX.iX.2
(U) 104(f + 1)222'+2 f223"2

pairs (12).
Now observe that the pairs (12) are unique. If

a=Bn = ^ a n d p=Bi = £*
Ph Pn Ph Ph

then uhVji= ui2vn = aj3p,,pi2 which contradicts our assumptions.
Now we estimate the number of pairs (12) from above. Denote by

2'+1 < P] < • • • < x the primes associated with both U and V. By the maximality
of t there are at most 2"2 primes P in the interval (2', 2'+1) for every / > t. Thus
trivially

(14) ? > 7 < 8 -

Denote by q, < • • • the primes in (2'+',x) not associated with U and by
r, < • • • the primes in (2'+1, x) not associated with V. Clearly the integers (12)
satisfy

(15) ^ < | " > Kjj a n d ^ 0 ( m o d ? ) , ^ = 0(modr)

for all the primes q and r defined above. By Brun's method we immediately
obtain from (15) that the number of integers of the form «,//?> is less than

and the number of integers of the form ty/p* is less than

(17)

Thus, from (16) and (17) we obtain that the number of pairs (12) is less than

(18)

From (14) and the theorem of Mertens we obtain

(19) 2 ^ + 2 £ 2 Z £
where in 2, the summation is extended over all the primes in (2'+1, x). From (18)
and (19) we obtain that the number of pairs (12) is less than

(20) c3-2,ff .
' 2 log x
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From (13), (20) and the uniqueness of the pairs (12) we thus obtain

r- \ A s* v 2 1
LA]A2 ^ C3A I

or

A,A2< c- 2logx

which proves (10) and completes the proof of Theorem 1.
Observe that if no t exists for which there are many primes in (2', 2<+1)

associated with both U and V the proof gives

[/(x)V(x)<cx2/logx

if there is a large t then in fact U(x)V(x)= cr(x2/logx).
Now let us try to obtain A(x)B(x)< (1 + <r(l))x2/logx. One can formulate

this as an extremal problem in number theory. Assume 1 SI a, < • • • < ak ^ x;
1 g fc, < • • • < b, g x are such that the products atbj are all distinct. What is the
maximum of kl and which sequences realize this maximum. Perhaps the
sequence defined in the introduction comes close but we have no evidence. One
could try first of all to prove that the extremal sequence has the following
structure: Split the primes into two classes qf and r,. The A's are the integers
composed of the q's and the B's are the integers composed of the r's. We have
not been able to show this — the method which we use in proving Theorem 1
gives: We can assume that the extremal sequence has the following structure:
The primes are split into three classes {qt}, {r,} {s,} 2 1/s, < C and all the q's are
associated with A, all the r's with B and the s's can be associated with both.

If we would succeed in eliminating the primes s then to prove A (x )B (x) <
(1 + o-(l))x2/log JC we would need the following theorem on sieves which we can
not prove but which perhaps can be attacked by the experts: Let qi<---;
r, < • • • be two disjoint sequences of primes a, < a2 < • • •; b, < b2 < • • • are the
integers composed of the q's and r's respectively. Is it true that

(21)

As shown in the introduction, equality is possible in (21), but perhaps the
only way to achieve equality in (21) is to have min(Sl/qi, £1/^) tend to 0 as
x —»oc.

THEOREM 2. Let A(x)>c,x, B(x)> c2x. Then for some n < x, g(n)>
logx)°.

Theorem 2 is an immediate consequence of an old theorem of Erdos (1960).
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The number of products of the form ai>\ is >c2x2 but there are fewer than
x 2/(log x)" distinct integers of the form kl, k < x, I < x. This implies Theorem 2.

It would be interesting to determine the best possible value of a, a 3= I/log 2
is easy to prove, and at present it is not clear to us how much this can be
improved.

THEOREM 3. Let A (x)> ex, B(x)> ex and assume that every m < x is either
in A or B. Then for some n < x and x > xo(e),

(22)

Denote by / the interval (17 is sufficiently small)

(c^^V008"'"2)

and pi< • • • <ps be the primes in /. Put

k = [|(log*)1/2], / = t j= ( | - T,) log log x +0(1)

Denote by D the sequence d\ < d2 < • • • of integers not exceeding x which
have at least k distinct prime factors in /. It is easy to see that

(23) D(x)

The proof of (23) follows the method of Hardy and Ramanujan (1920) and
will be suppressed.

Without loss of generality we can assume that at least hD(x) of the d's are
in A (since A v B contains all the integers not exceeding x).

It follows from Turan's method (1934) that all but a-(x) integers not
exceeding x have / + a(l) distinct prime factors in /. Thus by.B(x)> ex we can
assume that at least ex 12 of the b's have at least t distinct prime factors in /
where t = [(1 — e)l]. Consider now all the integers

(24) aibh a, £ D (1 A, V(bj)g t.

