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Abstract

The values at 1 of single-valued multiple polylogarithms span a certain subalgebra of multiple zeta
values. The properties of this algebra are studied from the point of view of motivic periods.
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1. Introduction

The goal of this paper is to study a special class of multiple zeta values which
occur as the values at 1 of single-valued multiple polylogarithms. The latter were
defined in [11], and generalize the Bloch–Wigner dilogarithm

D(z) = Im(Li2(z)+ log |z| log(1− z)), (1.1)

which is a single-valued version of Li2(z), to the case of all multiple
polylogarithms in one variable. These are defined for integers n1, . . . , nr > 1 by

Lin1,...,nr (z) =
∑

0<k1<···<kr

zkr

kn1
1 . . . k

nr
r
,

and are iterated integrals on P1\{0, 1,∞} obtained by integrating along the
straight-line path from 0 to 1 along the real axis. In the convergent case nr > 2,
their values at 1 are Euler’s multiple zeta values

ζ(n1, . . . , nr ) =
∑

0<k1<···<kr

1
kn1

1 . . . k
nr
r
. (1.2)
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The values at 1 of the single-valued multiple polylogarithms define an interesting
subclass of multiple zeta values, which we denote by

ζsv(n1, . . . , nr ) ∈ R. (1.3)

They satisfy ζsv(2) = D(1) = 0, as one immediately sees from (1.1). These
numbers are, in a precise sense, the values of iterated integrals on P1\{0, 1,∞},
which are obtained by integrating from 0 to 1 independently of all choices of path.

The numbers (1.3) have recently found several applications in physics: for
example, in

(1) O. Schnetz’ theory of graphical functions for Feynman amplitudes [8, 27];

(2) the coefficients of the closed super-string tree-level amplitude [29, 30]; and

(3) wrapping functions in N = 4 super Yang–Mills theory [24];

as well as in [7, 19, 20, 26], and also in mathematics as the coefficients of
Deligne’s associator. A general theme seems to be that a large class of (but
not all) Feynman amplitudes in four-dimensional renormalizable quantum field
theories lies in the subspace of single-valued multiple zeta values. This raises
an interesting possibility of replacing general amplitudes with their single-valued
versions (see Section 3), which should lead to considerable simplifications.

1.1. Main result. In [9], motivic multiple zeta values ζm(n1, . . . , nr ) were
defined as elements of a certain graded algebra H, equipped with a period
homomorphism

per : H −→ C
which maps ζm(n1, . . . , nr ) to ζ(n1, . . . , nr ). Furthermore, the algebra H has an
action of the de Rham motivic Galois group Gd R which is an affine group scheme
over Q. In this paper, ‘single-valued motivic multiple zeta values’ ζmsv (n1, . . . , nr )

are defined. Their images under the map per are the numbers (1.3). They generate
a subalgebra Hsv ⊂ H whose main properties can be summarized as follows.

THEOREM 1.1. There is a natural homomorphism H→Hsv which sends ζm(n1,

. . . , nr ) to ζmsv (n1, . . . , nr ). In particular, the ζmsv (n1, . . . , nr ) satisfy all motivic
relations for multiple zeta values, together with the relation ζmsv (2) = 0.

The algebra Hsv is isomorphic to the polynomial algebra generated by

ζmsv (n1, . . . , nr ),

where ni ∈ {2, 3} and (n1, . . . , nr ) is a Lyndon word (for the ordering 3 < 2) of
odd weight. Furthermore, Hsv is preserved under the action of the group Gd R .
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In particular, the numbers ζsv(n1, . . . , nr ) satisfy the same double shuffle and
associator relations as usual multiple zeta values, and many more relations
besides: the space Hsv is much smaller than H (Section 7.4). By way of example,

ζsv(2n + 1) = 2 ζ(2n + 1) for all n > 1
ζsv(5, 3) = 14 ζ(3)ζ(5)

ζsv(3, 5, 3) = 2 ζ(3, 5, 3)− 2 ζ(3)ζ(3, 5)− 10 ζ(3)2ζ(5).

The reader who is only interested in the single-valued multiple zeta values and not
their motivic versions can turn directly to Section 5 for an elementary definition
(which only uses the Ihara action, Section 4.2), and Section 7.4 for enumerative
properties and examples.

