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NON-ISOMORPHIC BURNSIDE GROUPS OF 
EXPONENT p2 

K. K. HICKIN AND R. E. PHILLIPS 

1. Introduction. 1.1. In the recent paper [8] Phillips has shown that for 
each prime p there are 2Xo non-isomorphic 2-generatecl ^-groups. This same 
result was obtained independently by S. Jeanes and J. S, Wilson (unpublished) 
who show that the groups constructed in [1] have 2Ko non-isomorphic images. 
The groups in both of these proofs all have infinite exponent. In this paper we 
show that, for large enough primes p, there are 2Xo non-isomorphic 2-generated 
groups of exponent p2. The primes p are restricted to the Novikov-Adjan 
primes, and the infinite Burnside groups B(2,p) of Novikov-Adjan [7] play 
an essential role in our construction. Our precise result is 

THEOREM 1. For every prime p such that the Burnside group B (2, p) is infinite, 
there is a sei^f of 2K ° 2-generated groups of exponent p2 with the following proper­
ties. For any group G, let Fit(G) = the join of all the normal nilpotent subgroups 
of G. Fhen, 

(a) for all H £ Jjf, Fit (if) has exponent p and is nilpotent of class p — 1, 
and Fit (if) = the locally finite radical of H; and 

(b) for all H ^ K £jf, Fit (if) qk Fit(K). 

1.2. Our method employs wreath products, the main idea coming from [3] 
and the later paper [8]. These techniques are all extensions of the method first 
put forth in the fundamental paper of Neumann and Neumann [5] where 
infinite subsets with special translational properties are used as the support of 
vectors in the base group to obtain embedding theorems. 

Our 2-generatecl groups H occur as subgroups of AWrB = G where A is a 
countable nilpotent group of exponent p and B = (x, y) is an infinite, 2-gener­
ated group of exponent p such that Fit(f>) = 1. The groups H have generators 
{xf, y} where / is a certain element of the (unrestricted) base group Q of G. 
These groups H have the following properties. 

Let A7' = Fit (if). 
(1) N = H H 12. 
(2) For every b G B, A = N(b) = the projection of N on the coordinate b. 
(3) N' = (Af)D where A is identified with the 1-coordinate of £2. 

Conditions (2) and (3) guarantee that the structure of A is largely determined 
by the structure of if, and the proof of Theorem 1 then hinges on constructing 
a suitable class of groups A. In §2 we will prove a proposition on wreath 
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products which will yield the properties ( l ) - ( 3 ) above. The construction of 
the groups A and the proof of Theorem 1 are given in § 3. 

T o prove properties (2) and (3) it is necessary to choose the v e c t o r / G 0 
so tha t its support has a special translational property called "sparseness." 
This is defined as follows: 

Definition. Let 5 and X be subsets of a group B. S is an X-sparse subset of B 
if for every pair of distinct s, t Ç S, 

SXs~ir\SXt-1 Q {1}. 

S is a sparse subset of B if S is {l}-sparse. 

T o prove (2) and (3) above we require that B possess an infinite subset S 
which is (x)-sparse. We are able to prove the existence of infinite subsets with 
sparseness properties in a much wider context than required in the proof of 
Theorem 1. Because such subsets might have further utility, we devote §4 
to the somewhat lengthy proof of 

T H E O R E M 2. (Selection theorem for sparse sets). Let G be a countable group, 
<i> = the FC-center of G, and <ï>2 = {g G G\g2 G <ï>}. Suppose that, for every finite 
subset F C G, G y^ ^2F. Then G has an infinite subset S with the following prop­
erty: For every finite subset X C G, there is a subset T Ç 5 such that 

(1) S — T is finite; 
(2) T C CG(X P $ ) (the centralizer); 
(3) each g G TX is uniquely expressible as a product, g = sx where s £ S 

and x £ X; and 
(4) for all u?*v £ T, SXir1 C\ SXv~l = I H $ . 

COROLLARY. Let B be an infinite group with trivial FC-center; thus <£2 = 
{g £ ^ k 2 = ! } • Suppose that, for every finite subset F Ç B, B 9^ F$2. Then, 

for every finite subset X C B, B has an infinite subset which is X-sparse. 

Proof. Let X C B be finite. A standard set-theoretic Lowenheim-Skolem 
argument shows tha t B has a countably infinite subgroup G such tha t X Ç G, 
G has trivial FC-center, and, for all finite F Ç G , G 7^ F$2> Let S Ç G be the 
subset obtained from Theorem 2. There is a subset T Cl S such tha t T is 
infinite because of (1), and for all « 9* v G T, TXir1 C\ TXv~l = X Pi $ CZ{1} 
because of (4). Hence T is X-sparse. 

