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Abstract

We present a symmetric version of a normed algebra of quotients for each ultraprime normed
algebra. In addition, a C*-algebra of quotients of an arbitrary C*-algebra is introduced.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 46 H 20;
secondary, 46 L 05, 47 B 99, 16 A 08.

1. Introduction

A normed algebra A over C is said to be ultraprime if

K := mf{\\MaJ)\\\ a, be A, \\a\\ = \\b\\ = 1} > 0,

where Ma b:x i-> axb is a two-sided multiplication on A. In [9] we studied
the basic properties of ultraprime normed algebras. In particular, every ultra-
prime algebra has trivial centre and its completion is an ultraprime Banach
algebra (two of several features that distinguish ultraprime algebras from ar-
bitrary prime normed algebras). It is also possible to enlarge every ultraprime
algebra A to a normable algebra of quotients, Q{A); this one will again be
ultraprime, and the restriction of the norm of Q(A) to A is equivalent to
the original norm of A [9, Theorem 4.1]. The construction of Q(A) is in
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76 Martin Mathieu [2]

fact analogous to Martindale's ring of quotients for an arbitrary prime ring
[6].

A symmetric version of the Martindale ring of quotients which works with
balanced pairs of left and right module homomorphisms rather than with
right module homomorphisms was introduced by Passman in [11] and com-
puted in several cases (see also [10], in particular for the applications to the
Galois theory of prime rings). Following his ideas, but using continuous
module maps on ultraprime algebras, we will construct a normable symmet-
ric algebra of quotients, QS(A), in the sequel. Like Q(A), this will be a
normed algebra extension of the ultraprime normed algebra A , and the cen-
tre of QS(A) coincides with the extended centroid of A. Also, QS{A) is
ultraprime.

Since QS(A) carries a natural involution when A is an involutive algebra,
its completion will become a prime C*-algebra if we start with a prime C*-
algebra A. Led by this, we define, for an arbitrary C* -algebra A and each fil-
ter y of closed essential ideals of A, a C*-algebra of quotients QS(A;
of A as the completion of lim M(I), where M(/) denotes the multiplier

algebra of / e &". As QS(A; 9") = M(A) if 9" = {A} , we may consider
the C* -algebra of quotients as a generalisation of the multiplier algebra of
A. Some basic properties of QS(A; &~) will be discussed in Section 3.

While we were working on this paper we were sent a preprint by P. Ara [2]
in which he also studies the extended centroid of a C* -algebra A and obtains
a characterisation of it in terms of continuous functions on the primitive
spectrum of A. We will compare his results with ours at the appropriate
place below.

Note added. Shortly after submission of this paper, G. K. Pedersen in-
formed the author that he used Mloc(A) (see Definition 3.2 below), under
the name 'essential multipliers', to study derivations of C*-algebras in [In-
vent. Math. 45 (1978), 299-305]; see also [G. A. Elliott, /. Fund. Anal. 23
(1976), 1-10].

2. Construction of the symmetric algebra of quotients

Let R be a ring. If R is prime, then a unital prime ring of (right) quo-
tients of R was constructed by Martindale in [6]. If R is semi-prime, this
construction was extended by Amitsur in [1]. We will denote this ring of
quotients by Qa(R) • The centre C of Qa(R) is the so-called extended cen-
troid of R. Recently, the extended centroid of semi-prime normed algebras
was studied by Cabrera Garcia and Rodriguez Palacios [4].
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[3] Symmetric algebra of quotients 77

Throughout this section, A will denote a non-zero ultraprime normed
algebra over C. It was proved in [9] that the extended centroid of A is trivial
and thus A is a centrally closed algebra. Examples of ultraprime algebras
are S£{E) and 38{E), the compact and the bounded linear operators on
a normed space E, and every prime C*-algebra [7]. G. Willis [15] proved
that, if G is either the free group on two generators or the group of all
finite permutations on N, then ll(G) is ultraprime. (On the other hand, if
G ^ {1} is a compact group or a locally compact abelian group, then L1 (G) is
never (ultra)prime.) Willis also raised the interesting question whether every
amenable prime Banach algebra has to be ultraprime. An affirmative answer
would have consequences on the automatic continuity of derivations, for
example. We will denote the (unital ultraprime) normed algebra of quotients
of A introduced in [9] by Q(A).

