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§1. Introduction

Let X = (X(®);te R) be a real stationary mean continuous Gaussian
process with expectation zero which is purely nondeterministic. In this
paper we shall investigate the structure of splitting fields of X having
finite multiple Markovian property using the results in [6]. We follow
the notations and terminologies in [6].

We shall remember three kinds of definitions of the N-ple Markovian
property (N e N).

DEFINITION 1.1. We say that X has the N-ple Markovian property
in the broad sense if the splitting field F%/~(¢) is generated by N linearly
independent random variables in M for any ¢ecR.

It is known that X has the N-ple Markovian property in the broad
sense if and only if X has a rational spectral density of degree 2N ([1],
[5D.

DEFINITION 1.2. We say that X has the N-ple Markovian property
in the narrow sense if X has the N-ple Markovian property in the broad
sense and F§/~(t) is equal to the germ field 9F4(f) for any teR.

It is also known that X has the N-ple Markovian property in the
narrow sense if and only if its spectral density is the reciprocal of a
polynomial of degree 2N ({11, [5], [6]).

The third definition is

DEFINITION 1.3. We say that X has the N-ple Markovian property
in the sense of T. Hida if, for any N + 2 real numbers ¢, < t, < .-+ < ty 1
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{E(X(t,)|Fx(t)); 1 < m < N} is linearly independent and {E(X(t,)|Fx(t));
1 <n <N + 1} is linearly dependent.

It is shown in [3] that, if X has the N-ple Markovian property in
the sense of T. Hida, X has a rational spectral density of degree 2N.

In this paper we shall consider the case where X has the N-ple
Markovian property in the broad sense.

In §2 we shall give a formula for the canonical representation kernel
of our process X (Theorem 2.1). In the proof of Theorem 2.1 we shall
use Theorem 8.1 in [6], which gives a formula for the canonical repre-
sentation kernel of process X having the Markovian property. By the
Markovian property we mean that X satisfies F/~(f) = 0Fx(t) for any
te R ([5],[6]).

In § 3 we shall construct an N-dimensional stationary Gaussian proc-
ess & = (Z(t); te R) satisfying

(1.1) {the n-th component of Z'(f); 1 < n < N} is lineary independent
in M and

1.2) F{-(@t) = Fi'~(t) = o(Z(t)) for any te R (Theorems 3.2 (ii) and
3.3). We can give an expression of the linear predictor of X(¢) (¢ > 0)
using the past Fz(0) in terms of the process £ (Theorem 3.2 (i)). The
relation (1.2) implies that & has a simple Markovian property.

In §4 we shall investigate the structure of 2 from the point of
view of Markov processes, and show that a Markov process (Z(?),
P(-|#0) =2);t>0,xreRY) is a recurrent Gaussian diffusion process
with transition probability density and has a unique invariant measure
(Theorem 4.3).

We shall prove in §5 that the N-dimensional stationary Gaussian
process & satisfying (1.1) and (1.2) is unique up to multiplicative non-
singular N X N-matirices (Theorem 5.1).

In §6 we shall define a nonsingular N X N-matrix T and an asso-
ciated N-dimensional stationary Gaussian process ¥ = (Z(t);tc R)) =
(T'Z@);teR). We note that the matrix T can be definitely expressed
in terms of the spectral density of X. Then we shall prove that the
N-th component process of # (=Y) has the N-ple Markovian property
in the narrow sense and satisfies

1.3) Fy~() = Fy/~(t) = 0Fy(t)  (teR)

(Theorem 6.2). We can also give an alternative expression of the linear
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predictor of X(¢) (£ > 0) using the past Fz(0) in terms of the process
% (Theorem 6.3 (i)).

Finally in §7 we shall give three applications of our results. At
first we shall characterize the Markovian property of stationary Gaussian
processes from the point of view of representations and then give a
necessary and sufficient condition for the N-ple Markovian property in
the sense of T. Hida (Theorems 7.1 and 7.2). Next we shall characterize
the linear predictor of X(¢) (f > 0) using the past F3(0) as a unique solu-
tion of an initial value problem of a differential equation, which is derived
from the spectral density of X. As the third application, we shall give
an expression of nonlinear predictors of X(¢) (¢ > 0) using the past Fz(0)
in terms of the Gaussian diffusion process (Z(f), P(-|Z(0) = x);¢ > 0,
2z € RY) defined in §4 (Theorem 7.4).

§ 2. Rational weights
Let N be a positive integer and let 4 = 4(2) be a rational function

of degree 2N which is nonnegative, symmetric and integrable. Then
we have the following decomposition:

Q=P
AQD) = ‘?(Tz_) (eR),

(1) {Vp,=C*, VoCC*"R, Vp,NV,=¢ and
N-1 N
Q(Z) = Z bn("‘iZ)n p) P(z) = Z Cn(——-iz)" B} bn’ ¢, € R? Cx * 0 4
n=0 n=0

where Vg denotes the set of zero points of a polynomial S. Such a
decomposition is unique up to multiplicative constants of absolute one.

2.1. We denote by F the Fourier transform of the reciprocal of a
function P(--) in (2.1):

2.2) F = P@)"".