1.2. Motivic periods. This paper seemed a good opportunity to clarify certain
concepts relating to motivic multiple zeta values. There are two conflicting
notions of motivic multiple zeta values in the literature, one due to Goncharov [22]
(for which the motivic version of ζ(2) vanishes), via the concept of framed objects
in mixed Tate categories, and another for which the motivic version of ζ(2) is
nonzero [9], later simplified by Deligne [17]. It can be paraphrased as follows.

DEFINITION 1.2. Let M be a Tannakian category of motives over Q, with two
fiber functors ωd R, ωB . A motivic period is an element of the affine ring of the
torsor of tensor isomorphisms from ωd R to ωB :

Pm
M = O(IsomM(ωd R, ωB)).

Given a motive M ∈M, and classes η ∈ ωd R(M), X ∈ ωB(M)∨, the motivic
period [17] associated to this data is the function on IsomM(ωd R, ωB) defined by

[M, η, X ]m := (φ 7→ 〈φ(η), X〉).
This definition is nothing other than the standard construction of the ring of
functions on the Tannaka groupoid, and appears in a similar form in [1, 2,
Section 23.5]. However, it is the interpretation and application of this concept
which is of interest here; in particular, the idea that one can sometimes deduce
results about periods from their motivic versions and vice versa (see, for
example, [9, Section 4.1]). The ring of motivic periods is a bitorsor over the
Tannaka groups (Gωd R ,GωB ) and thus gives rise to a Galois theory of motivic
periods. In this paper, only the special case where M =MT (Z) is the category
of mixed Tate motives over Z is considered: the generalization to other categories
of mixed Tate motives [18] is relatively straightforward if one replaces ωd R with
the canonical fiber functor, and bears in mind that there can be several different
Betti realizations.
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In a similar vein, one can replace ωd R, ωB with any pair of fiber functors, to
obtain various different notions of motivic period. One can consider the ring
of de Rham periods Pdr

M, where we replace m = (ωd R, ωB) with dr = (ωd R,

ωd R), and a weaker notion of unipotent de Rham periods Pu
M which are their

restriction to the unipotent radical Uωd R of the Tannaka group Gωd R . The latter are
precisely the ‘framed objects’ studied in [5, 6, 22], and the unipotent de Rham
versions of multiple zeta values are the objects that Goncharov calls motivic
multiple zeta values. Although there is no complex period (integration) map for
de Rham motivic periods, we construct a related notion in Section 3 in the case
M =MT (Z), which we call the single-valued motivic period. It gives a well-
defined homomorphism from unipotent de Rham periods to motivic periods:

svm : Pu
M −→ Pm

M.

Composing with the period map attaches a complex number to de Rham periods.
This gives a transcendental pairing between a de Rham cohomology class and a
de Rham homology class. In the case of MT (Z), the numbers one obtains are
precisely the single-valued multiple zeta values (1.3). Since the definition of svm

requires nothing more than complex conjugation and the weight grading, it comes
perhaps as a surprise that this map is already so intricate in this special case (see,
for example, (7.4)). A similar construction works for more general categories of
mixed Tate motives over a number field with a real embedding.

1.3. Contents. Section 2 consists of generalities on motivic and de Rham
periods, some of which are new, and may be of independent interest. In particular,
it should hopefully clarify the role of ζ(2) and statements of the sort ‘2π i = 0’
versus ‘2π i = 1’ that one sometimes encounters. Section 3 defines the motivic
single-valued map svm. The remainder of the paper applies this construction to
the case of the motivic fundamental groupoid of P1\{0, 1,∞}. Section 4 consists
of reminders, and Section 5 gives a completely elementary definition of ζsv.
Section 6 defines the motivic versions ζmsv , and Section 6.3 constructs the single-
valued multiple polylogarithms from first principles from the point of view of the
unipotent fundamental groupoid.