Clearly the groups B mentioned at the outset meet the conditions of this 
corollary. 

As mentioned above, the sparseness concept is implicit in [5], and it was the 
observation tha t this concept can be extended to periodic groups which led one 
of the authors to the embedding theorem [3]. Subsets with properties similar to 
sparseness have been applied by several authors to obtain embedding theorems, 
most notably by Philip Hall [2]. Our proof of Theorem 2 is a generalization of 
an argument of B. Hart ley (unpublished) who first proved tha t every infinite 
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group in which no element has an infinity of square roots possesses an infinite 
sparse subset. Theorem 2 does not generalize this result because of the assump­
tion concerning the FC-center . 

Theorem 1 leaves open the question whether there are 2Xo non-isomorphic 
2-generated groups of exponent p(p a large pr ime) . We feel t ha t this result is 
doubtful in viewr of the extremely delicate subgroup s t ructure of these Burnside 
groups. 

2. A t h e o r e m o n s u b g r o u p s of w r e a t h p r o d u c t s . 

LEMMA I. If S is a subset of a group G, the following conditions are equivalent: 
(i) S is sparse in G. 

(ii) For all s ^ t e S, s^S D t^S = {1}. 
(iii) For all x 9e y G G, \Sx Pi Sy\ ^ 1. 
(iv) For all x j* y G G, \xS H yS\ g l . 

Proof. We will first show t h a t (i) and Civ) are equivalent . Suppose t h a t for 
some x 7^ y G G, \xS C\ yS\ > 1. Then there are four distinct elements Si, s2, 
s3, 64 G 5 such tha t 

xsi = ys2 9e xsz = ysA. 

Then y~1x = s2Si~x = s^sf1, which implies t h a t 5 is not sparse. T h u s (i) 
implies (iv). On the other hand, if 5 is not sparse, there are elements S2 T6- S4 

and si 7e 53 of G such t ha t S i ^ - 1 = s^sf~\ Denoting this element by x, we see 
tha t Si, 53 G xS C\ S, contrary to (iv). T h u s (iv) implies (i). 

By a similar argument , (ii) and (iii) are equivalent. Finally, it is immediate 
t ha t (iii) implies (i) and (iv) implies (ii). 

We will now establish some notat ion for wrreath products . G = AWrB is 
the unrestricted wreath product of A by B; and 12 = the base group of G = the 
set of functions from B into A. If F ^ 12 and & G B, we put Yib) ={f(b)\fe Y}. 
If / G 12, the support of / , a(f), is the set {b G B\f(b) 9* 1}. We identify A 
with the 1-coordinate of 12, t ha t is, A = {f G to\<r(f) Q {1}}. T h u s AD = 
{f G 12|o-(/) is finite}, and this notat ion is consistent with t ha t of the normal 
closure. Finally, if / , g G 12 and b G B, we note 

°(f) = °(f)b, and a(\f, g]) Ç <r(/) H *(g). 

PROPOSITION 1. Let A and B = (x, y) be groups with the properties 
(i) A is countable and A is generated by each of its subsets having non-empty 

intersection with each conjugacy class of A, 
(ii) \x\ < 00 , and 

(iii) B has an infinite subset S which is (x)-sparse. 
Then, there is a 2-generator subgroup H of G = AWrB such that 

(1) H/H H 12 ̂  B, and letting N = H P\ 12, 
(2) for all b G B, N(b) = A, and 
(3) N' = (Af)B. 
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Proof. We first choose / G 12 such tha t a(f) = S and, for all a G A, 
{s G 5 | / (5) = a} is infinite. 

We will note initially that , since S is sparse, it follows from (4.2.11) of [8] tha t 

(2.1) ( / * ) ' = (A')*. 

We define the group H = (xf, y) and note t ha t H ^ jBB. Since G = Htt, 
we have iZ / i f H Q ~ 5 , which is (i). 

We will note the following for future reference. 

(2.2) Ifb£B, then there exists c e fB such tha t cb G H. 

The proofs of (2) and (3) involve computat ions with the element 

(2.3) g = (xjT = fn~l . • ./*/, where n = |x|. 