It is easy to see that FF = 0 in (—co0,0) and F‘ e «/((0, o0)) N L*((0, co))
n=0,1,2,...). By Lemmas 8.5,8.6 (ii) and Proposition 8.1 in [6] we
have

LEMMA 2.1. (i) F™0+)=00<n<N-1), F¥-Y0+)=2z(—D"c3!,
(ii) F®eL¥R) (0 <n < N — 1) (distribution derivatives),
(i) {F™;0<n <N —1} is linearly independent in L*(R).
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We define for any ne{0,1,...,N — 1} an L*-function F, by

@) 5 o= DFFO® > 0),
0 t<0).

(2.3) F.() =

In particular we have
(2.4) FN—l = (—Zn)'ICNF .
Then it follows from Lemmas 8.2, 8.3 and Proposition 8.1 in [6] that

LEMMA 2.2. (i) F0+) =1, F,0+)=0(0A<n<N-1),
(i) F,= @)™ 2357 Crpren (=DF'F® A <n< N -1,
(i) F =06 — Qr)eF, F® = —F,_, — Qn)¢,F' 1 <n<N-1),
(iv) {F,;0< n <N — 1} is linearly independent in L*R).

Furthermore it follows from Theorem 8.1 in [6] that

LEMMA 2.3. For any se(—,0),te(0,) and ne{0,.---,N — 1},
(1) F@ —s8) =2 (—D"F™()F,(—s),
(i) Ft — 9 = @2n)" 2050 (= DCont ! Cramar (=)™ HFE™(E))F (—8).

By using Lemmas 2.1 (i), 2.2 (i) and 2.2 (iii), we can show
LeMMA 2.4, F™04) = (=1D)%,, O <m,n <N —1).
Next we shall prove

LEMMA 2.5. There exist N positive numbers t, < ¢, < ... < ty_, sSuch
that det (FF™ () ocm,nen-1 7 0.

Proof. Assume that det (F™(t,)) = 0 for any N positive numbers
ty, <t <-.. <ty_. Differentiating it n times with respect to ¢, for
each ne{0,1,.--,N — 1} and then letting ¢, <¢ < ... <ty_, tend to
zero, we see from Lemma 2.1 (i) that

0 1
det - =0.
1 *
1
This is absurd. Therefore we have the desired result. (Q.E.D.)

https://doi.org/10.1017/S0027763000024673 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024673

GAUSSIAN PROCESSES 195
Finally in subsection 2.1 we shall show

LEMMA 2.6. The following (i) and (ii) are equivalent:
(1) det (F™(t)ocmnen-1 + 0 for any N positive numbers t, <t < -.-
<tyoi;
(i) Vpoc{zeC*;Rez =0}

Proof. We decompose P(z) = d, [[¥5 (4, + 42), where d, is a constant
and Re1, >0 (0 <n <N —1). Denoting by f, the Fourier transform
of 1, —1-)'(0<n<N—1), we find that f,(t) = 2z(Re (2,)) et > 0),
[ =0 (& <0) and F = d,fy*fi%---*fy_, with some constant d,. At
first we assume that (ii) holds and so 1, e R (0 <n < N — 1). We define
N + 1 functions v, in «/((0,00)) (0 < n < N) by

vi) = ditent
V() = et I<n<N =1,
va(t) = o7

and then N functions G, in «/((0,)) (A <n < N) by

G(t) = V(D) j vy i(t)dE, j vy o(t)dt, - - j sty i)y e -

It may be easily seen that P(l (%)Gn =0 in (0,0) (A <n < N). Since
7
v,’s are positive, we can apply (II,30) in [3] to get that det (G, (¢,)) # 0
for any N positive numbers £, <t < --- <iy_;. Since P(—1~d%>[f’n =0
)

in (0,0) (0 <n <N —1), we see from Lemma 2.1 (iii) that there exists

a nonsingular N X N-matrix C satisfying (F™(t,)) = C(G,(t,)) and so (i)

holds. Next let’s assume that (ii) does not hold. Since P(1) = P(—2)

(e R), we then may assume and do that 4,¢R and %, = —4. By an

easy calculation it is shown that f = f,+f, is equal to d,sin (Re 1,-t)e #nlot

in (0, o) for some constant d,. Since f,*f;*---*fy_, is a fundamental

solution of a differential operator S(ld%) of order N — 2 with constant
1

1d .. .

T F = d,f. This implies that, for any N

)

positive numbers t, < ¢, < -+ <ty_y,

coefficients, we find that S(
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( F(t) -ovovvve-- F(ty_) ]
det (F™(t,)) = d, det FN-9(t) oo FN-9(, )
F@) covevenn- Fw_)
F(N—l)(to) e e F(N—U(tb/’—l)
where d, is a constant. Since f(nx(Rei)™®) =0 (rneN), we find that
(i) does not hold. Thus we have proved Lemma 2.6. (Q.E.D.)
2.2. We denote by E the Fourier transform of a function
P(=)7'Q(-):
(2.5) E = (P )"'QN".
By (2.2) we have
1d
2.6 E= (__)F
(2.6) Q i dt
We define for any ne{0,1,...,N — 1} an L*-function E, by
1d
@ B = {Q(7 L. >0,
0 t<0).