The multiple polylogarithms Lin1,...,nr (z) are coefficients of the function L(z),
which is the unique solution to the Kniznhik–Zamolodchikov equation

∂

∂z
L(z) = L(z)

(
e0

z
+ e1

1− z

)
∂

∂z
L(z) = 0,
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normalized with respect to the tangent vector 1 at 0. The single-valued versions
are the coefficients of the function L(z), which is the unique solution to the
equations

∂

∂z
L(z) = L(z)

(
e0

z
+ e1

1− z

)
(Mi − id)L(z) = 0 for i = 0, 1,∞,

where Mi denotes analytic continuation around a small loop encircling the point
i , again normalized with respect to the tangent vector 1 at 0. The general single-
valued principle derives the formula for L(z) in terms of L(z) which was given
in [11]. Up to this point, all constructions in this paper are rather general and do
not use any deep results about the structure of multiple zeta values or mixed Tate
motives. Finally, Section 7 applies the main theorem of [9] to deduce structural
results about Hsv.

1.3.1. Conventions. All tensor products are over Q unless stated otherwise.

2. Generalities on periods and mixed Tate motives

See [18, Section 2] for the background material on mixed Tate motives required
in this section. Much of what follows applies to any category of mixed Tate
motives over a number field, provided that one replaces the de Rham fiber functor
with the canonical fiber functor ω =⊕n ωn , where

ωn(M) = HomMT (Q(−n), grW
2n M),

which is defined over Q (see [18, Section 1.1]). A Betti realization functor will be
relative to an embedding of the number field into C.

2.1. Mixed Tate motives over Z. Let M = MT (Z) denote the Q-linear
Tannakian category of mixed Tate motives over Z [18, 25]. Its canonical fiber
functor is equal to the fiber functor ωd R given by the de Rham realization, and it is
equipped with a fiber functor ωB given by the Betti realization with respect to the
unique embedding Q ↪→ C. Let Gd R and G B denote the corresponding Tannaka
groups. They are affine group schemes over Q. We shall mainly focus on Gd R .

The action of Gd R on Q(−1) ∈M defines a map Gd R → Gm whose kernel is
denoted by Ud R . Note that our convention for the degree differs from that in [18].
The group Ud R is a pro-unipotent affine group scheme over Q. Furthermore,
since ωd R is graded, Gd R admits a decomposition as a semidirect product
([18, Section 2.1]):

Gd R
∼= Ud R oGm . (2.1)
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A mixed Tate motive M ∈M can be represented by a finite-dimensional graded
Q-vector space Md R = ωd R(M) equipped with an action of Ud R which is
compatible with the grading. We shall write (Md R)n for the component in degree
n; that is, (Md R)n = (W2n ∩ Fn)Md R . The Betti realization of M , denoted
MB = ωB(M), is a finite-dimensional Q-vector space equipped with an increasing
filtration W•MB .

The two are related by a canonical comparison isomorphism,

compB,d R : Md R ⊗Q C ∼−→ MB ⊗Q C, (2.2)

which can be computed by integrating differential forms. We shall often use the
fact that Q(0) ∈M has rational periods, that is,

compB,d R : Q(0)d R
∼−→ Q(0)B . (2.3)

In general, given any pair of fiber functors ω1, ω2 on M, let

Pω1,ω2 = Isom(ω1, ω2)

denote the set of isomorphisms of fiber functors from ω1 to ω2. It is a scheme over
Q, and is a bitorsor over (Gω1,Gω2), where Gωi = Pωi ,ωi is the Tannaka group
scheme relative to ωi , for i = 1, 2. The comparison map defines a complex point:

compB,d R ∈ Pωd R ,ωB (C).

2.2. Motivic periods. There are two conflicting notions of motivic multiple
zeta values in the literature, one due to [22] and the other due to [9]. One can
reconcile the two definitions with minimal damage to existing terminology as
follows.

DEFINITION 2.1. Let ω1, ω2 be two fiber functors on M. Let M ∈ Ind (M), and
let η ∈ ω1(M), and X ∈ ω2(M)∨. A motivic period of M of type (ω1, ω2),

[M, η, X ]ω1,ω2 ∈ O(Pω1,ω2), (2.4)

is the function Pω1,ω2 → A1 defined by φ 7→ 〈φ(η), X〉 = 〈η, tφ(X)〉.

One can clearly extend Definition 2.1 to other Tannakian categories (of
motives), but only M =MT (Z) will be considered in this paper.

