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1. Let/(n) = an2+bn + c be an irreducible quadratic polynomial with integer coefficients,
and let D denote the discriminant b2—4ac of/(w). We shall assume that (£>, k) = 1, and that
for all positive integers n,f(n) is positive and coprime with k, where k is a fixed integer greater
than 1.

We denote by d(jn ; h) the number of positive divisors d of a positive integer m which
satisfy d = h (mod k). The object of this paper is to prove the following result:

THEOREM 1. If(h,k)=\, then

£ d(f(n); h) = Axx log x + 0(x log log x),
n = l

where x is a large positive integer.
Throughout this paper Au A2,A3,... denote positive constants, and they and the constants

implied by the (9-notation depend at most on k and the coefficients of/, and in some cases h.
The method used to prove this theorem may also be used to show that

£ d(f(n)) = A2x log x + O(x log log x), (1)
n=l

where d(m) denotes the number of positive divisors of a positive integer m. This latter result is
mentioned in Erdos [1] as an unpublished result of Bellman and Shapiro.

The problem of proving a result analogous to (1), or the theorem, for irreducible poly-
nomials g(ri) of degree greater than 2, appears to be very difficult. An important step in this
direction is a paper due to Erdos [1] in which he proves that

X

Btx log x < £ d(g(n)) < B2x log x,
n = l

where Bt and B2 are positive constants depending only on the coefficients and degree of g.
We shall give an elementary proof of Theorem 1 which will depend ultimately on estimating

a multiple sum involving the Jacobi symbol (a2k2D \ t). It will be convenient to assume that
(a, 2k) = 1 and that (2, D) = 1, although these conditions are not at all essential; they merely
simplify the notation. The proof of the theorem remains valid even if 22 t || Df for some positive
integer T, and a and k are even, provided that we replace D by 2~2'D and a by 2"ya, where
2y || a; we shall assume this remark when deducing our last theorem.

For certain polynomials/(n) we may deduce from Theorem 1 a result, analogous to (1),
for the function r{f{n))t where r(m) denotes the number of representations of a positive integer
m as the sum of two integer squares. We shall assume for this result that f(ri) is odd for all
positive integers n and congruent to 1 (mod 4) for at least some positive integers n; furthermore
we shall assume that D = —/x2, where /i is a positive integer. Then we have

fThe notation 22r ||O is used when 22r is the highest power of 2 dividing D.
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THE DIVISORS OF A QUADRATIC POLYNOMIAL

THEOREM 2.

f K/(")) = A3x \ogx + O(x log log x).
n = l

If/(«) = 3 (mod 4), then it is well known that r(f(n)) = 0; hence if/(n) = 3 (mod 4) for
all positive integers n, then

f r(/(n)) = 0.

As an illustration of the results which may be obtained from Theorems 1 and 2, we shall
consider the polynomial/(n) = n2 +1, and prove

THEOREM 3.

£ r(n2 + l) = - .x log x + 0(x log log x).
n = l 71

The error terms obtained in Theorems 1, 2 and 3 are certainly not the best possible. In
fact, by the method of this paper one may show that the error terms are 0(xLM(x)), where
Lfa) is denned by

L ^ x ^ l o g x , L;(x) = log(L,_1(x)) for i £ 2,

and where Mis a positive integer independent of x; we shall indicate how this may be done in
§2.

I should like to thank Professor R. A. Rankin for his valuable advice during the prepara-
tion of this paper, and Dr H. Halberstam and Dr K. F. Roth for their helpful comments on my
treatment of the related problem of obtaining the estimate (1).