In particular we see from (2.4) and (2.6) that
2.8) Ey_, = (—2r)"'cyE .
Immediately from Lemma 2.3 and (2.7) we have

THEOREM 2.1. For any s € (—o0,0), te(0,00) and ne{0,1,.-.,N—1},
(1) EC—s) =205 (=D"FPOE(—s),
(i) E.¢ -9 = @) 25 (=D (= D* ey S P@DE (—8).

Moreover it follows from Lemmas 2.2 (iii) and 2.4 that

LEMMA 2.7. (i) E,0+)=b, 0<n<N-1), _
(i) EYt) = (—2n)7'cE®), Et) = —E,_,(t) — @) ¢, E®) ¢t>0,1<n<
N - 1.

Finally we shall prove
LEMMA 2.8. {E,:0<n < N — 1} is linearly independent in L*(R).
Proof. Let a, (0 <n < N — 1) be real constants such that > 7' o, F,
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— 0. We then see from (2.7) that Q(l, %)( Ylg F)=0 in R — {0}
7

in the sense of distributions. Therefore, there exists a polynomial Q,

such that Q(l i)(Zsz;ol a,F,) = Q1<l_ i)& By taking the inverse
1 dt 1 dt
Fourier transform of both sides, we find that Q(—D( 3= a, F () =
Q(—2 (AeR). Since Lemma 2.2 (ii) implies that F,Q2) = (—2r)"
¥ ¢ mei(1)™P(—2)"'(2 € R), there exists a polynomial Q, of at most
degree N — 1 such that Q)Q,(DP)' = Q,(1) (A R). Hence we see
from (2.1) that @, =0 and so @, = 0. This implies that > '«a,F, =0
and s0 ¢, =00 <n< N —1) by Lemma 2.2 (iv). Thus we have proved
Lemma 2.8. Q.E.D.

§3. Fy-( @D

In the sequel we shall consider a real stationary Gaussian process
X = (X();teR) having the spectral density 4 of the form (2.1). We
assume that X has expectation zero. Since P(--)!'Q(--) is an outer
function of the Hardy weight 4, we get from (2.5) the following canon-
ical representation:

3.1 X(t) = /2! j " Bt — 9)dB(@s) ,
where (B(t); te R) is a standard Brownian motion satisfying

3.2) Fx(t) = o(B(s) — B(8y); 81,8, < t) for any teR.

Using L*functions E, in (2.7) we define random variables X,(t)
teR,0OL<N<N-—1 by

(3.3) X, (1) = V27! f " Bt — $)dB(s)

and then an N-dimensional stationary Gaussian process & = (Z(f); te R)
by

3.4) Z(@) = (X,@), -+, Xy_ ()" .
Particularly we see from (2.8) that
3.5) Xy_i(®) = (—2r) ey X(t) (teR) .

We define an N X N-matrix A and an N-vector b by
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‘0 ' o 3
-1 . 0 a, b,
-1 . .
3.6 A = ’ b = M ’
3.6 R .
0 by
-1 ay_,

where a, = ¢,c3' (0 < n < N).
In the same way as Theorem 9.1 in [6] we can show from (2.8)
and Lemma 2.7 that

THEOREM 3.1. For almost all w
2 — Z(s) = +22-B(B(t) — B(s)) + j’ AZ)du (s <1).

In particular Z(t) is continuous in te R.
Noting (3.2) we see from Theorem 2.1 (i) and Lemma 2.8 that

THEOREM 3.2. (i) For any s and teR, s < t,
N-1
E(X(@)|Fx(s) = Z_E) (=D"F"(t — 8)X,(s) .

i) {X,®;0<n< N —1} is linearly independent in M for any teR.
We define for any te R an N X N-matrix A(®) = (A®)n,) by

3.7 A, = (2ﬂ)“N—f—l(—1)”*"“cmkHF‘"“"(t) O<mn<N-1).
k=0

Then we shall show

LEMMA 8.1. (i) For any s and teR, s < t,
E(Z()|Fx(9) = At — )Z(s) .
(i) A@) =e“ (t > 0).

Proof. By Theorem 2.1 (ii) we have (i). We particularly see from
Lemma 2.8 that A(s + t) = A(s)A(t) (s > 0,¢ > 0). Since A(¢) is contin-
uous in te(0,0) and A(0+4) = I, this implies that there exists an
N X N-matrix A satisfying A(f) = 3 (¢ > 0). Since B(t) — B(0) (t> 0)
are independent of Fx(0) and %(0) is Fz(0)-measurable by (3.2), we see
from Theorem 3.1 and Lemma 3.1 (i) that
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E(Z ()| Fz(0) = (1 + j :Ae“du>3&”(0)
= e42(0) t>0.

By Theqrem 3.2 (ii) we get
ed =1 + j’Aeuﬁdu t>0).
0

Differentiating both sides at ¢ = 0, we find that 4 = A. Thus we have
proved Lemma 3.1. (Q.E.D.)

In the same way as in the case of X, we shall consider the past
fields F;(t), the future fields Fi(f) and the splitting fields Fi/~(t) (te R)
associated with & (Definition 9.1 in [6]). We then see from (3.2), (3.3)
and (3.4) that

(3.8) Fx(t) = Fz(t) (teR) .
Now we shall prove the following main theorem.
THEOREM 3.3. F3/'~(t) = Fi'~(t) = o(Z(t)) for any tcR.