Definition 2.1 in the case (ω1, ω2) = (ωd R, ωB) is due to Deligne [17], and
simplifies the definition in [9]. Since this is the case of primary interest for
us, we shall call (2.4) a motivic period, and denote the pair (ωd R, ωB) simply
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by m. We shall also consider the case (ω1, ω2) = (ωd R, ωd R). We shall call the
corresponding period (2.4) a de Rham period, and denote the pair (ωd R, ωd R)

by dr.

DEFINITION 2.2. Let M ∈M, and let ω1, ω2 be a pair of fiber functors as above.
We shall denote the space of all motivic periods of type (ω1, ω2) by

Pω1,ω2 = O(Pω1,ω2), (2.5)

and we shall write Pω1,ω2(M) for the Q-(vector)subspace of Pω1,ω2 spanned by
the motivic periods of M of type (ω1, ω2).

It follows from (2.5) that the set of all motivic periods forms an algebra over
Q. The schemes P form a groupoid on M with respect to composition,

Pω1,ω2 ×Pω2,ω3 → Pω1,ω3,

for any three fiber functors ω1, ω2, ω3. Dualizing, we obtain a coalgebroid
structure on spaces of motivic periods:

Pω1,ω3 −→ Pω1,ω2 ⊗ Pω2,ω3, (2.6)

which, in the case ω1 = ω2 = ωd R , and ω3 = ωB becomes a coaction:

∆dr,m : Pm −→ Pdr ⊗ Pm, (2.7)

where Pdr is a Hopf algebra over Q. By the definition of the Tannaka group,

Gd R = Spec (Pdr), (2.8)

and so (2.7) makes the space of motivic periods Pm into a Gd R-representation.
Since ωd R is graded, the (left) action of Gm ⊂ Gd R corresponds to a grading on
Pωd R ,ω for any fiber functor ω. The standard terminology for multiple zeta values
sometimes requires one to call the degree the weight. It is one half of the Hodge-
theoretic weight; that is, Q(−n) has degree n.

The notions of motivic and de Rham periods are fundamentally different. In
the case of motivic periods, pairing with the element (2.2) defines the period
homomorphism:

per : Pm −→ C. (2.9)

The point 1 ∈ Gd R defines a map Pdr→Q. The period map per se is not available
for de Rham periods, although we shall define a substitute in Section 3.

2.3. Formulae. By the main construction of Tannaka theory [14, Section 4.7],
motivic periods are spanned by symbols [M, η, X ]ω1,ω2 , where M ∈ M,
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η ∈ ω1(M), and X ∈ ω2(M)∨, modulo the equivalence relation generated
by

[M, λ1η1 + λ2η2, X ]ω1,ω2 ∼ λ1[M, η1, X ]ω1,ω2 + λ2[M, η2, X ]ω1,ω2

[M, η, λ1 X1 + λ2 X2]ω1,ω2 ∼ λ1[M, η, X1]ω1,ω2 + λ2[M, η, X2]ω1,ω2,

where λ1, λ2 ∈ Q (linearity in η and X ) and by the relation

[M1, η1, X1]ω1,ω2 ∼ [M2, η2, X2]ω1,ω2 (2.10)

for every morphism ρ : M1 → M2 such that η2 = ω1(ρ)η1, and X1 = ω2(ρ)
t X2.

The multiplication on motivic periods is given concretely by the formula

Pω1,ω2(M1)× Pω1,ω2(M2) −→ Pω1,ω2(M1 ⊗ M2) (2.11)
[M1, η1, X1]ω1,ω2 × [M2, η2, X2]ω1,ω2 = [M1 ⊗ M2, η1 ⊗ η2, X1 ⊗ X2]ω1,ω2 .

In particular, if M is an algebra object in Ind (M), then Pω1,ω2(M) is a
commutative ring, and its spectrum is an affine scheme over Q.