Clearly cr(g) g 5 ( x ) and g* ^ # n Î2 = TV. 
Let a G .4. Since {s G SI/CO = a} is infinite and jS Pi Sx*\ ^ 1 for all 

1 ^ i ^ » (because 5 is sparse), there are infinitely many 5 f 5 such tha t 

(2.4) f(s) = a, s G (7(/x1') for all 1 ^ i < n, and hence g (s) = a. 

Let 5 be as in (2.4) and let b G B. By (2.2) there exists c G f such tha t 
cs~lb G i J . Since gcs~lb(b) = gc(s) = «Cl where C\ = c(s), gH(b) contains a 
member of each conjugacy class of A. So, by assumption (i), A = gH(b) ^ 
N(b) and (2) is now proved. 

T o prove par t (3), we first show 

(2.5) A' S (gHY. 

Let a and «1 be distinct elements of A. By (2.4) there are elements s, r £ S 
such tha t g(s) = a and g(r) = ax; and by (2.2) there exist c, d G fB such tha t 
es*1 G H and dr~l G H. Note that 5 depends on a and c depends on s; similarly 
d depends on r which depends on a\. Let h — [gcs~l, gdr~1}. Thus h G (gHY and 

a(h) C aig^s-1!^ a{gd)r-1 ^ S(x)s~l C\ S{x)r~l C {1} 

since 5 is (x)-sparse. Further , h(l) = [gc(s), gd(r)] = [aCl, didl] where C\ = c(s) 
and d\ = d(r). Thus c\ depends on a and dx depends on ci\. We conclude tha t 
there is a subset D of A, which contains a member of each conjugacy class of A, 
such tha t [D,D] ^ (g*)' . Since ^ = (D) by (i), we have A' = [D, D]A ^ 
(gHY h>y par t (2), and this proves (2.5). 

Now, to prove par t (3), let b G B and choose c G fB such tha t cb £ H by 
(2.2). Let t ing A = cb, we have 04 ' ) 6 = {A'Y S {{gHYY = (g*)' and hence 

(2.6) (A')B ^ (gHY ^ N' where N = H P\ Î2. 

Finally, (2.1) and the fact tha t iV ^ / * imply tha t TV' ^ ( / * ) ' = G4 ' ) B ; 
together with (2.6) this completes the proof of (3). 
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3. Proof of Theorem 1. 

LEMMA 2. If p is an odd prime, then for each positive integer n, there is a group 
An such that 

(i) An is a finite group of exponent p and nilpotence class p — 1, 
(ii) the center of An has order p, and 

(iii) if n ^ m, then \An'\ ^ \Am'\. 

Proof. Let H be the group of upper p X p unitriangular matrices over Zp, 
the ring of integers mod p. It is well known that H has exponent p and chass 
p - 1, that the center of H has order p, and that \H'\ = p^-mv-i)i2m p o r e a c n 

n ^ 1 let An be the central product of n copies of H. The conclusions (i)~(iii) 
are easily verified. 

Suppose I is any set of positive integers. We define 

(3.1) A (I) = Dr{An\n Ç 1} (the direct product). 

A (I) is nilpotent of class p — 1 and has exponent p. Now, every normal 
subgroup of An, n (z I, is directly indecomposable as an A (I)-operator 
group where A (I) acts on An by conjugation. This follows from the fact that 
the center of An has order p. It follows that, for distinct subsets I and J of 
positive integers, A (I) ^ A (J). However, we need the slightly more involved 

LEMMA 3. Let p be an odd prime and A (I) be one of the groups defined in (3.1 ). 
Let C be a cartesian power of A (I); i.e., C = II{Z}a|a G 31} where each Da ~ 
A (I). Let L(I) be any subgroup of C satisfying 

(i) L(I) projects onto every coordinate of C, and 
(ii) L(iy = Dr{A/|<* e si}. 
Then the set {F\F is a finite L(I)-indecomposable L(I)-direct factor of L(I)'\ 

equals (up to isomorphism) the set {An'\n G / } . 

The proof of Lemma 3 is a standard application of the Remak-Krull-Schmidt 
theorem for operator groups (cf. Kurosh [4, Sec. 42]). Lemma 3 combined 
with part (iii) of Lemma 2 yields 

LEMMA 4. If I and J are distinct sets of positive integers and L(I) and L(J) 
satisfy the conditions of Lemma 3, then L(I) ^k L(J). 