The purpose of this section is to present a symmetric version of Q(A).
DEFINITION 2.1. Let J*" denote the lattice of all non-zero ideals of A, and

let y c S be any filter which is stable under products, that is, / , J e &
implies / / e 9". For each a e A we denote by La (respectively Ra ) the
left (respectively right) multiplication by a (on / € 9). Then DC'(9) is
the set of all continuous double centralisers on 9 , that is, an element in
DC(9~) is a triple (/, pt, pr) consisting of an ideal / e / and continuous
mappings pt, pr from / into A satisfying Lxop{ = L , . for every x e / .

REMARKS. 1. The 'associativity law' Lx o pt = L , - can be replaced
equivalently by Rx o pr = R . . (x e / ) .

2. We shall also allow that 9 = {A}, even if A ^ A2. In this case,
DC{9~) is nothing but the set of all continuous double centralisers of A as
introduced by Johnson [5]. It follows from Definition 2.1, similarly as in [5]
and for any filter 9 , that both pt and pr are linear mappings, pt is a left
centraliser, that is, pt o Ra = Ra o pt for every a e A, and pr is a right
centraliser, that is, pT o La = La o pr for every a e A.

3. Each a e A yields a double centraliser via the 'double representation'
[5, page 301] given by a^(A,La, RJ .

We now define an equivalence relation ~ on DC{&~) by

(I,Pl>Pr)~(J>ai>ar) i f Pl\mj = al\mj a n d Pr\mj = ar\inr

The transitivity follows from the fact that, if pnV = ff^ for some U e 9~
which is contained in their common domain D, then p^D = a,,D (use the
primeness of A ). In particular, ( / , pl, pr) ~ ( / , 0, 0) if and only if pl = pr

is not injective. Indeed, if pt{x) = 0 for some O ^ x e / and pt = pr, then
p,(AxA) c Ap,(x)A = 0 whence p, = 0. On QS(A; 9) := DC(9)/ ~ we
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define the following operations

[(I. Pi > Pr)] + KJ' al' ar)] : = [(Ir]J>Pl + <Tl>Pr + °r)] '

where [•] denotes 'equivalence class' and X e C.

PROPOSITION 2.2. With the operations defined as above, QS(A; y ) be-
comes a prime unital algebra, and the double representation induces a mono-
morphism A^> QS(A; y ) .

PROOF. From the primeness of A, it is easy to verify that the operations
are well-defined and satisfy the usual associativity and distributivity laws.
The identity of QS(A; y ) is the equivalence class of (A, id, id), and the
mapping a •-»• [(A, La, Ra)] is clearly an injective algebra homomorphism.
We will henceforth consider A as a subalgebra of QS(A; &~). In order to
prove that QS(A;&') is prime observe that for each q € Qs(A;^)\{0}
there is / e & such that 0 ^ ql c A and 0 ^ Iq c A. Indeed, take
(I, pn pr) e q and let x e / . Then

qx = [ ( / , p,, pr)] • [(A, Lx, Rx)] = [(AI nIA, p,o Lx> Rxo pr)]

and similarly xq = pr{x) e A .
If p/(x) = 0 for all x e I, then pr(y)ax = ypt{ax) = 0 for all y, x e / ,

a € A whence pr(y) = 0 for all y e / . Thus, # ^ 0 implies both p; ^ 0
and pr^0 which proves the claim.

Take now qx,q2 € Qs(^; y ) \ { 0 } and * j , x2 € ^ such that ^,x, ^ 0
and x2^2 ^ 0. Since /I is prime we find z e A with qlxlzx2q2 ^ 0 which
accomplishes the proof.