Given three fiber functors ω1, ω2, ω3, the Hopf algebroid structure (2.6) can be
computed explicitly by the usual coproduct formula for endomorphisms:

∆ω1,ω2,ω2,ω3 : Pω1,ω3(M) −→ Pω1,ω2(M)⊗ Pω2,ω3(M) (2.12)

[M, η, X ]ω1,ω3 7→
∑
v

[M, η, v∨]ω1,ω2 ⊗ [M, v, X ]ω2,ω3,

where {v} is a basis of ω2(M) and {v∨} is the dual basis. The previous formula
does not depend on the choice of basis (if one prefers, one can write (2.12) in
terms of the coevaluation map 1 → M∨ ⊗ M). In the case ω1 = ω2 = ωd R ,
Equation (2.12) gives the following formula for the degree of a motivic period:

deg[M, η, X ]ωd R ,ω = m, (2.13)

whenever η ∈ (Md R)m has degree m, and ω is any fiber functor.
Finally, given a motivic period [M, η, X ]m ∈ Pm, its period is given by

per([M, η, X ]m) = 〈compB,d R(η), X〉 ∈ C. (2.14)

In principle, it can always be computed by integrating differential forms
representing η along topological cycles representing X .

2.4. Unipotent de Rham periods. There is yet another notion of de Rham
period which is obtained by restricting to the unipotent radical Ud R ⊂ Gd R .

DEFINITION 2.3. Let v ∈ Md R , and let f ∈ M∨d R . A unipotent de Rham period is
the image of [M, v, f ]dr under the map O(Gd R)→ O(Ud R). Denote it by

[M, v, f ]u ∈ O(Ud R),
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and denote the ring of unipotent de Rham periods by

Pu ∼= O(Ud R). (2.15)

Unipotent de Rham periods are equivalent to the notion of framed objects in
mixed Tate categories considered, for example, in [22, Section 2]. There is a
natural map

πu,dr : Pdr −→ Pu,

and hence, by taking ω1 = ω2 = ωd R and ω3 = ωB and restricting the left-hand
factor of the right-hand side of (2.12) to Pu, we obtain a coaction:

∆u,m : Pm −→ Pu ⊗ Pm. (2.16)

The action of Gm by conjugation gives O(Ud R) a grading. A (nonzero) unipotent
de Rham period [M, vm, fn]u is homogeneous of degree

deg[M, vm, fn]u = m − n (2.17)

whenever vm ∈ (Md R)m , and fn ∈ ((Md R)n)
∨. Note that the formula only agrees

with (2.13) when n = 0. Since O(Ud R) has degrees > 0, [M, vm, fn]u vanishes if
m < n. With these definitions, the coaction (2.16) is homogeneous in the degree.

REMARK 2.4. In [22], it is assumed that one framing, namely fn , is in degree 0.
This defines a smaller space of de Rham periods for a given motive M than those
which are considered here, and the corresponding coproduct formula requires an
extra Tate twist in the left-hand factor. See Remark 2.9.

It is expected (see, for example, [18, Section 5.28]) that unipotent de Rham
periods for MT (Z) should have natural p-adic period homomorphisms

perp : Pu −→ Qp

for all primes p. One expects that there exists a functorial Frobenius
automorphism Fp : Md R⊗Qp → Md R⊗Qp, which, by the Tannakian formalism,
corresponds to an element cp ∈ U d R(Qp) (after rescaling so that Fp acts as the
identity on Qp(−1)). The p-adic period should obtained by pairing with cp. See
also [4, 21]. Our single-valued period, to be defined below, is a version of perp at
the infinite prime.

2.5. Motives generated by motivic periods. It is very useful to think of a
space of motivic periods Pm(M) as a motive in its own right.

DEFINITION 2.5. Let ξ ∈ Pm be a motivic period. Let M(ξ)d R denote the graded
O(Ud R)-comodule it generates via the coaction (2.16).
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By the Tannakian formalism, this is the de Rham realization of a motive we
denote by M(ξ) ∈M. Define the motive generated by the motivic period ξ to be
M(ξ).

LEMMA 2.6. For any ξ ∈ Pm, ξ is a motivic period of M(ξ).

Proof. If we represent ξ by a triple [M, η, X ]m, then the de Rham orbit Gd Rη

defines a submotive M1 ⊂ M such that M1
d R = Gd Rη. Inclusion gives an

equivalence:
[M1, η, X 1]m ∼ [M, η, X ]m = ξ,

where X 1 is the image of X in (M1
B)
∨. Now define M2 to be the quotient motive

of M1 whose de Rham realization is M1
d R/(Pd R,B X 1)⊥. The dual of its Betti

realization is (M2
B)
∨ = G B X 1 ⊂ (M1

B)
∨. Then

[M1, η, X 1]m ∼ [M2, η2, X 1]m
are equivalent, where η2 is the image of η in M2

d R . In particular, ξ is a motivic
period of M2. The de Rham realization of M2 is exactly

Gd Rη

Gd Rη ∩ (Pd R,B X)⊥
,

which is isomorphic to the Gd R-module generated by [M, η, X ]m ∈ Pm.
Therefore M2

d R = M(ξ)d R , and hence M2 = M(ξ).