Before proving Theorem 1 we recall the results of Novikov-Adjan. For a 
prime p, let B(2, p) be the 2-generated free group in the variety of groups of 
exponent p. Novikov and Adjan have shown [7] that 13(2, p) is infinité for 
large enough p. We refer to such primes as Novikov-Adjan primes. Let p be a 
Novikov-Adjan prime and define Bv = B(2, p)/&~ where ^ " is the locally 
finite radical of B(2, p). Bp is infinite since B(2, p) is not locally finite, and we 
have 

(3.2) For each Novikov-Adjan prime p, there is an infinite 2-generated group 
Bv such that Bv has exponent p and trivial locally finite radical. Thus, 
F\t(Bp) and the FC-center of Bv are also trivial. 
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Proof of Theorem 1. Let p be a Novikov-Adjan prime. We first display suit­
able groups A and B for use in Proposition 1. Let A — A (I) where A (I) is a 
group of exponent p given in (3.1), and let B = BP, the group given in (3.2). 
Since A (I) is nilpotent, it is easily shown tha t A (7) satisfies the condition (i) 
of Proposition 1. Condition (ii) is trivial, while condition (iii) of Proposition 1 
follows from (3.2) and the Corollary to Theorem 2. 

Let H (I) = (xf, y) be the group obtained from Proposition 1. Since H (I) ^ 
A(I)WrBp, a group of exponent p2, and \xf\ = p2, the exponent of H (I) 
equals p2. 

I t is an easy consequence of (3.2) and the conclusion (1) of Proposition 1 
tha t N(I) = H (I) H l ] = Fit (i? CO) and tha t F i t ( i7 (7) ) equals the locally 
finite radical of H (I). 

Finally, from the conclusions (2) and (3) of Proposition 1, we see tha t N(I) 
satisfies the hypotheses of Lemma 3. Thus , by Lemma 4, if J is a set of positive 
integers distinct from 7, then N(J) $k N(I). I t follows tha t the set 
Jif = {H(I)\ 7 is a set of positive integers} has the properties required by 
Theorem 1. 

4. Proof of T h e o r e m 2. Before proving Theorem 2 we will make several 
definitions. 

Definition. Let S be a subset of a group G. 
(a) 5 has infinite right (resp. left) index in G if, for all finite subsets F C G, 

G y6 S F (resp., G ^ FS). Clearly a left (right) coset has infinite left (right) 
index if and only if it is a coset of a subgroup of infinite index. If S is a normal 
subset of G, then the conditions tha t S has infinite right or left index in G are 
equivalent, and we simply say S has infinite index in G. 

(b) If Hi, . . . , HN are subgroups of G, we define 

<p(Hh . . . , 77,v) = < U HiFilFi is a finite subset of G, 1 ^ i S N 

and we put 

<PG ~ \J{ip{Hi, . . . , HN)\N ^ 1 cind Hi, . . . , HN are subgroups of 
infinite index in G) 

Thus , S t <PG if and only if 5 is a finite union of right cosets of infinite index in 
G. 

We will need a sharp form of a basic and useful theorem of B. II . Neumann 
[6, 4.4]. 

N E U M A N N ' S T H E O R E M . If S Ç <pG} then for some finite subset F ç G, G = 

(G - S) F. 

The original theorem of Neumann follows easily from this. Since we do not 
know if this formulation occurs in the li terature, we wrill prove it here. 

We need twro simple lemmas. 
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LEMMA 5. If S d <pGj there is some T £ (pGsuch that S C T and T Ç (p(Hlf... ,HN) 

where, for all 1 ^ i ^ j ^ N, Ht C\ H$ has infinite index in H\. 

Proof. Suppose 5 Ç (pG. Let AT be minimal such t h a t S Ç I for some 
T Cz <p(H\, . . . , F i v ) . Suppose tha t , for some 1 Û i ^ j Ik AT, FTf H iJ^ has 
finite index in Hf. Then Hi = (iJi H Hj)F for some finite F Q G, and hence 
J Ï , C if , /?. I t follows tha t S c r c i f o r some X 6 ^ ( i î i , . . . , 8U . . . , H n ) 
with i î^ deleted, contrary to the minimali ty of N. 

L E M M A 6. If H and K are subgroups of G and x, y Ç G, then Hx Pi Ky C 
(H F\ K)z for some z Ç G. 

Proof. If a, b £ HxH Ky, then a/;-1 6 ^ P\ FC. 

Proof of Neumann s Theorem,. In our proof, we can clearly replace S G <pG 

by any T £. <pG such tha t 5 C 7". Hence, using Lemma 5, we can assume 
5 Ç <p(#i, . . . , iJAr) where for all 1 ^ i ^ j è N, Ht P\ iJ ; ; has infinite index 
in Hi. 