2. We shall consider first the large divisors of/(n); by a large divisor (corresponding to a
given x) we mean a divisor greater than X, where X is denned to be the least positive integer
such that

/(«) g X2 for 1 ^ n ^ x. (2)

Clearly there exist positive constants Cx and C2 such that

Ctx < X ^ C2x. (3)

If dx{m; h) denotes the number of positive divisors d of a positive integer m which satisfy
d = h (mod k) and d ^ X, then we may write

d(f(n);h) = dx(f(n);h)+ £ 1. (4)
d | fM
d>X

d = h(mo6k)

The sum on the right contains what we have called the large divisors of/(«). It may be empty
(which is certainly the case if/(«) ^ X). If it is not empty, then consider a typical large divisor
d of f(n) giving rise to one term of this sum. We have that/(«) = d5, where by (2)

5=f(n)/d<X2IX = X and d5 = h5 s / ( n ) (mod k). (5)

We define ht by the congruence hhl = 1 (mod k)\ since (ft, k) = \,hih unique modulo k and

https://doi.org/10.1017/S2040618500034237 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034237


10 E. J. SCOURFIELD

(hu k) = 1. The congruence in (5) may now be written in the form 8 = hj(n) (mod k); we
observe that, since (/(n), k) = 1, (<5, k) = 1. We now see that to every large divisor d of/(n),
with d = h (mod k), there corresponds a unique divisor 8 with 8 < X and 8 s ^ / (n) (mod k).
The correspondence is not one-one, for clearly it is possible for both 8 and f(n)/8 to be less
than X. However we may rewrite (4) in the form

d(f(n); h) = dx(f(n); h) + dx(f(n); hj(n)) - £ 1,
OO

so that

£ d(f(n) ;h)=£ {dx(f(n); h) + dx{f{n); hJ(n))}-A, (6)
l l

£
n = l

where A = £ £ 1. (7)
1 *|/)n = l

We observe that the expression on the right of (6) does not contain any large divisors.

Let y = [x/log x]; then there exists a positive constant C3 such that

/(«) > C3y
2 for y < n ^ x.

From (7) it follows that

0£A£ £dx(f(n);hj(n))+ ~
n— 1 n

S = hif(n) (mod ft)

^ £ dx{f{n); hj(n))+ £ {dx(f(n); hJ(n))-dY(f(n); hj(n))}, (8)
n = l n = l

where Y= [C3/X" 1 ] .

[We may improve the upper bound for A by splitting up the sum on the right of (7) into
more than two parts in the following way. Write j>0 = 0, yM = x and ym = [x/Lm(x)] for
1 ^ m ^ Af-1, where M and LJx) are defined at the end of § 1. Then put Yo = 0, and
Ym = [C(

3
m)ylX~ l~\ for 1 g m g M - 1 , where C(

3
m) is a positive constant such that/(n) > C3

m)y*
for n > ym. Then A satisfies

° ^ A ^ 4 _ L L 1 ^ L L{dx(f(n)l'hfW)-dYm.,(/(")'hifw)i-
K m - 1 < ^ ^ X

Using this estimate for A instead of (8), we can obtain the improvement of the error terms of
Theorems 1, 2 and 3 mentioned in § 1.]

We now put « = mk + l, where 0 g / < k. Then we may regard f(n) =f(mk + l) as
a polynomial in m with coefficients depending on /, k and the coefficients of/(n), so that we
may write f(n) = F,(m), say. We observe that the discriminant of F,(m) is k2D, and that
Ft(m) s /( /) (mod k). We now have that

£ dx(f(n); hj{n)) = "£ £ ^(F,(m); ^/(/)), (9)
B = l / = O m
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THE DIVISORS OF A QUADRATIC POLYNOMIAL 11

where in the summation over m, m runs through the integers of the interval 0 ^ m ^ (x-l)/k
and where m# 0 if / = 0; there are corresponding expressions for the other sums of (6) and
(8). Hence in order to find an estimate for the right side of (6), our main task must be to con-
sider sums of the type

£ dx(F,(m); h2), (10)
m = l

where (/i2, k) = 1.

3. This section contains some definitions and lemmas which will be used in estimating the
sum (10).

Let p(q) denote the number of solutions in m of the congruence

F,(m) = 0 (mod q), 1 ^ m ^q.

Then, if p denotes a prime, a any positive integer and C4 a positive constant depending only on
k and D, p{q) has the following properties:

LEMMA 1. (i) p(qiq2) = P(<7i)p(<?2) ' / («i. «2) = 1-

(iii) p(p") = p(p2£+1) if p'\\k2D and a > 2e.

(iv) p(p") ^ C4 always.