Thus M(ξ) is the smallest subquotient motive M ′ of M such that ξ ∈ Pm(M ′).

2.6. Geometric periods. The notions of de Rham and motivic periods can be
related to each other via the following algebra of geometric periods.

DEFINITION 2.7. LetPm,+ ⊂ Pm be the largest graded subalgebra of Pm such
that

(i) Pm,+ has weights > 0;

(ii) Pm,+ is a comodule for the coaction by Pu; that is,

∆u,m :Pm,+ −→ Pu ⊗Pm,+. (2.18)

Suppose that M ∈M has nonnegative weights; that is, W−1 M = 0. Then

P(M) ⊂Pm,+.

LEMMA 2.8. The algebraPm,+ is generated by the motivic periods of M, where
M has nonnegative weights (W−1 M = 0).
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Proof. The graded vector space Pm,+ is an O(Ud R)-comodule by (2.18). It is
therefore the de Rham realization of an object P ∈ Ind(M) which has weights
> 0 by 2.7(i). By Lemma 2.6, every ξ ∈Pm,+ is a motivic period of P.

It follows from Lemma 2.8 that

Pm,+
0
∼= Q. (2.19)

This is because a motivic period of weight 0 of a motive M satisfying W−1 M = 0
is equivalent to a period of Q(0), which is rational. Note that the isomorphism
(2.19) uses compB,d R via (2.3). As a consequence, there is an augmentation map

ε :Pm,+ −→ Q

given by projection ontoPm,+
0 . This defines a map

πu,m+ :Pm,+ −→ Pu (2.20)

by composing the coaction ∆u,m :Pm,+ −→ Pu ⊗Pm,+ with id ⊗ ε. The map
πu,m+ respects the weight gradings, and is an isomorphism in weight 0, i.e.,
πu,m+ :Pm,+

0
∼= Pu

0 .
The map πu,m+ can be computed another way. Let M satisfy W−1 M = 0. Then

W0 M is a direct sum of copies of Q(0), which has rational periods (2.3). We have

grW
0 Md R = W0 Md R

compB,d R−→ W0 MB ↪→ MB .

Since Md R is graded, we can first apply the projection Md R → grW
0 Md R and then

apply the previous map. This defines a rational comparison morphism,

c0 : Md R −→ MB, (2.21)

whose dual is t c0 : M∨B → M∨d R . Then (2.20) is given by the formula

πu,m+ : Pm(M) −→ Pu(M) (2.22)
[M, η, X ]m 7→ [M, η, t c0(X)]u

for all η ∈ Md R, X ∈ M∨B . It only depends on the restriction of X to W0 MB .

2.7. Example: the Lefschetz motive. Let M = H 1(Gm) ∼= Q(−1). Then
Md R = H 1

d R(Gm;Q) ∼= Qω0, and M∨B = H1(C×;Q) = Qγ0, where ω0 = [dz/z],
and γ0 is the homology class of a loop winding around 0 in the positive direction.
Denote the Lefschetz motivic period by

Lm = [M, ω0, γ0]m, (2.23)
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whose degree is 1 and whose period is

per(Lm) =
∫
γ0

ω0 = 2π i.

The element Lm is invertible in Pm. We only use the notation Lm in order to avoid
the rather ugly alternative (2π i)m. Define the Lefschetz de Rham period by

Ldr = [M, ω0, ω
∨
0 ]dr. (2.24)

It is group-like for the coproduct on O(Gd R): ∆dr,drLdr = Ldr ⊗ Ldr. Since Ud R

acts trivially on Q(−1), the unipotent de Rham Lefschetz period is the trivial
function:

Lu = πu,dr(Ldr) = 1. (2.25)

By definition, Ldr can be viewed as a coordinate on Gm , and

Gm
∼= SpecQ[(Ldr)−1,Ldr]. (2.26)