Proof. By virtue of Lemma 2.5, we see from Theorem 3.2 that
M*/=(t) is equal to the closed linear hull of {X,({);0<n<N—1}(teR).
This implies by Lemma 2.1 (iii) in [6] that F{/~(¢) = o(Z'(t)) for any
teR. It is clear that «(Z(t)) C F;(t) N Fi(t) C Fi/~(t) since Z(t) is con-
tinuous in ¢e R. On the other hand, it follows from Lemma 3.1 that,
for any te R and any & > 0,

Xo(t + 1) = AWZ(E), + v/ 25 j Z”Ena +h—9dB(s) (O<n<N-1).

Since B(t + z) — B(t) (z > 0) are independent of F;(¢) for any te R by
(8.2) and (3.8), we can see that F;(f) is independent of F:(t) under the
condition that ¢(Z'(¢)) is known, and so that Fi/'~(t) C o(Z(¢)). Thus we
have proved Theorem 3.3. (Q.E.D.)

§4. A Gaussian diffusion process

From Theorem 3.8 we find that a Gaussian process (Z'(¥), P(-|Z(0)
=x);t> 0,2 ¢ RY) has the usual Markovian property. In this section
we shall investigate several properties of such a Gaussian Markov proc-

ess.
By (8.2) and Lemma 3.1 we have
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LEMMA 4.1. (i) E.(t) = v/2z7'(e*p), t >0,0<n < N — 1),
(i) () = e =94%(s) + +/2z7! f ‘ et~ w4pdB(u) (s < t).

We denote by u(t,z) and R(f,x) the mean vector and the covariance
matrix, respectively, under the condition that Z(0) = 2 (¢t > 0,2 ¢ R"):

{/z(t, z) =EZ®|Z0) =),
R, ) = E(EF®OZ0)* | £0) =) .

It then follows from Lemma 4.1 that

ut, ) = etz ,
4.1 {

R(t,2) = R(t) = ((2;:)* J ' esAbmesAbnds>osm,,,sN_, .
0

We shall prove
THEOREM 4.1. {A"5;0 < n < N — 1} is linearly independent.

As an application of Theorem 4.1 we find that R(f) is a positive
definite matrix for each ¢ > 0. Before the proof of Theorem 4.1, we
shall prepare several lemmas.

LEMMA 4.2. For any ne{0,1,.---,N — 1} we set

5 —1)™ (n+m)
Gut) = 1 TVUBRF T >0,

0 t<0).
Then
{G.;0<n<N-—-1} is linearly independent in L*(R) .
Proof. Letea, (0 <mn < N — 1) be real constants such that > 7} a,G,
= 0. We define a polynomial S(z) = > 7} a,(i2)*. Since G,() = G{™(t)
for any te R - {0}, we find that S( 1d

i

)Go =0 in R — {0} in the sense
of distributions. Therefore, there exists a polynomial @, such that
s(%‘%)ao - Ql(% %)5 in R. Noting that G,eL*R) and taking the
inverse Fourier transform of both sides, We~ find that S(—Z)GO(Z) = Q,(—2)
(Ae R). On the other hand, we see that G,(1) = Q(—ADF(2), since G, =
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Q(%- d%)F Hence, it follows from (2.2) that SA)QQ) = Q,(DP(2) (A€ R).

Since S is a polynomial of at most degree N — 1, this implies by (2.1)
that S=0and sow, = 0(0 <n < N —1). Thus we have proved Lemma
4.2. (Q.E.D.)

LEMMA 4.3. For any m,nec{0,1,-..,N — 1} we set
N-1
Tmn = 25 (=DDF2(0+) .
£=0

Then the N X N-matrix (fmn)ocmmsn-1 18 nmONSingular.

Proof. Differentiating (i) in Lemma 2.8 / + m times at s = 0, we
have

Ferm(t) =3 (~ P F®HFE™04) (> 0,0< 4,m <N —1).
n=0

Multiplying it by (—1)’%, and then summing up with respect to 4, we
get

”z (—1)DFerm(t) = 2(—1)"%1@"")@) t>0).

Therefore, by Lemmas 2.1 (iii) and 4.2, we obtain the desired result.
(Q.E.D.)

LEMMA 4.4. The N X N-matriz (E{(0+4))ocm ncn-118 NONSINGULQT.

Proof. Differentiating (ii) in Theorem 2.1 m times at ¢t =0 and
then letting s tend to zero, we have

E™O+) = (2r)"! %;(~1)(”z: (—1)"“ck+nHF<m+k+f>(o+))E,(o+) .

On the other hand, differentiating (i) in Lemma 2.3 m times and k + ¢
times at £ = 0 and s = 0, respectively, we get

F(m+k+1)(0+) — NZ_:I (___1)]F(m+j)(0+)F§.k+l)(0+) .
7=0
Therefore it follows from Lemma 2.7 (i) that

N-1N-n—-1
EmO0+) = 2o~ ;0 ;Z:o Fm 204 ) (=D (=D* Chrngn -

J
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By Lemma 2.1 (i), the matrix (F™*?(0+)),cy ;j<y-. must be nonsingular.
Therefore, we obtain the desired result noting that ¢y is not zero and
using Lemma 4.3. (Q.E.D.)