In order to endow QS(A; 9~) with an algebra norm we first note that the
construction of Q(A) in [9] can be extended easily from the case & = J2" to
general y and thus we will obtain an ultraprime normed algebra of quotients
Q(A; y ) with respect to y . Our next aim is to realize Qs(A; y ) as a
subalgebra of {2(-4;

LEMMA 2.3. / / ( / , p,,pr)eqe QS(A; P), then K\\pr\\ < \\p,\\ < K-l\\pr\\.
In particular, if K = \, then \\pt\\ = \\pr\\.

PROOF. For all x, y e I we have MpMhy = L^{x) o Ry = Lx o pt o Ry =
LxoRyo p, and Mx ^ = L^ o Uft(y) = Lx °Ryopr. Therefore

(1) »c||pr
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that is, K\\pr\\ < \\Pi\\, a n d

(2) »c|

that is, K\\p,\\ < \\pr\\.
The purely algebraic version of QS(A; 9), which we will denote by

Qas(A; &~), is built up from equivalence classes of not necessarily continu-
ous double centralisers denned on ideals in y . This is Passman's symmetric
ring of quotients. (In fact, the construction in [11] for 9 = J2" differs slightly
from ours; however it yields the same result.) The following consequence of
Lemma 2.3 shows how QS(A; 9) 'sits inside' Qas{A;

COROLLARY 2.4. If q e Qas(A; &) contains a representative (I, pn pr)
with either pt or pr continuous, then q e QS(A; 9").

PROOF. If pl is bounded, then so is pr and vice versa, as follows from (1)
and (2) in the proof of Lemma 2.3. If (J, an ar) is another representative
of q , then al and ar are continuous by [9, Section 4, Remark 3].

The next result is the analogue of [11, Proposition 1.6].

PROPOSITION 2.5. The mapping [( / , p{, pr)] i-> [( / , pt)] is an isomor-
phism from Q^A-,9) into Q(A ,9), and considering QS{A;9') thus as a
subalgebra of Q(A; 9~) we have

QS(A ;F) = {qe Q(A;

PROOF. It is clear from the definition that [(/ , pr, pr)] i-> [(/ , pt)] is a
well-defined algebra homomorphism into Q(A; 9"), which is injective since
Pj = 0 implies pr = 0 (see above). Identifying QS(A; 9~) with its image in
Q(A; !F), we already noticed that, for q e Qs(A; 9), there is / e & such
that Iq CA. Conversely, suppose q € Q(A; SF) and / € / satisfy Iq c. A
and, by replacing / by a smaller ideal in 9 , if necessary, ql c A. Then,
by putting pr(x) = xq (x e /) we obtain a right centraliser on / , which is
continuous by 2.4, such that

pr(x)y = (xq)y = x(qy) = xp,(y) for all x, y e / .

Thus, [{I,Pl, pr)] = qeQs(A;&).
DEFINITION 2.6. Equipped with the norm of Q{A;&~) (that is, ||<?|| =

infdl/),!! | ( / , pt, pr) e q}), QS(A; 9") is called the symmetric normed alge-
bra of quotients of A with respect to 9 . If 9~ = J7", we write QS{A) instead
of QS(A; J*") and speak of the symmetric normed algebra of quotients.
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THEOREM 2.7. Let A be an ultraprime normed algebra. Then QS(A;&')
is an ultraprime normed subalgebra of Q{A; &), and the restriction of the
norm of QS(A; &~) to A is equivalent to the original norm of A. Moreover,
the centre of QS(A) coincides with the extended centroid of A.

PROOF. By Propositions 2.2 and 2.5 and [9, Theorem 4.1], QS(A;^) is
both a normed subalgebra of Q(A; y ) and a normed algebra extension of
A, since ||a|| > ||[(7, La, Ra)]\\ > K\\a\\ for each a e A. In the remainder of
this proof, we will denote the original norm of a € A by ||a||^ . Take p, q e
QS(A; &) with \\p\\ = \\q\\ = 1. By definition, there are (/,/>,, pr) ep and
( / , a,, ar) e q such that H^H > 1 and \\a,\\ > 1. By Lemma 2.3, \\ar\\ > K .
Hence, for each 0 < e < 1, there are x e I, \\x\\A = 1, y € J, \\y\\A = K'1

such t h a t \\px\\A = \\p,(x)\\A > 1 - e a n d \\yq\\A = \\ar{y)\\A > 1 - e . F o r
every z € A with ||z||^ = 1 we have