By (24) the number of these products is greater than
- . 2

(25)

It is not difficult to see that almost all of these products are squarefree and these
then have at least k + I prime factors in /. It is easy to see that the number of
integers not exceeding x which have at least k + I distinct prime factors in / is
less than
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(26) * ( S - V + I ' / ( * . + / - l ) ! = x/*+l-'/(* + / - I ) ! .
\ i = i Pi / /

From (25) and (26) we obtain that there is an n for which the number of
solutions of n = a,fr, is at least

(logx)2 *')loglogI

which proves (21).
Perhaps (21) holds with 1 - e instead of \- e. To make the proof work, I

would have to be the interval

(c0ogx)", c(1O8X)1"), k = [(logx)1"].

But then we could not prove (23), but we hope to return to this question.
Finally we prove

THEOREM 4. To every c there is an f(c) so that if 1 ̂  a, < • • • < ak ^ x;
1 s /) ,<•••< b, S= x are such that g(n)< c then (7) holds.

For simplicity we only prove this for c = 4. Assume that

(27) W > j ^

where a is sufficiently large. We are going to prove that (27) implies that there
are integers z, y and four primes pf\ p\1}, pf\ piy so that for all choices of e, = 0
or 1, i = 1,2,

(28) yflp^GA, zf\p\">GB.
i = l i = 1

(28) clearly implies that gizyp^p[;)pTp^)^ 4, hence to prove Theorem 4
it suffices to prove (28). In view of the fact that we do not try to get best possible
values of a, the proof of this will in some respect be simpler than the proof of
Theorem 1.

We say that the prime p belongs to A if there are at least fc/(p(loglogp)2)
multiples of it in A. This is a slight modification of the definition in Theorem 1
(which as the attentive reader will later see is really needed here) but since
X l/(p (log log p)2) converges, this makes no difference.

Let r, be the smallest integer satisfying (logx)c < 2''< x"2 (where c is
sufficiently large) for which there are more than 2'7(fi(log 11)2) primes which
belong to both A and B. If no such interval exists, then Brun's sieve gives as in
the proof of Theorem 1 that kl < ex2 log log x/log x which implies that in this
case our theorem holds.
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Let now

2'1
(29) PuP2,---,Ps, s>

'.(log

be the primes in (2\2'1+1) which belong to both A and B. Denote by API

respectively Bp, the set of integers

M , p , ay = O(mod p,-),

Let now t2° be the smallest integer satisfying (logx)c < 2'2(')< (x/p,)"2 for
which there are more than 2^/(t^(logt^)2) primes pf in (2^),2<2°)+1) which
belong to both APi and BP1. If such a (2* does not exist then every prime q in
((logx)c, (x/p,)"2) belongs to at most one of the sequences APi, BPi (we neglected
a set of primes the sum of whose reciprocals goes to 0 as x —»°° and which may
belong to both A and B). But then as in the proof of Theorem 1 we obtain by
Brun's method

(30) API Bm < y-r" —.
1 Pl1 Pl1 p2logx

Thus from (30) and the definition of API, BPl we have

kl = I A I I B I S I APi I I B P i

which again proves Theorem 4.
The number of possible for r^0 is at most logx, thus there are at least

21'

primes p; (in (2'',2'l+1)) which have the same t2.

Let p , 1 ^ i § s be the primes (28) and qu---,qr the set of primes in
( 2 \ 2"2*1). To every pt there are at least 2"V(f2(log t2)2) pj°'s (which are q's) so that
there are at least

ck ck
PipHloglogpiftloglogpi")2 2'.+Hlogf1)

2(logf2)
2

CX / . , X \
> -,+,,. TTT, TT-. since k > -.

2'1+Hlog f 1) (log t2f log x \ log x /

integers u < x /pp ' 0 so that upipf £ A. Therefore by a simple computation there
is an integer U to which there are at least

(ioiTp
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products p,p)n for which Up.p^EA. Henceforth we only consider these pairs
p^)0 which belong to U. To each of these pairs there are at least

ex
Iogx2''+':(logf,)2(logf2)

2

integers v < x/p.p'0 so that vpip^E B. Thus again by a simple averaging process
there is a V so that there are at least

(log*)5

pairs p • q for which Upq G A, Vpq G B.
Now we use following simple lemma on graphs. Let G be a bipartite graph

of L, white and L2 black vertices and more than

L\'2L2

edges (L,<L2). Then the graph contains a rectangle. Since 2'1 > (log JC)100,

2'2> (log*)100, the lemma applies and the rectangle gives the information which
we require.

For c = 2k the proof is similar. We have to apply our procedure k times and
have to use the theorem on k -tuples in (1964b).
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