LEMMA 4.5. The N X N-matrix (E™*™(0+))cn cn-1 18 nONSIRGUlAT.
Proof. Differentiating (i) in Theorem 2.1 ¢ times and m times at
t = 0 and s = 0, respectively, we have

E(Z+m)(0+) — El(_1)7LF(!+7L)(0+)E;'M.)(0+) .
n=0

Therefore, by Lemma 4.4, we get the result. (Q.E.D)
LEMMA 4.6. {A"é ;0<n <N — 1} is linearly independent, where
a=(a - ay_)*
Proof. Since Aa= —(0a, --- ay_)* + ay_,a, we have the result not-

ing that a, is not zero. (Q.E.D))
LEMMA 4.7. For any ¢, m and ne{0,1,...,N — 1},

N—g~
AW = @)~ kzolcum(—1>m+k+lF<m+k+">(0+> .

Proof. Differentiating e'4 k times at ¢t = 0, we obtain the result
from (3.7) and Lemma 3.1 (ii). (Q.E.D.)

LEMMA 4.8. > 7 (—=D"b, A" is nonsingular.

Proof. We denote by a, the ¢ + 1 row of the matrix > ¥ (—1)"b,A"
and set e = (---(—=1)""'¢pypn1--)* 0L ¢ < N—1), where ¢, =0 for
m >N+ 1. By (2.6) and Lemma 4.7 we have

@ = @) N(=1'S S (= 1)kb F im0 4)e,
k=0

= @n)(~1) (Q(~—)F(t>)(“"’

2 s
= o

en
=0

»a o

2 §

= 20 (—1* 3 E¢»(0+)e, .

=0

S

Therefore, since det(e, - - - ey_) = (—1)¥¢y)? is not zero, we have the
desired result from Lemma 4.5. (Q.E.D.)
After these preparations, we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1.: Let a, (0 <n < N — 1) be real constants
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such that > V' a,A" = 0. Since Ab = —(0b, --- by_)* + by_,a, we have

ANeng = (ZDVST (C1ymp Amirg (0<n< N —1).
0

m=

Then operating the matrix A" to both sides, we get
N-1 N-1 N-1
( 5 (—l)mbmA”‘)(Z anA"a) = S AV = 0.
m=0 n=0 n=0

and 0o o, =0 (0<n <N —1) by Lemmas 4.8 and 4.6. This completes
the proof of Theorem 4.1. (Q.E.D.)
As an application of Lemma 4.4 we shall show the following

THEOREM 4.2. (i) There exist N positive numbers t,<t, < .- <ty_,
such that the matric (E™(t,))ocncy—_1 18 nONSINGUlAT.

(i) In order that for any N positive numbers t, < it, < --- < ty_,
the matric (E™(t,))ocm, nen -1 18 RONSINGUlAT, it 1S 0 Necessary and sufficient
condition that the zero points of P are located in the positive imaginary
axis.

Proof. Differentiating (i) in Theorem 2.1 m times at s = 0, we have
Ew() = 3 (D) F®OEPO0+) (> 0).
n=0

Therefore, combining Lemmas 2.5, 2.6 and 4.4, we obtain the result.
(Q.E.D.)
Now we shall apply Theorem 4.1 to get several properties of the
Gaussian Markov process (Z(1),P(-|Z(0) =z);t > 0,xc RY). It is easy
to see from (4.1) that the covariance matrices E(f) (¢ > 0) are positive
definite. Therefore it follows from (4.1) that the Gaussian Markov
process (Z(@®),P(-|Z(0) =x);t > 0,xc RY) has a transition probability
density P(t,z,¥);

(4.2) P(t’ x, y) — (zﬂ)—N/Z(det R(t))~1/26—1/2(y—654x,R_1(t)(y—e“4:c)) .

' {P(f%’(t) e dy| Z(0) = ) = P(t,,y)dy ,
Since b is not zero, it follows from Theorem 3.1 that
4.3) a(B(s) — B(t); s,t € D) C Fi(D) for any open set D in R.

Therefore, by (3.2), (3.8) and (4.3), we can apply K. Ito’s formula to the
stochastic differential equation in Theorem 3.1 and find that the Gaussian
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Markov process (Z(t),P(-|£0)=2x);t> 0,2e R") becomes a diffusion
process whose infinitesimal generator ¢, is given by

4.4 G, = 3(W2r7b-V) + (Ax)-V .

From Theorem 4.1 we find that this differential operator %, is hypoel-
liptic ([4D.

It is easy to see from (2.1) and (3.6) that the characteristic equation
of the matrix A is equal to (—1)¥c¢z'P(7'2):

4.5) det 2 — 4) = (—=DVex'PE') = (DY 2} (=" .