The proofs of (i) and (ii) are straightforward, and (iv) follows immediately from (ii) and
(iii); (iii) is due to Nagell [2, p. 349], and from his result it also follows that (iv) is true with
C4 = 2(k2D)2.

In several places we shall need to consider separately from other possibilities the case
when 4 | k and D = —y.2, where /J is a positive integer. We shall refer to this as condition I:
we shall use n only in this context.

We define x(0 by
2k2D | t), t odd,

0, t even,

where (a2k2D | /) is the Jacobi symbol. Then we have the following result:

LEMMA 2. If M is the lowest common multiple of 4 and \akD\ ,
M

Z z(0 = o
t=hi(modk)

except when condition I holds.

Proof. Put

= f K(a2k2D) = K(D) if D = 1 (mod 4),
g ~ {4K(a2k2D) = AK(D) if D $ 1 (mod 4),

where K(m) denotes the squarefree kernel of m. Then g is the leader of the Jacobi symbol
(a2k2D | /) [3, p. 129]. Hence

= z«(0zo(0
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12 E. J. SCOURFIELD

for all t, where xg is a character modulo g and x0
 1S t n e principal character modulo M; x

therefore a character modulo M, since g | M.
If i/f runs over all characters modulo k, we have

Z
r = l

/i3(modlt)
1 = 1

where </>(&) is Euler's function. Now x*P is a character modulo M and hence the inner sum on
the right will equal 0, so that the required result will follow, if we show that, for all characters
\]/ modulo k, x& =t= Xoe x c ePt whenD = —/i2and4 | k. But^i/f = Xo implies that x(0 = Xo(0i?(0
for all t. It follows that g\k; since (D, k) = 1, this means that | K(D) | = 1 so that D = -ju2.
(Since / is irreducible, D 4= n2)- Hence D ̂  1 (mod 4), which implies that 4 | g, so that 4 | fc.
Thus xty — Xo o n ' y if condition I holds.

LEMMA 3.

uSU
(u,2akD)=l
ushaimodk)

where (hA, k) = 1.

Proof. We observe that the condition (u, k) = 1 is automatically satisfied since u = h4

(mod fc) and (A4, k) = 1. In particular it follows that w is odd if k is even.

Put 9 = 0 or 1 according as fc is even or odd. Then (j)(2ea | D \ ) of the integers

are coprime with 2ea\ D\. Thus

D (11)
u<2°a\D\k
(u, 2°aD)=l

/ ( d ft)

whence 1 = » < * *
2w

(u, 2a*D) = l
/ ( d *

4. The sum £ dxiF^m) ; h2) is the number of solutions in m and g of the congruence
m = l

F,(m) = 0 (mod q), 1 ̂  m ^ z, 1 ^ q ^ X, q = h2 (mod k).

Let pz(g) denote the number of solutions in m of

F,(m) = 0 (mod q) (1 ^ m ^ z);

then p,(q) = p(g) and p.(^) satisfies
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THE DIVISORS OF A QUADRATIC POLYNOMIAL 13

It follows that

) ; h2) = £ pz(g)
m = 1 q = 1

q = /)2(mod fc)

= z E P{q)lq + o( £ pfo)\ (12)
9=1 v «= i y

q = Mmodfc) N4 = A2(niodfc) /

In order to find an estimate for the right side of (12), we shall need to consider first the sum

Z P(q).
9=1

qstatmod k)

Each integer q may be written as a product rs where (s, 2akD) = 1, and where each prime
dividing r also divides 2akD. Then, by Lemma 1 (i), we have that

I />(«)= 2> to £ P(S). (13)
, = 1 rgAT sgjf/r

9 = h2(modk) rs = hi(ma&k)

Since (rs, /c) = (/i2, fc) = 1, the condition rs = h2 (mod k) may be rewritten in the form
s = rih2 = hs (mod k), say, where rl is an integer, unique modulo k, satisfying rrl = 1 (mod fc),
and where h5 depends on r and (h5, fc) = 1.