K\\pxzyq\\A < \\pxzyq\\ < \\MpJ \\xzy\\ < K-l\\MpJ,

and thus

K2{\ - ef < K2\\px\\A\\yq\\A < Ksuv{\\pxzyq\\A\ zeA, \\z\\A = 1}

This shows that \\M 9\\ > K3 > 0, that is, QS(A; &) is ultraprime.
In order to prove the last assertion let q e Z{QS{A)), the centre of QS(A).

For every x e / with (/, pt, pr) e q we have pt{x) = qx = xq = pr(x).
Thus, Pf = pr is an ^4-bimodule homomorphism corresponding uniquely to
[(/, p()] in the extended centroid C. Conversely, every element in C has
only yl-bimodule homomorphisms as representatives and these are continu-
ous by [9, Lemma 4.3]. It follows that C = Z(QS(A)).

It will not be surprising that QS(A) as well as Q(A) have an abstract
characterisation by some kind of 'maximality'.

PROPOSITION 2.8. The normed algebra of quotients Q(A) is the maximal
normed algebra extension Q of A satisfying the following conditions:

(i) for each qeQ there is I e J*" such that ql CA;
(ii) if qeQ, I eS satisfy ql = 0, then q = 0.

The symmetric normed algebra of quotients QS{A) is the maximal normed
algebra extension Qs of A satisfying conditions (i), (ii) and

(i') for each q e Qs there is I € J2" such that Iq c A.

PROOF. It is clear that Q{A) (respectively QS{A)) satisfy (i), (ii) (respec-
tively (i), (ii) and (i')) (compare with the proof of 2.2). Suppose that
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{Q, || • ||') is a normed algebra containing A as a subalgebra such that

7iN! ^ IMI' ^ ^Ml h o l d s f o r a11 a e A a n d s o m e ?i > h > ° • I f>f o r evefy
? e <2, there is / e J2" with ql c A,v/e define p,:I -> A by />,(.*) = ?.x
(x e / ) . Clearly, pl is a left centraliser, and p, is continuous since

\\p,(x)\\ = \\qx\\ < y;l\\qx\\' < y^M'WxW' < y^Ml ' lNI
for all x € I. Now define an algebra homomorphism Q —> Q{A) by
q i-> [(/ , /?,)] which is injective in the presence of (ii) and continuous since

I|[(J> Pi)]\\ ^ IIP/II ^ yr '^ l l^l l ' • I n t h e case Qs > w e P r o c e e d analogously and
obtain a continuous left (respectively right) centraliser pl (respectively pr)
by pj(x) = qx, /)r(x) = xq (x € I) if q e Qs and / € / satisfy, without
restriction of generality, qlulq QA. As

zVr W = ^ = L * o ^ = L*o/>/ for all * e / ,

we have (/, pt, pr) e DC{^) and we obtain a continuous embedding (^ —•
QS(A), q~[(I,p,,pr)].

We conclude this section with some additional comments on the continuity
of double centralisers. To this end, let (pt, pr) be a double centraliser from
a non-zero ideal / into A. Similar to [5, Theorem 14] one shows that both
pt and pr are closable mappings, and by exploiting the ultraprimeness that
their closures define another double centraliser {p{, pr) on / e J contained
in 7, the closure of / in A. Therefore, q € Qas(A;&~) always contains
closed representatives, and if A is complete, then 7 — 7 if and only if pl, pr

are continuous. In an ultraprime Banach algebra, we can thus equally well
start with closed ideals and arbitrary double centralisers and, after taking
equivalence classes, obtain QS(A; y ) .

REMARK. The left handed version of Q(A; 9~) is constructed by using
continuous right centralisers in an analogous way, and thus gives no addi-
tional information in general. In concrete cases, however, one side may be
distinguished from the other. For instance, if A = J^{E), the compact oper-
ators on a Banach space E, and & = {A}, then Qa(A) = Q(A) = Qas(A) =
QS(A) = &(E) by [5, Corollary on page 313], whereas the (continuous) right
centraliser algebra is isometrically anti-isomorphic with 3S{E*) and coin-
cides with QS(A) if and only if E is reflexive [5, page 314].

