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1. Introduction. An n order homogeneous linear differ­

ential equation is said to be disconjugate on the interval I of the 

real line in case no non-trivial solution of the equation has more than 

n - 1 zeros (counting multiplicity) on I. It is the purpose of this 

paper to establish several necessary and sufficient conditions for 

disconjugacy of the third order linear differential equation 

x = 0, (1.1) L[x] = x?n + p_x" + p.x' + p 
r2 * 1 ro 

where p.(t) is continuous on the compact interval [a,b] , 

i = 0, 1, 2. Lasota [1], Mathsen [2], [3], and Jackson [4] have all 

given sufficient conditions to insure disconjugacy of (1.1). Recently, 

Hartman [5] gave necessary and sufficient conditions for disconjugacy 

of the general homogeneous n order linear differential equation. 

We shall study disconjugacy of (1.1) by considering the corresponding 

Ricatti equation 

3 2 
(1.2) ,u" = - 3uu' - p~u? - u - p?u - p,u - p , 

which is obtained from (1.1) by the substitution u = xT/x. Section 

.2 is devoted to definitions and a preliminary result for the general 

nonlinear second order differential equation 
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(1.3) x" = f(t,x,x') , 

where f(t,x,x') is continuous on the set 

S = {(t,x,x!) : a < _ t ^ b , |x| + |x'| < + <*>} . 

2, A function a c C [a,b] is said to be a lower solution 

of (1.3) in case a" >_ f(t,a,a') on [a,b]. Similarly, 

(2) 
3 e CK [a,b] is said to be an upper solution of (1.3) in case 

3" < f(t,3,Bf) on [a,b]. In [6] a solution x of (1.3) is said 

to have property (B) on the interval I in case there exists a 

sequence x of solutions of (1.3) such that: 

(i) x -> x and x' -> x' uniformly on [a,b] ; 

(ii) x - x ^ 0 and has the same sign for all n >_ 1 and 

a <_ t <_b ; 

(iii) |xf - x' | < C|x - x | for all n >^ 1 and a < t < b , 

where C is a constant independent of n and t. 

LEMMA 2.1. Let f(t,x,x') and the partial derivative func­

tions f ,(t,x,x') and f (t,x,x') be continuous on S and let 

x(t) be a solution of (1.3) _on_ [a,b]. Then x(t) has property 

(B) on [a,b] if and only if the equation 

(1.4) x" = fx,(t,x(t),x'(t))x' + fx(t,x(t),x'(t))x 

is disconjugate on [a,b]. 

Proof. Assume first that x(t) has property (B) on [a,b] 

and let x be a sequence of solutions of (1.3) as in the definition 

of property (B). To be specific, assume x(t) - x (t) > 0 for all 
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n > 1 and a < t < b. Define A (t) by 
— — — nv J J 

An(t) = (x(t) - xn(t))/(x(a) - xn(a)), a ̂  t <_ b . 

Then A (a) = 1, |A'(a)| <_ C, where C is the constant occurring in 

the definition of property (B), and A (t) > 0 on [a,b]. Also, 

A" = f ,(t,x(t),x'(t))Af + f (t,x(t),x?(t))A + p (t)Af + q (t)A , 
n x' ^ " n x K J n M I V ' n H n ^ n 

where p , q -> 0 uniformly on [a,b]. Hence, by standard conver­

gence theorems (see for example [9], Theorem 3.2, p. 14), a subsequence 

of the sequence A converges to a solution Z(t) of (1.4) satis­

fying Z(a) = 1, Z?(a) = C where |C | <_ C, and Z(t) >̂  0 on 

[a,b]. Since initial value problems for (1.4) have unique solutions 

it follows that Z(t) > 0 on [a,b) and this implies that (1.4) is 

disconjugate on [a,b]. 

Conversely, if x(t) is a solution of (1.3) such that (1.4) 

is disconjugate on [a,b], let Z(t) be a solution of (1.4) with 

Z(t) > 0 on [a,b]. For each n >_ 1, let x (t) be a solution of 

the IVP: 

y" = f(t,y,y') , y(a) = x(a) + Z(a)/n , y'(a) = x'(a) + Z'(a)/n . 

It follows that there is an N >_ 1 such that n >_ N implies 

x (t) e C ^ [ a , b ] . For n >_ N define Z (t) by 

Zn(t) = n(xn(t) - x(t)) , t e [a,b]. 

Then Z (t) satisfies Z (a) = Z(a) , Z'(a) = Z'(a) , and 
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Z" = f f(t,x(t),x
!(t))Zf + f (t,x(t),x'(t))Z + p (t)Z' + q (t)Z , 

where p , q -> 0 uniformly on [a,b]. Therefore Z (t) -> Z(t) 

uniformly on [a,b], so there is an N >̂  N such that Z (t) > 0 for 

n >_ N . Let S > 0 be such that Z (t) >_ Ô on [a,b] for n >_ N 

and let M = max {|Z^(t) | : n ^ ^ , a <_ t <_ b}. Setting C = (M + l)/<5 

it follows that {x (t)} _M is the desired sequence in the definition 

of property (B). 