We will proceed by induction on N. If Ar = 1, the result is clear, since G — S 
is the union of all bu t finitely many right cosets of Hi in G. 

Let 5 = \JNi=\HiFt where each F\ C G is finite. 
Choose £ G t7 — i7i.Fi. We have 

B = Hlg r\ S = iJig n ( U HiF-j . 

By Lemma 6, 

Bg~l =Hlr\\\j HiFig-1) c y 

for some / Ç ^ ( i i i H Fi2, . . . iFi P\ HN). Clearly, we can assume / < H\. 
Now, by induction, there is some finite X Q Hi such tha t FF = (H\ — J)X. 
Hence, 

if, = (Hi - Bg-')X = (Hig - B)g-'X Q (G- S)g~'X, 

and i i i F i C (G - S)g-1XFi = (G - S ) P i where Pi is finite. 
Similarly, for each i, 1 ^ i ^ A7, there is a finite P t Ç G such tha t FifF\ Ç 

(G-S)P<. 
Put t ing F = (UT=iP*) ^ {1}, we have G = (G — S)F as desired. 

COROLLARY 1. Suppose G is a group and F Ç G fois infinite right (resp., left) 
index in G. Suppose further that Y Cl G is a finite union of cosets of infinite index 
in G. Then I KJ Y has infinite right (resp., left) index in G. 

Proof. Since every left coset of a subgroup H is a right coset of a conjugate 
of H, we have Y t <pG. Assume the "right" hypothesis and suppose G = 
( i U Y)X = IX VJ YX for some finite X < G. Then (G - YX) C 7X and 
Neumann ' s Theorem implies tha t G = F A P for some finite F C G, contrary 
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to I having infinite right index in G. Hence, I U F has infinite right index in G. 

By symmetry the corollary is correct under the "left" hypothesis. 

The next corollary is an immediate result of the first and will be used in the 
proof of Theorem 2. 

COROLLARY 2. No set of the form I U F, as described in Corollary 1, contains 
any subgroup of finite index in G. 

Proof of Theorem 2. We first recall the hypothesis of this theorem (see 
In t roduct ion) : namely, tha t $ 2 = [g G G\g2 G $> = the FC-center of G} has 
infinite index in G. $2 is, of course, a normal subset of G. 

Let G = U t i ^ f where Xt C Xw is finite and Xt = Z f 1 . 
We will construct 5 = {si, . . . , zN, . . .} so that the following three con­

ditions hold for all X ^ 1. Let SN = {zi, . . . , zN\. 

(A)N: For all u 9* v G S - 5,v, S X ^ " 1 H S X ^ " 1 = XN P $, 
(^)AT: Z^+1 G $SNXN, and 

(C)*: s „ + 1 G CQ(XNr\ $ ) . 

First we will show tha t these conditions imply the theorem. 
Suppose X C G is finite. Then X Ç X,v for some N and we put T = S — SN. 

So (1) holds, and since (C)N implies r Ç CG(X iV P $ ) C C J X P $ ) , (2) 
holds also. To prove (3), we suppose tha t g = tx = sy where / G T, s G S, and 
x, y G X,v. Assume / 7̂  5. Since t £ S — SNj then for some Af ^ X , either 

£ G S M and 5 G .SV+i — S M or s £ SM and / G S M + I — •S'M-

In the first case 5 = txy~l G SMXM, contrary to (B)M, and the other case is 
identical. Hence, t = s, x = y and (3) holds. To prove (4), first note tha t / = 
SXu~l P SXv~l 3 X P <£ because of (2). To prove the reverse inclusion, 
suppose x G / . Then x G XNP $ by (^4)#, and x = uxu~l since u G CG(XN P <ï>). 
Now x KZ I also implies x = s ^ - 1 for some 5 G 5 and 3/ G X. Hence, 
ux = 53;, and the previous argument shows x = 3/ G X , proving (4). 

In order to construct the set 5 inductively we will replace the condition {A)N 

by 

(A)N: Sv+iXiU-1 P S^X^-1 = Xt P $ for all 1 ^ *" < X, and for all 
u 9^ v G «SAT+I — 5 j . 