3. The C*-algebra of quotients

The completion of QS(A; &~) is again ultraprime by [9, Proposition 3.5].
For every ultraprime Banach algebra A, we therefore have obtained the
symmetric ultraprime Banach algebra of quotients QAA; &) of A (with
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respect to 9). In this section, we turn our attention to the particular case
of C*-algebras.

Let A be a prime C* -algebra. Then, by [7, Proposition 2.3], A is ul-
traprime with K — 1. Let 9 be any filter of closed ideals in S ; then,
DC (9) is invariant under the mapping (/, p{, pr) H-> (/ , p*, p*), where
p*{x) := ^.(JC*)* , p*(x) := pt{x*)* for x e I. By means of this, QS(A; 9)
becomes an involutive algebra satisfying

x Y = [(/ , Lx. o p*r, p] o Rx.)] = [(/ , Lp.{x.}, Rp;{x>})]

= P*{x*) = P,{x)* = {qx)\

if (I, pt, pr) e q and x e I, and thus

if J C S J , ||JC|| < 1.

Hence, \\q*q\\ > \\q\\2 and therefore the norm of QS(A; &) satisfies the
C*-condition. By the remarks at the beginning of this section, QS(A;
is thus a unital prime C*-algebra. Since K = 1, QS{A; &~) contains A
isometrically and, by Lemma 2.3 and [9, Lemma 4.5], ||#|| = H^H = ||^r||
for every representative (/ , pn pr) of q e QS(A; 9~).

We may view QS{A; 9") in the following alternative way. Each element
(/ , Pf, pr) in DC{&~) corresponds uniquely to a multiplier on / , since
I = I2 (cf. [12, 3.12]). Conversely, each element z in M{I), the multi-
plier algebra of / , gives rise to a continuous double centralizer (I, Lz, Rz).
Considering 9" directed downwards by inclusion, we define isometric em-
beddings M(I) —* M{J), if / C / , by restricting the centralisers to / .

It is now evident that the following result holds.

PROPOSITION 3.1. Let A be a prime C*-algebra and let 9 be a filter of
non-zero closed ideals of A. Then, QS(A;9) is isometrically *-isomorphic
to lim M(I).

This observation leads us to introduce the following concept.
DEFINITION 3.2. Let A be a C*-algebra, let J^, denote the lattice of

closed essential ideals in A and 9 c J^, be any filter. If / , J e J^, and
J c I, then M(I) can be considered as a C*-subalgebra of M(J). Using
these embeddings we define Q (A; 9~) := lim M(I), and the completion

QS(A; 9) of this direct limit is called the C*-algebra of quotients of A (with
respect to 9). If 9 = {A} , then Qs(A; 9) = M{A), the multiplier algebra
of A. We therefore call QS(A; J^,) the local multiplier algebra of A and
denote it henceforth by Mloc(A).
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Our terminology is further justified by the following characterisation of

PROPOSITION 3.3. The local multiplier algebra Mloc(A) of a C*-algebra A
is the largest C*-algebra B which contains A as a C*-subalgebra and for
each / e J ^ c a C*-subalgebra Bj in which I is an essential ideal such that
U Bj is dense in B.

We omit the easy proof (compare with Proposition 2.8). The situation
may be pictured by the following sequence of natural inclusions.

,** ,**/ -» A -> M{A) -» M(I) -+ I -» A

for every 7 e J^ , , where A** denotes the enveloping fF*-algebra of A.
This is immediate from [12, 3.12.8 and 3.7.9].

A C*-algebra A is prime if and only if M(A) is prime. Taking Mloc(A),
we can slightly improve on this statement.

PROPOSTION 3.4. The following conditions on a C*-algebra A are equiva-
lent.

(a) A is prime.
(b) Mloc(A) is prime.
(c) Z(Mloc(A)) is one-dimensional.