The necessity of Lemma 2.1 is due to Knobloch [6] and the 

sufficiency is due to Reid [8]. The proof given above is, however, 

independent. Sufficient conditions for the existence of solutions of 

(1.3) possessing property (B) are given in [6] and [7]. 

3. The Cauchy function K(t,s) for equation (1.1) is defined 

as follows: for s e [a,b] x(t) = K(t,s) is the solution of the IVP 

L[x] = 0 , x(s) = x!(s) = 0 , x"(s) = 1 . 

The next Theorem, which is the main result, also includes 

statements of relatively well-known and previously published results. 

THEOREM 3.1. The following statements are equivalent : 

(a) L[x] = 0 is disconjugate on [a,b] ; 

(b) The Cauchy function K(t,s) satisfies K(t,s) > 0 for all 

s, t e [a,b] , s / t ; 

(2) 
(c) There exists a lower solution a e Cv [a,b] of[ (1.2) and an 

(2) 
upper solution B e Ck ^[a,b] of (1.2) with a(t) < 3(t) on 

[a,b] ; 
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(d) There is a solution u(t) _of (1.2) which has property (B) on 

[a,b] ; 

(e) There is a solution u(t) of (1.2) which is such that the 

variational equation 

(1.5) x" + (3u + p2)x
f + (3u2 + 2p2u + p + 3uf)x = 0 

is disconjugate on [a,b] ; 

(f) There exists a sequence of solutions y of_ (1.1) and a limit 

solution y _of (1.1) such that y > 0 , y > 0 _on [a,b] 

for all n > 1 , y n -> y^ , y
f -* y» , y" -> yn uniformly on [a,b], 

— yn Jo n Jo J n Jo l ' 
and such that y - y ï 0 and y y' - y'y f 0 and has the 

y n o J n o y n o 
same sign for all n >_ 1 and t e [a,b] ; 

(g) There exist solutions x,(t) , x2(t) _of (1.1) with x] > 0, 

x2 > 0 and x-jXÔ - xixô £ 0 2B Ca,b] . 

Proof. That (a) is equivalent to (b) is well-known. (See 

for example [2], Lemma, p. 630). Hartman [6] states that (a) is 

equivalent to (g). Jackson [4] showed that (c) implies (a). 

Note also that (d) is equivalent to (e) by Lemma 2.1. Therefore, 

we shall prove (b) =>(c) =>(d) =>(f) =>(g) =>(b). 

(b) implies (c). We may extend the definition of p. , p1 , 

and p to a slightly larger interval [a - 5,b] so that 

pi(t) e C[a - <S,b] , i = 0, 1, 2. Since K(t,s) > 0 for s , 

t e [a,b] , s ^ t , a continuity argument implies that we may choose 

6 > 0 sufficiently small so that K(t,s) > 0 for s , t e [a - 6,b] , 

s ^ t. Let yQ(t) = K(t,a - 6) and let y^t) be the solution of 
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the IVP: 

L[x] = 0 , x(a - 6) = 0 , x'(a - 6) = 1 , x"(a - 6) = 0 . 

Since y (t) > 0 on [a,b] there is a k > 0 such that 

y2(t) = kyQ(t) + y1(t) > 0 on [a,b] . 

We claim that y y' - y'y? ï 0 on [a,b] . For if not, let t e [a,b] 

be such that y y' - y'y0 = 0 at t = t . Define 
J oJ 2 J oJ 2 o 

h(t) = y0(t)y2(to) - y0(t0)y2(t) , t e [a - ô,b] . 

Then we have h(t ) = h1(t ) = 0, so that h(t) is a constant multiple 

of K(t,t ). But h(a - 6) = 0, which is a contradiction. Therefore, 

we may assume y y' - y'y > 0 on [a,b]. Then 3 E yA/y? and 

a E yWy are upper and lower solutions of (1.2), respectively, with 

a < 8 on [a,b] . 

(2) 
(c) implies (d). Let a , 3 e C [a,b] be lower and upper 

solutions of (1.2), respectively, with a < 3 on [a,b] . The right 

hand side of (1.2) is < C} + C2fu
f | for all a <_ t £ b, 

a(t) <_ u <_ 3(t), and all |u' | < + », where C, , C? are real 

constants, and this is sufficient to imply that (1.2) satisfies all 

hypotheses of Theorem 3 of [6], Alternatively, one may apply Theorem 

4.1 of [7] with a suitably chosen auxiliary function g(x). In either 

case, we conclude the existence of a solution u(t) of (1.2) which 

has property (B) on [a,b] and satisfies a(t) <_ u(t) £ 3(t) 

on [a,b] . 
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(d) implies (f). Let u (t) be a solution of (1.2) with 

property (B) on [a,b] and let u be the associated sequence. 