Clearly, if (A)N holds for all X , then (A)N holds for all X, as required. 
Assume tha t SN = {zi, . . . , zN\ has been constructed so tha t (A)\ (B) u 

and (C)t hold for all z < X (zi can be chosen arbi t rar i ly) . In order to choose 
z = ZN+\ SO tha t (A)N and (B)N will hold, we will divide these conditions into 
several cases and show that , to satisfy the condition of each case, it is sufficient 
to choose z = zN+i either 

(a): outside of a certain coset of infinite index in G, or 
(J3): outside of the set I = $2SN(XN U X2

N). 
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Thus , we will need to choose z = zN+] Ç G in accordance with finitely many 
conditions of type (a); the condition (0) ; and, finally, (C)N. Suppose F i s the 
union of all the cosets occurring in the conditions of type (a) . Because of our 
hypothesis t ha t $ 2 has infinite index in G, it follows tha t / has infinite index in 
G, and Corollary 2 above implies t ha t there exists z — zN+i f G which will 
meet all the conditions of type (a); the condition (/3) ; and (C),v, since 
CG(XN P $ ) is a subgroup of finite index in G. T h a t is, there exists 

zt Ce(xNr\ $ ) - ( / u Y). 
Clearly the condition (B)N will be satisfied if the condition ((3) is met. So we 

must only a t tend to the condition (A)N. 

In order to satisfy (A)N we must choose z = zN+i to avoid satisfying all 
relations of the form 

(*) sxu~l = tyv-1 £ Xtn $ 

where 1 ^ i < N\ s, / Ç 5 v U \z] ; x, y 6 Xt and u, v are dist inct elements of 
(SNV{z\) - S t . 

We will consider all possible cases (up to symmet ry) where one or more of 
the elements s, /, u, v equals z, and in each case show t h a t (*) can be avoided 
by choosing z in accord with finitely many conditions of type (a) or in accord 
with (0). 

Case I. Exactly one of the elements s} /, u, v equals z. If s or / = s , then(*) 
implies z G SNXKSN^SNXN, while if u or v = z, a similar condition holds. 
These z all lie in a finite set, which can be avoided by trivial conditions of 
type (a). 

Case II. s — t = z. Then (*) implies xu~l — yv~l. If u 9e z and v 7^ z, then 
u and v are distinct elements of SN — 5/ . Thus , i < N — 1 and we have a 
contradiction to (.4) iV_1. So suppose u = z. Thus , z G SNXN

2, contrary to (/3), 
and the case v — z is similar. 

Case III. s = u = z. Then (*) becomes zxz~l = tyv~~l $ X t P $ where 
z> G 5 V and x, y G I j . 
We assume / ^ 2; since otherwise Case II applies. Since z will satisfy (C)iV, 2 
will centralize Xt P $. Hence zxz~l $ X7: P $ is possible only if x (? $. 
So we can assume x (/ <£, t ha t is, CG(x) has infinite index in G. Now zxz~l = 
tyt»-1 G SNXtSN~l if and only if s belongs to a certain finite set of left cosets of 
CG(x). Since only finitely many x £ XN can occur in (*), conditions of type (a) 
will imply t h a t (*) is not satisfied in this case. 

Case IV. u = t = z. In this case (*) implies 

(i) sxz~l = zyv~l. 

Suppose w Ç G also satisfies this equation in place of z\ then 

(ii) sxw~1 = 703'zr"1. 

https://doi.org/10.4153/CJM-1978-017-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-017-0


BURNSIDE GROUPS 189 

Computing (ii)-1(i) gives 

wz~l = {iv~lz)vv~l, 

while (i)(ii)_1 gives 

(z-iwy**rl = zw-\ 

Since these equations are inverses, we have 

(w~lz)vv~l = (w-h)^~\ 

Thus, w~lz commutes with yv~lsx, that is, w and z belong to the same left 
coset of CG(yv~lsx). If yv~1sx (? <£, then z must be chosen to meet a condition 
of type (a) for each of finitely many sets {y, v, s, x). 

Thus, we can assume yv~lsx £ $>. 

Subcase 1. v 9^ s. We can assume that v 9^ z and s 9^ z, since otherwise, 
previous cases apply. Writing v = zk and 5 — zj} we see that i < k and 
max{&, j] ^ N. Note also that x, y Ç X t. Thus, if k < j , we have s G $SkXt C 
$SkXk, which is contrary to (B) j-i. Similarly, if j < k we have v £ $SjXi C 
$5TXr where r = max{i, j} < k. This contradicts (B)k_i. 

Subcase 2. ^ = 5. Thus, yx £ $, y = x"1 (mod $), and (i) becomes 
sxz~l = sx - 1^ - 1 (mod $) . Since these elements are also inverses they have 
order 2 (mod <£>), and hence z Ç $2SNXN. SO we will choose z (? $2SNXN, a 
condition implied by (0). 
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