PROOF. If A is prime, then QS(A; J^,) = QS(A) is ultraprime by Theo-
rem 2.7, and hence Mloc(^4) is prime by Proposition 3.1 and [9, Proposition
3.5]. This proves (a) =>> (b), and (b) => (c) is clear. To prove (c) =*• (a)
suppose that A is not prime. Take non-zero closed ideals 70, Jo in A that
are maximal with respect to the property 70n/0 = 70/0 = 0. Then 70+.70 is a
closed essential ideal. Indeed, if (I0 + J0)nJ = 0 for some closed ideal J of
A, then 70 n (/0 + / ) = 0 so that by maximality Jo = Jo + J. But JQ n J = 0
whence 7 = 0. We now define x, y e M(I0 + Jo) by Lx = Rx= projection
onto 70 and L = R = projection onto Jo. Clearly, x, y e Z(M(I0 + JQ)),
the centre of the multiplier algebra, and xy = 0 . If 7 c 70 + Jo, then
Z{M{I0 + J0)) c Z(M(I)) whence x,y e Z ( l i m M(I)) = lim Z(M(I))
(we identify x, y with their images in the direct limit). From this we infer
that x ,y are non-zero divisors of zero in Z(Mloc(A)), which is a commu-
tative C*-algebra and therefore has dimension greater than one.

REMARKS AND EXAMPLES. 1. It follows from the above proof that, for A
being prime, it suffices that Cb := Z(Qs(A; *fce)) = lim Z(M(I)) is prime.
We shall call Cb the bounded extended centroid of A. If A is not prime, then
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Cb is in general strictly smaller than C, the extended centroid of A. For an
example, let A = /°°(N) and / = g>0, the non-closed essential ideal of finite
sequences. By /((<^n)neN) = ("£„)„£« w e c a n t n e n define a discontinuous
^-bimodule homomorphism f:I -> A; hence, [ ( / , / , / ) ] £ Cb .

2. In [2], Ara uses the canonical correspondence between closed (essential)
ideals of a C*-algebra A and open (dense) subsets of the primitive spectrum
A of A as well as the Dauns-Hofmann theorem to obtain a description of
Cb (respectively C) as follows. For every topological space X let Cb(X)
(respectively C(X)) denote the space of all bounded continuous (respectively
all continuous) complex-valued functions on X. If U, V e 2 , the open
dense subsets of A , C(U) can be embedded into C(V), if V c U. Then,
Cb = lim Cb(U) while C = lim C(U) [2, Proposition 2.2 and Theorem
2.3]. Ara's approach is rather more of a global nature than ours; for example,
he obtains our starting point, viz. that the extended centroid of a prime C*-
algebra is trivial [7, Proposition 2.5], as a consequence of his main theorem
[2, Corollary 2.4]. Another main difference is his use of the fact that the
norm in a C*-algebra is determined by the order to identify QS(A; ^ce) as
the 'bounded part' of Qas(A; ^ce) [2, Theorem 1.3], and he also does not
consider the completion QS(A; J ^ , ) .

3. If 4̂ is a simple C*-algebra, then clearly M(A) = Mloc(A). More
generally, the same holds if A is discrete. If A is a factor and / is a
non-zero closed ideal, similar arguments to those in [9, Examples in Section
4] show that Mloc(I) = Mloc(A) = A. It is clear that a C*-algebra A is
commutative if and only if Mloc(A) is commutative. In this case, Mi0C(A) =
C*-lim C(/?7) = C(lira I) where / is the spectrum of / 6 Sce (cf. [14,
11.8.7]). Observe, however, that lim fit ^ ft lim I, since the Stone-Cech
functor fi is not inversely continuous.