Consider now the inner sum on the right of (13). If s = p\lp"2 ... pi1 where pt, p2, ..., p,
are distinct primes (not dividing 2akD), we have, from Lemma 1 (i) and (ii), that

P(s) = P(PVMP?) ... P(PV) = p(Pi)p(p2) ... P(P,).

Furthermore [3, p. 140] p(p) = l + (a2fc2£)|p),

and hence

p ( s ) = n { l + (a2fc2D|p)}= E Z(0. (14)
p\s r I s

/ squarefree

We observe that for the special case D = —fi2, if (p, laku) = 1, then

(a2k2D | p) = ( - a 2 f c V I p) = (-1)**""0.

Thus, if p = 3 (mod 4), p(p) = 0, and it follows that p(s) = 0 if s = 3 (mod 4).
The inner sum on the right of (13) is given by

LEMMA 4.

(s, 2akD) = I
s = hs (mod k)

unless condition I holds and h5 = 3 (mod 4), in which case £ t = 0.

[The exponent $ may be replaced by any number a satisfying \ < a < 1.]

Proo/. We suppose first that condition I does not hold. By (14), and since the Mobius
function /i(0 satisfies

I n{t) | = £ n(v),
v1 | r
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14 E. J. SCOURFIELD

i _ v

s^Z » | s
(s, 2akD) = 1 f squarefree
sH/15 (mod ft)

Z
rS>Z

Z
uSZ/t

(u, 2akD) = 1
1u = h$ (mod ft)

1= Z
(i;, 2a*D) = 1

wSZ/o2

where £ stands for the summation over all positive integers u satisfying the conditions
u

u _ Z/v2w, (u, 2akD) = 1 and uv2w = fc5 (mod fe). We split the sum over w into two parts
so that, with the above meaning for £ ,

= Z z
wg(Z/B2)'/i

say.
In the sum £ 2 , we may suppose that (w, k) = 1, since otherwise #(w) = 0 and the con-

gruence uv2w = h5 (mod k), with (h5, k) = 1, cannot be satisfied. Then the congruence
uv2w = h5 (mod k) is equivalent to a congruence of the form u = h6 (mod k), where (/i6, k) = 1
and /J6 is unique modulo k for fixed v and w. From Lemma 3 and since

' = 0(1)

for any positive integers Wt and W2 satisfying Wt < W2, we obtain [3, p. 240]

(17)
00

where L(x) = £ /(w)/w=l=0, the series being convergent.

In order to estimate £3 > w e change the order of summation so that

Z,= Z Z *(w).
u<(Z/u2)2/3 (Z/u!)''3<wSZ/i;!u

2

( / ) ( / ) /
(u, 2akD) = l uu2w = /i5 (mod ft)

The congruence uy2w = /i5 (mod fc) is equivalent to one of the form w = /i7 (mod it), where
(/z7, fe) = 1 and /i7 is unique modulo k for fixed u and u. Hence, by Lemma 2,

(18)

From equations (15) to (18) we obtain

(u,2aftD)=l

I. f
(o, 2aftD) = 1
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THE DIVISORS OF A QUADRATIC POLYNOMIAL 15

The error term on the right is O(Z2/3); the sum in the main term on the right is given by
CO

y
(v,2akD) =

v2

1

= Y[ {I+M(P)P 2

p -T 2a*D

= rr (i-p-2) = «
pJ[2akD

=4 n o-p-)-
Tl p\ 2akD

+H(P2)P~A+

:(2) n ( i -
p | 2a*D

say. This, together with (19), gives the result of the Lemma, with A5 = A4A6L(x), provided
condition I does not hold.

In order to complete the proof of the lemma, we have to consider the case which we have
so far omitted; thus we now suppose that D = —/i2 and k = 2vklt where (fclt 2) = 1 and
v ̂  2. We recall that, in the paragraph before Lemma 4, we observed that, when D = —/t2,
p(s) = 0 if s = 3 (mod 4) and (s, 2akn) = 1. Since 4 | k, it follows that, if hs = 3 (mod 4),

E t = E p(s)=0. (20)
s=£Z

(s, 2O*M)=1
ss/15 (mod k)

If fc5 = 1 (mod 4), then h5 + 2k1 = 3 (mod 4), so that (20) holds with h5 replaced by
]. Hence