This particulary implies that the real part of all eigenvalues of A4 is
negative. Noting this fact and applying Theorems 4.1, 6.1 and 7.1 in
[2] to our Gaussian diffusion process, we have

THEOREM 4.3. The Gaussian diffusion process (Z(t), P(- |Z(0) = x);
t > 0,x e RY) is recurrent and there uniquely exists an invariont measure

wdy):

4.6) {ﬂ(dy) = op(y)dy ,

o(y) = e FWET=N

where R™'(c0) 18 the inverse matrix of a positive definite matriz R(co)
= lim,_.. R(%).

Remark 4.1. It follows from (4.1) that

@7 R(o0) = ((27;)-1 f : e“‘bme“‘bndt))

0<m,n<N -1

§5. F~(®) D

We have constructed in §3 an example & of N-dimensional station-
ary Gaussian processes ¥ = (#(t); te R) satisfying the following condi-
tions:

(5.1) %(t) is continuous in the mean;

(5.2) For any te R, each component of #(t) belongs to M and {the n-
th component of #(¢); 1 < n < N} is linearly independent;

(5.3) F3'~(t) = a(#(t)) for any te R.

In this section we shall show the next theorem about the uniqueness
of such a process.
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THEOREM 5.1. For any N-dimensional stationary Gaussion process
Y =(¥{);te R satisfying (56.1), (6.2) and (5.3), there uniquely exists a
constant nonsingular N X N-matriz T such that %) = TZ () for any
teR.

Before proving this theorem, we shall prepare three lemmas. We
define for any te R an N X N-matrix K,({) by

6.9 K.(t) = E(Z@)Z(0)*) .
By Theorem 3.2 (ii) and Lemma 3.1 we have

LEMMA 5.1. (i) K,(0) is symmetric and positive definite,
e 4K, (0 t>0),
(if) K(t) = *(_) =0
K,(0)et4 t<0).
We define a symmetric N X N-matrix B by

(5.5) B = (bubn)ocmmzr-1 -
Then we shall prove
LEMMmA 5.2. AK,(0) + K,(0)A* = —(2r)"'B.

Proof. Since & = (Z(t);te R) is stationary, it follows from (3.2),
(8.8) and Lemma 4.1 (ii) that

K.(0) = e“K,(0)e!* + (20)! f ¢4Best*ds (£ 0) .
0

Differentiating it at ¢ = 0, we obtain the result. (Q.E.D.)
Next we shall show the following general statement.

LEMMA 5.3. Let A, B and K be real N X N-matrices such that
(i) B= (bmbn)osm,nsN—l! b= (bo Tt bN—l)* * 0,
(ii) K s symmetric and positive definite,
(iii) AK + KA* = —B
and
(iv) {A"p;0 < n < N — 1} is linearly independent.
If an N X N-matriz A satisfies

ek otd* — gt4K gt4* for any teR,

then

Y
Il
S
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Proof. Since K has a symmetric and positive definite root K*, we
can define A, = K3*AK} A, = K-*AK* and B, = K-*BK-*. It then fol-
lows that

Al A;k = ‘—Bl ’
(5.6) { +

etligtdf — gtd1gtd} for any teR.

Since B, is a symmetric, nonnegative definite matrix of rank one, there
exist an orthogonal matrix P, and a positive number ¢ such that B, =

& 0
P, P;' and s0 ¢! > ¥} (B)n, = 1. Therefore we can find an-
0 0
other orthogonal matrix P, such that (P,),, = ve ' (K%),( 0 <n <N —1),
& 0
because (B)),, = (K~*p)2. It is then easy to see that P, P;t =
0 0
—& 0
B,. Hence, setting A, = P;'A,P,, A, = P;'A,P, and T = - ,
0 0
we see from (5.6) and Theorem 4.1 that
5.7 A, +Ay=T,
(5.8) etdrptds — gtdagtd} for any te R
and
(5.9) {((A5T)g0y (A3T)ygy -+, (ADy 1 *;0 < n < N — 1}

is linearly independent.
We define a sequence (D,);_, of N X N-matrices by

(510) Dp = AZD;o—l + Dp_lA;k (p = 1, 2’ . ')) DO =1.

Since D, = T by (5.7), we have
G1D D=5 (arar  w=o012).
k=0

Setting L = fL — A, and then differentiating (5.8) at ¢ = 0, we get

(5.12) LD, + D,L* =0 (p=0,1,2,--.).
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Therefore, putting S =[L,A,] (= LA, — A,L), we see from (5.10) and
(5.12) that

(5.13) SD, + D,S* = r»=012...).

From (56.12) in the case of p =1 we have

(5.14) L+L*=0.

Furthermore, applying (5.12) in the case of p = 1, we find that [L, T]
_50 0

=0. Therefore, since T = , we get
0 0

(5.15) LT =TL=0.

Similarly it follows from (5.13) in the case of »p = 0 and p = 1 that

(5.16) S+8S*=0
and
(5.17) ST =TS =0.