4. It is natural to ask for conditions implying that QS(A; &) is already
complete. For example, if A is a prime C*-algebra which is not antiliminal,
then it contains a minimal closed ideal [8, Propositions 2.2 and 2.3]; thus, the
intersection of any sequence of non-zero closed ideals is non-zero. It follows
by [13, Theorem 2] that QS(A) = Mloc(A). However, this is not typical for
type I C*-algebras as the following example shows. Let A = C(I), where
I c R is the unit interval. For each n € N let In denote the closed essential
ideal consisting of those functions which vanish on the set of the 2"~l dyadic
numbers jn, ... , K^- together with 0 and 1. Then, fln€N Ai *s dense, but
not open, and nneN h = ° •

The last example is extended in the next proposition which shows in par-
ticular that the commutative counterexample arises from the lack of isolated
points in the spectrum.
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PROPOSITION 3.5. Let A be a C*-algebra with non-zero socle. Then
Qs{A;^fcg) is complete.

PROOF. If the socle of A, that is, the sum of all minimal left ideals, is
non-zero, then there exists a minimal projection p in A [3, BA.4]. Let H =
(Ap, ( | ) ) where the inner product is denned by (x\y)p = y*x, x, y e Ap .
Then the left regular representation induces an irreducible representation np

of A on Hp , and t = ^"'(O) is the unique primitive ideal not containing
p [3, C* .4.2]. Therefore, {t} = A\hull({p}) is open in A, that is, t is an
isolated point. Hence, {t} c / whenever / e *fce and thus t c I.

Suppose that there is / e Sce such that J C t; then, J = t and t is
essential. If there is no such / , every / € J^, contains ApA: if s e A,
s ^ t, then p € s. Hence, each closed ideal K <£ t contains p since
K = ker(hull(A:)) [12, 3.13.8] and therefore the closed ideal generated by p .
The ideal t + ApA is essential since K £ t implies Kn(t + ApA) D ApA ^ 0
and K c t implies K n {t + ApA) 2 K. We conclude that in either case
there is an ideal £ess € J^, which contains t and is contained in each other

Let («„)„£„ be a Cauchy sequence in Qs{A\<fce) and In e Jce be such
that qn e M{In). Then qn e M^) for all n and, since M(fess) is com-
plete, qn-+q e M(ress) C 2,(^4; J^ , ) . (This is in fact the argument in [13,
Theorem 2] adapted to our situation.)

We note that the existence of minimal projections is not necessary for
the completeness of QS{A; J^,) as the example of the Calkin algebra &(H)
shows. (This remark also applies to the non-separable case since each closed
ideal in ^{H) is the image of a closed ideal in 38{H) and the closed ideals
in 3S{H) are well-ordered.)

The structure of Mloc(A) seems to be rather interesting and deserves fur-
ther investigation. We conclude this paper with another extension of a well
known result for M(A); it also generalises (a) o (b) in Proposition 3.4.

PROPOSITION 3.6. For every pair of elements a, b e Ml0C(A) the norm of
Ma b on Mloc(A) can be computed as

>\\ = sup{\\axb\\\xeA, \\x\\ = l).

PROOF. Suppose that a, b e QS{A; Sce) and let e > 0. Since QS(A; J^,)
is dense in Mloc(A), \\MaJ)\\ = WatbmAiJrJ\. Thus, there is x € M{K)
for some K e J^, such that ||JC|| = 1 and \\axb\\ > (1 - «)||A/a>6||. Take
/ , J e J^e such that a e M{I), b e M(J); then a,b,xe M(l'n JnK),
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so, in order to simplify the notation, we may assume I = J = K. Since
/ C M(I) C / " and \\Mab]I\\ = | | ( M a b | / ) " | | , we deduce that

WMa,b\lW = WMa,b\M(I)\\ > ll«*ll > (1 -*)Wa.bl

This shows that sup{||a;c&|| \xeA, \\x\\ - 1} > ||-WaiJ| •
Suppose now that a, b e QS(A; J ^ ) and let e > 0 . There are a , b' e

fi,(^; J ^ ) and x e ^ , ||x|| = 1 such that \\Ma>b - Ma,<b,\\ < e and
\\a'xb'\\>\\Ma,b,\\-e.Th\is,

'b'\\WKJ * WK'.b'W + e* \\a'xb'\\ + 2e < \\axb\\

which proves 11^,^11 < sup{||ax6|| \ x e A, \\x\\ = 1}. The converse in-
equality is clear since A C Mloc(A).
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