I , = I P(*)= E
s'

(s, 2
sz
:a*fi) = l
(mod k)

sSZ
(s, 2o*p)=l

sH/?s + 2fci (mod k)

say. The method of the first part of Lemma 4 can now be applied to the sum £ 4 + £ provided
that we use the following fact instead of Lemma 2. (Lemma 2 cannot be used in this case
because condition I holds). If (h8, k) = 1, h8 = 1 (mod 4) and T is any positive odd integer,
then

E z(w)+ E Z(w)= E 1- E i = 0(fl/i)-0(a/i) = o
w<a/jfc w<ap/[ w<a/i/c w<a^ft

H>EAB (modi) H> = /IS + 2fcit (mod fc) (w.a^)=l (w,a/i)=l
w = he (mod ft) w = hs + 2fciT (mod ft)

by (11). The constant A5 obtained for this case equals 2AAA6L(x).

5. We now complete the evaluation of the right side of (13). If condition I does not hold,
then from (13) and Lemma 4 we obtain

E
qshzimodk)

where r runs through the integers divisible only by primes dividing 2aD and satisfying (r, k) = 1.
Similarly if 4 | k and D = - / i 2 ,

E P(9) = ^5^ E pWr-'+ofx2'3 E p(r)r-vA; (22)
4 = /i2(modft) r = /i2(mod4) r = /i2(mod4)

the extra condition r = h1 (mod 4) arises from the fact that the inner sum on the right of (13) is
non-zaro only if s s 1 (mod 4).
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16 E. J. SCOURFIELD

Let 2coa \D\ = 2top\l...p',ipftl...py, where the pv(l g v £j) are distinct odd primes, pv \ a
but Pv^Dfor l ^v rg j , pv \ D for i<v^j, ev( lgv^7) are positive integers and e0 = 0 or 1
according as k is even or odd. Each integer r may be written in the form r = 2e°ff°pi'... p"}>,
where the o\,(0 ^ v ̂  j ) are non-negative integers. Then by Lemma 1 (i) and (iv),

p(r) = p(2E°<>(p?0... p ( # ) g (C4)'+1. (23)

We put p0 = 2 and define jj/O^vgy) by

p;-gjf<p»"+ 1 . (24)

Then we have that

X p(r)r2'3 5S (C4y
+1 fl ( I P;(2/3W) = 0(1),

(r,k)=l

so that the error terms of (21) and (22) are O(X2/3).
In order to estimate the main terms of (21) and (22), we have

LEMMA 5.

( O I 6 = Z P(r)r~ ' = X 7 + 0 ( X - •(log x y * 1 ) .
(r,ft)=l

where p*(r) = p(r) sin —, and fc is even.

Proof, (i) Suppose first that k is odd. Then

= fl ( I P0W) +O( r P«r -), (25)

j

where X' = \\ pjv. By (23) and (24) the error term on the right is
v = 0

Let Sv= t
<TV — 0

and suppose first that 0 ̂  v g /, so that pv \ 2a but pvJf D. Then by Lemma 1 (ii),

ffv=l

say.
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Suppose next that i < v g j , so that pv \ D. Then by Lemma 1 (iii),

17

say. The result now follows from (25) with An = \\ Ev, provided that k is odd.
0v = 0

If k is even, we omit the factor involving p0 (= 2) in the above, and we obtain the required
j

result with An = \\ Ev
v = l

(ii) We are assuming that k is even, so that r is always odd. Then

s i n ^

The method used to prove (i) can now be applied to £ , and this gives the required result with

, where
v = I

£v if pv = 1 (mod 4),

£l = and

if pv = and i

If condition I does not hold, we obtain, from (21) and Lemma 5 (i),

(26)
«i

q = hi (mod k)

Suppose now that condition I does hold. Then, by Lemma 5 (i) and (ii),

+(-i)*(hj-1)E7}

r = /i2 (mod 4)

say. Hence, if 4 | fc and D = - / i 2 , we have by (22) that

= A5A9(h2)X+O(X2i3). (27)

q = hi (mod*:)
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18 E. J. SCOURFIELD

6. In this section we shall complete the proof of Theorem 1. We suppose first that con-
dition I does not hold and we deduce from (26) an estimate for the right side of (12). We write

T(q)= t p(«), 7X0) = 0.