Fixing any p,€{0,1,2, ---} we shall assume that SA?T = TA?S = 0 for
any pe{0,---,p}. By (6.7), (56.11), (5.13), (5.16) and (5.17), we find that
—é& 0
SAP*T = TA»*'S. Since T = , this implies that (SAp*Y),,
0 0
=0 for any ne{l,2,..-,N —1}. Moreover we see that (SAr*1), =0
because S,, for any ne{0,1,..--,N — 1} by (5.17). For this reason it
follows that SAp*'T = TAp*'S = 0. By mathematical induction on p,,
we conclude that SA?T = 0 for any pe{0,1,2,...}. Therefore, using
(5.9), we find that S = 0. Since this conclusion implies that L commutes
with A4,, it follows from (5.15) that LA?T = 0 for any p»e{0,1,---.}.
Consequently, using (5.9) again, we see that L = 0 and so A=A. Now
we complete the proof of Lemma 5.3. (Q.E.D.)
After these preparations, we are in a position to prove Theorem 5.1.

Proof of Theorem 5.1: Since the subspace of M whose elements
are Fj/~(t)-measurable is equal to the space M*/~(¢) with the algebraic
dimension N, it follows from (5.2) and (5.3) that there exists a non-
singular N X N-matrix T(t) satisfying # () = T@®)Z(t) (te R). For any

https://doi.org/10.1017/S0027763000024673 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024673

208 YASUNORI OKABE

s and teR, s <t, we define an N X N-matrix C(¢,s) by
C(t,s) = T(t)et 24T (s)" .

Then it follows from Lemma 3.1 and (5.2) that

5.18) C(u, s) = C(u, t)C(t, s) s<t<u
and
(5.19) E(%(t)|Fx(s)) = C(t, )% (s) <.

Since ¥ = (#(t);tc R) is stationary, we see from (5.2) and (5.19) that
C(t,s) = C(t — s,0) (s <t). Setting C(t) = C(t,0) (¢t > 0), we can show
from (5.1), (6.2) and (5.18) that C(¢) is continuous in te [0, ), C(0) = I
and C(s + t) = C(8)C(?) (s,t [0, 0)). Therefore, there exists an N X N-
matrix A such that C(f) = e!7©37®~* (¢ > 0). Since it is easily seen that
T(t) is real analytic in ¢e R, we obtain

(5.20) T(t) = T(0)et4et4 for any teR.
On the other hand, by Lemma 5.1 and (5.19), we have
C(t — s)T(OK(0)T(0)* = T(t)e 21K, (0)T(s)* s<?.
Combining this with (5.20), we get
e K, (0)e!® = e'“K,(0)e'*  (teR) .

Therefore, by Theorem 4.1, Lemmas 5.1 (i) and 5.2, we can apply Lemma
5.3. to obtain the conclusion. (Q.E.D.)

EXAMPLE 6.1. Using N positive numbers ¢, in Lemma 2.5, we
define a nonsingular N X N-matrix T = (—1D)"F™(,))<mn<v-1 and a
stationary Gaussian process ¥ = (Z(t);te R) = (TZ({t); te R). It follows
from Theorem 3.2 (i) that the n + 1-th component of #(t) is equal to
EX(t + t)|Fx®) teR,0<n <N —1).

§6. Fy-(t) (1)

Using the L*-function F' in (2.2) and the Brownian motion B in (3.1),
we define a real stationary Gaussian process Y = (Y(¢); ¢t € R) such that

(6.1) Y = «/Z}lf_ F(t — 5)dB(s) (teR).
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It is easy to see that this representation is canonical and Y has the N-
ple Markovian property in the narrow sense. Since @ is a polynomial
of at most degree N — 1, we see from Lemma 2.1 (i), (2.6) and (3.1)
that

_ofld
(6.2) X(t) = Q( z_ dt)Y(t) (teR) .
Now we define an N X N-matrix T by
(6.3) T = (B(—A - - (—AW-1p) |

which is nonsingular by virtue of Theorem 4.1. Since the characteristic
polynomial of A is (—1)Yc¢y'P(:7'4), it follows from Caley-Hamilton’s
theorem that >7 ,a,(—A4)* =0 ((4.5)). Therefore we can easily see
that

(6.4) T =10 ... 0)*
and
(6.5) T'AT = A .

Using this matrix T we define an N-dimensional stationary Gaussian
process ¥ = (#(t); t ¢ R) satisfying (5.1), (5.2) and (5.3) as follows:

(6.6) YY) =TZ@®) (teR) .

We denote by Y,(t) the n + 1-th component of #(t) 0 <n < N — 1,te R).
By (2.3), (8.3), (3.7), Lemma 3.1 (ii) and 4.1 (i), we can show that

(1)
. ¢ 0 I
6.7) Yt) = v2r! J ¢4 |- | dB(s)  (teR)
0
and
1
0
(6.8) edl || =F. ¢>00<n<N-—1).
0}

By (2.4), we particularly find
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(6.9 Yy () = (—2n) ey Y (1) (teR) .
By (8.8) and (6.6) we note
(6.10) Fx(t) = F; (1) .
Using Theorem 3.1, Lemmas 3.1 and 4.1 (ii), we see from (6.4) and
(6.5) that

THEOREM 6.1. For almost all o
(1) Z® — %(s) = V2r Y(B(t) — B(s),0, ---,00* + _rA”J(u)du (s <),
1

e 0
(i) (@) = et 94%(s) + x/2n“j et=94 | | dBw) (s < t),

s

(i) E@ ()| Fz(9) = e 24%(s) (s < t).
Noting (3.6) we can show from (6.6), (6.9) and Theorem 6.1 (i) that

(6.11) F,(D) = F,(D) = Fy(D) for any open set D in R
and
(6.12) F3/=(t) = oFy(%) for any teR.
Therefore, combining these with Theorem 3.3, we get
THEOREM 6.2.
Fi/~(t) = Fi/~(t) = o(# (1)) = F3/~(t) = oFy(t) for any teR .