To be specific, assume u > u on [a,b] for all n > 1. Let 

r = 1 + 1/n, n >̂  1, and define 

t t 
yn(t) = rn(exp( / un(s)ds)) , yQ(t) = exp( / uQ(s)ds) . 

Then y -> y , yf •+ y' , and y" -* y" uniformly on [a.b] . Also, 

y - y > 0 on [a,b] for all n >_ 1 and, finally, 

y'/y - y'/y = u - u > 0 on [a.b] for all n > 1 . 'n 7n 7o 7o n o ' — 

(If u < u on [a,b] , take r = 1 - 1/n , n > 1). n o U , _ J > n * > -. J 

(f) implies (g). This is obvious. 

(g) implies (b). Let x, , x2 be solutions of (1.1) with 

x, > 0 , x ? > 0 and x,x' - x'x? < 0 on [a,b] . Let a < t, < b 

and define 

y(t,tp = x2(t)u(t) , 

where 

t 
u(t) = / v(s)w(s)ds , v(s) = (x1(s)/x2(s))» , 

, • s r 
w(s) = / {A(r)/(v(r))2}dr , A(r) = exp (- / (3(x'/x?) + p }dq) 

t t 

Then y(t,t,) is a solution of (1.1) and we have A(r) > 0 and 

v(r) > 0 for a <_ r <_ b. Hence w(s) : 0 if and only if s = t. 
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Since y(t,,t ) = 0 = y'ft^tp and yft,^) ^ 0 if t * t^, we 

conclude that y(t,tj is a constant multiple of K(t,tJ. Therefore, 

K(t,t,) > 0 for a <̂  t, , t <_ b , t ?t t, , and this completes the 

proof. 

As a consequence of the preceding Theorem, we note that if (1.1) 

has a positive solution x(t) then disconjugacy of (1.5) on [a,b] 

with u = x'/x implies disconjugacy of (1.1) on [a,b] . One can 

therefore establish sufficient conditions for disconjugacy of (1.1) by 

using known sufficient conditions for disconjugacy of the general 

second order linear equation 

(1.6) x" + px' + qx = 0 , p, q e C[a,b] . 

LEMMA 3.2. Equation (1.6) is disconjugate on [a,b] if and 

only if there is a continuously differentiable function r(t) such 

that 

r' + r + pr + q <̂  0 on [a,b] . 

Proof. See [9], p. 362, Theorem 7.2 and the following remark. 

COROLLARY 3,3. Assume (1.1) has a solution x(t) > 0 on 

[a,b] . Let u = x'/x . Then (1.1) is disconjugate on [a,b] in case 

there is a continuously differentiable function r such that 

(1.7) r' + r2 + (3u + p2)r + (3u
2 + 3u' + 2p u + p ) <_ 0 

on [a,b] . 

With r E 0, Corollary 3.3 is Lemma 2.3 of [3]. Note also 

that if (1.1) is disconjugate on [a,b] then there is a solution u(t) 

of (1.2) and a function r e C^ [a,b] such that (1.7) holds on 

[a,b] . 
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As an example of Theorem 3.1, we next consider the equation 

L[x] = x'" - (3/t)xn + (k/t)x» - (k/t2)x = 0 

on the interval [1,+°°) . One solution of (1,8) is x(t) = t so that 

in this case, with u = 1/t , equation (1.5) becomes 

(1.9) xM + (k/t - 6/t2)x = 0 . 

The well-known Lyapunov criterion (see [9], Corollary 5.1, 

p. 346) implies that (1.9) is disconjugate on [1,T] provided 

T 
(1.10) / (k/t - 6/t2) dt <_ 4/(T - 1) , 

1 

where (k/t - 6/t2)+ = max {k/t - 6/t2, 0}. If k > 0, let 

T1 = max {1, 6/k} . Then the integrand in (1.10) is non-negative on 

[T,,T] . Therefore (1.9) is disconjugate on [1,T] as long as 

(T - l)/4 {k InfT/Tp - 6(1/TX - 1/T)} <_ 1 . 

For example, if k = 1/10, then (1.9) and hence (1.8) are disconjugate 

on [1,T] where T > 120 . The conditions given in [1], for example, 

imply disconjugacy of (1.8) on C1,X D where T > 1 and 

3(TQ - l)/4 + (T - 1)2/10TT2 + (T - 1)5/20TT2 <_ 1 . 

This implies that T < 7/3 . Additional disconjugacy results for 

(1.1) can be obtained in an analogous manner by using other known 

sufficient conditions for disconjugacy of (1.6). 
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