We have

x x
Z p(q)lq = Z {T(g)- _

<J=1 « = 1 9 = 1
4 = Ji2(mod*)

4 = 1

= A10logX + O(l), (28)

by (26), where Ai0 = A5AV

From (12), (26) and (28) we obtain

(29)
m = l

and therefore (9) becomes

t dx(f(n) ; /!,/(«)) = Z^io[(*
n = l 1=0

(30)

by (3). From (8), (9) and (29), the estimate of A is

A ^ A10{y log X+x log X-x log Y} + O(y+ Y + x)

= O(x log (X/Y)) = O(x log log x).

Hence from (6) and (30) we obtain

X d(f(n); ft) = 2A10x log x+0(x log log x),
n = l

which gives the result of the theorem with Al = 2Ai0 provided condition 1 does not hold.
More precisely the constant A j is given by

(P,*)=I

where An is the constant of Lemma 5 (i).
If condition I holds so that 4 | k and D = —fi2, we use (27) instead of (26), and the required

result follows in a similar way with Av given by

l*Z ^9(*i/(0)l; (31)
( = 0 J
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THE DIVISORS OF A QUADRATIC POLYNOMIAL 19

we recall that /i, satisfies M, = 1 (mod k) and that Ag(h2) depends on the value of h2 (mod 4).
This completes the proof of Theorem 1.

7. In order to prove Theorem 2, we use a well known property of r(m), and we apply
Theorem 1 with k = 4 and h = 1 and 3. We assume for this theorem that D = - j * 2 .

It is well known [4, § 16.9] that

hence by Theorem 1,

= 4{d(m;l)-d(ro;3)};

I >•(/(")) = 4 £ {d(f(n) ; !)-<*(/(«); 3)}
l l

log x + O(x log log x),

where .4,(1) and .4,(3) are given by (31) with k = 4; this is the required result with A3 =
4{y4, ( l)- /4, (3)}. [If D is not of the form -ft2, .4,(1) = 4,(3) = Au and it follows that

f r(/(n)) = O(x log log x).]
n = l

We can find the value of A 3 as a product of several terms depending on a and ^. We have

/=o

Since/(n) is always odd and/(n) = 1 (mod 4) for at least some integers n, there are two cases
to consider: (i) /(/) = 1 (mod 4) for / = 0, 1, 2, 3; (ii)/(/) = 1 (mod 4) for exactly two of
/ = 0, 1, 2, 3 and/(/) = 3 (mod 4) for the remaining two of / = 0, 1, 2, 3. In case (i) we have

and in case (ii)

From the definition of the constants A4,..., Ag we have that

where the summation over r runs over all positive integers which are divisible only by odd
primes dividing a\i. Hence the constant A3 of Theorem 2 is given by

A, =

-2W) 11 p*(r)r x in case (i),

3*(r)r"' in case (ii).

(32)
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20 E. J. SCOURFIELD

8. Our last result is concerned with the polynomial /(n) = n2 + l. As it stands this
polynomial does not satisfy all the conditions of Theorem 2, for it is not always odd. However
we may write

and /(2m +1) = 2 (2m2 + 2m +1) = 2/2(m);

then the discriminants of/x and/2 are —16 and —4 respectively.
For all positive integers m, /i(m) = 1 (mod 4) and /2(m) = 1 (mod 4), and hence both

/x and/2 satisfy all the conditions of case (i) of Theorem 2. Thus, since for both these poly-
nomials, L(x) = in and XiP*(r)r~1 = 1.

r

Z r(/i(m)) = -y log y + O(y log log y)
m = l 71

y g
and £ r(f2(m)) = -y \ogy + O(y log log y).

Since r(2/2(m)) = r(/2(m)), we obtain from above
* [x/2] [U-D/2]

EK/(«))= Er(/,W)+ E

g
= -x log x + 0(x log log x),

which is Theorem 3.
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