Finally we shall give an alternative expression of the linear predic-
tor by using the process %.

THEOREM 6.3. (i) For any s and teR, s <{,
N -1
E(X (@) |Fx(s) = EO(—l)"E‘")(t — 89)Y,(s) .

i) {Y.®;0<n<N-—1} is linearly independent in M for any
teR.

Proof. By Theorem 3.2 (i) and (6.6) we have (ii). It follows from
Theorem 2.1 (i) and Lemma 4.1 (i) that

Bt — s) = Nj(—l)"F“’(t)(e‘“b)g (s<0,t>0).
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Differentiating both sides n times at s = 0, we get
E®) = I:};: (=D'FO)(A"p), O<n<N-1.
Therefore, by Theorem 3.2 (i) and (6.6), we obtain (i). (Q.E.D)

§7. Applications
7.1. Markovian property.

At first we shall characterize the Markovian property of stationary
Gaussian processes from the point of view of representations. In [6]
we have proved

THEOREM 7.1. ([6]) In order that a real mean continuous, purely
nondeterministic stationary Gaussian process X has the Markovian prop-
erty:

(7.1) F/~(t) = 0Fx(t) for any teR,

it 18 a necessary and sufficient condition that there exists a canonical
representation (v/2z'E(t), B(t)) possesing

(7.2) o(B(s) — B(t); s,te D) C Fy(D) for any open set D in R .

We shall give another proof of Theorem 7.1 in case X has a rational
spectral density 4 of the form (2.1). Now let’s assume (7.2). It then
follows from (3.5), (3.6) and Theorem 3.1 that Z'(¢) is 9Fx(t)-measurable
for any te R. Therefore, by Theorem 3.2 (i), we find that E(X(u)|Fz(t))
is oF(t)-measurable (¢t < u) and so that (7.1) holds. Conversely let’s
assume (7.1). It then follows from Lemma 2.5 and Theorem 3.2 (i) that
Z(t) is oFx(t)-measurable for any t € R. Therefore, by (3.6) and Theorem
3.1, we obtain (7.2) since b is not zero. (Q.E.D.)

Next we shall characterize the N-ple Markovian property in the
gsense of T. Hida ([3]). Immediately from Lemma 2.6 and Theorem 3.2
(i) we can show

THEOREM 7.2. In order that a real mean continuous, purely non-
deterministic stationary Gaussian process X has the N-ple Markovian
property in the sense of T. Hida, it is a necessary and sufficient condi-
tion that X has a rational spectral density 4 of the form (2.1) with an
additional property

https://doi.org/10.1017/50027763000024673 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024673

212 YASUNORI OKABE
(7.3 V,y,c{zeC*; Rez = 0} .

7.2. Initial value problem.

We shall characterize the linear predictor using the past as a unique
golution of an initial value problem. We define an N X N-matrix D =
(Dmn)OSM,nSN—l by

(7.4) D,y = (=D"E™™(0+) ,
which is nonsingular by Lemma 4.5.

THEOREM 7.3. We denote by Z(t, ) the linear predictor of X(t) using
the whole past;

Z(t, 0) = EX@®|Fx(0) (€ >0).

Then, for almost all we 2, Z(t,») (t > 0) s a unique solution of the fol-
lowing initial value problem (7.5):

jZ(-,w) € (0, 00)) N LX(0, o)) ,

(7.5) P( 1 d)Z(t,w) =0 in (0, 0) ,

4 dt
lZ‘”)(O-F,w) = (D%(0)), O<n<N-1.
Proof. Since F™ ¢ «&/((0, o)) N L*(0, ©)) (n = 0,1, 2, -.-) and

P(lﬁ)[f’ =0 in (0, o), it follows from Theorem 2.1 (i) that ™ e &/

i
1d
i dt
fore, by Theorem 6.3 (i), we have (7.5). It is clear that Z(.,w) is a
unique solution of (7.5), because P is a polynomial of degree N.
(Q.E.D.)

(0, o)) N L*((0, o0)) and P( )E‘"’ =01in (0,0) (#=0,1,2,--.). There-

Remark 7.1. By Theorem 6.3 (ii) we note that {(D%(0)),;0<n <
N — 1} is linearly independent.

7.3. Nonlinear prediction.

As the last application, we shall give an expression of nenlinear
predictors of X(f) using the past Fz(0) in terms of the transition prob-
ability density P(t,z, %) of the Gaussian diffusion process (Z'(t), P(- | Z(0)
=2);t>0,2eRY). Immediately from (3.5), Theorem 3.3 and (4,2) we
have
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THEOREM 7.4. For any bounded measurable function f (or any
polynomial) on R and any t > 0,

E(f(X(®)|Fx(0)) = fRN S(—=2re5'yy DPE, Z0), Ay - - - AYn -y -
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