On the other hand, grW
0 M = 0, so c0([γ0]) = 0, and therefore

πu,m+(Lm) = [M, ω0, c0(γ0)]u = 0. (2.27)

By (2.12), the coaction ∆dr,m : Pm → Pdr ⊗ Pm acts on the motivic Lefschetz
period by ∆dr,mLm = Ldr ⊗ Lm. By (2.25), the coaction ∆u,m : Pm→ Pu ⊗Pm

satisfies
∆u,m(Lm) = 1⊗ Lm. (2.28)

2.8. Structure of de Rham periods. The fact that Gd R is canonically a
semidirect product (2.1) implies that Gd R

∼= Ud R ×Gm as schemes, and hence

Pdr ∼= Pu ⊗Q[(Ldr)−1,Ldr]. (2.29)

The coaction of Pu on the right-hand side is given by the formula ∆u,dr(Ldr) =
1⊗ Ldr, by (2.25). Equivalently, the map Gm → Gd R induces a projection

πL,dr : Pdr −→ Q[(Ldr)−1,Ldr], (2.30)

or explicitly πL,dr([M, v, f ]dr) = f (v) (Ldr)n if v ∈ (Md R)n . The isomorphism
(2.29) is then induced by composing the coaction ∆u,dr : Pdr → Pu ⊗ Pdr with
id⊗ πL,dr.

REMARK 2.9. If v ∈ (Md R)m and f ∈ ((Md R)n)
∨ are of degrees m and n,

respectively, with m > n, then the image of [M, v, f ]u under the implied section
Pu → Pdr is [M(n), v, f ], where v now sits in degree m − n, and f in degree
0. The literature on framed mixed Tate objects essentially identifies Pu with its
image in Pdr.
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2.9. Structure of motivic periods. Rather than using the canonical isomor-
phism of fiber functors compd R,B , which is defined over C, we prefer to choose
rational isomorphisms, which are noncanonical.

PROPOSITION 2.10. There exists an isomorphism of fiber functors from ωB

to ωd R .

Proof. See the proof of Proposition 8.10 in [15].

By choosing such an element s ∈ Isom(ωB, ωd R), we obtain an isomorphism:

Isom(ωd R, ωB)
∼−→ Isom(ωd R, ωd R). (2.31)

Dually, this gives s t : Pdr ∼−→ Pm, and so (2.29) gives a noncanonical
isomorphism:

s t : Pu ⊗Q[(Ldr)−1,Ldr] ∼−→ Pm.

By Section 2.7, we can assume that s t(Ldr) = Lm, and write the previous
isomorphism as

Pm ∼= Pu ⊗Q[(Lm)−1,Lm] (depending on s). (2.32)

It is compatible with the coaction ∆u,m : Pm → Pu ⊗ Pm, and the weight
gradings.

COROLLARY 2.11. There is a noncanonical decomposition

Pm,+ ∼= Pu ⊗Q[Lm]. (2.33)

Proof. The decomposition (2.32) is induced by (id⊗ πLm) ◦∆u,m, where πLm is
given by (s t)−1 followed by (2.30), and Ldr 7→ Lm. SincePm,+ has weights > 0,
and is closed under the coaction by Pu, it follows that the restriction of (2.32) to
Pm,+ has nonnegative degrees in Lm, and therefore gives an injective map:

Pm,+ −→ Pu ⊗Q[Lm].
Identify Pu ⊗ Q[Lm] with its image in Pm, by the map (2.32). It is a subalgebra
which has weights > 0, and is Gd R-stable. SincePm,+ is the largest subalgebra of
Pm with this property, the previous map is an isomorphism.

Sending Lm to 0 in (2.33) gives back the map πu,m+ :Pm,+→ Pu.

2.10. Real Frobenius. Since there is a unique embedding from Q to C,
complex conjugation defines the real Frobenius c : MB → MB . It induces an
involution,
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c : Pm −→ Pm (2.34)
[M, η, X ]m 7→ [M, η, c(X)]m,

which is compatible, via the period homomorphism, with complex conjugation
on C. If ∆u,m : Pm → Pu ⊗ Pm denotes the coaction, then clearly ∆u,mc =
(id⊗ c)∆u,m. Since, by Example 2.7,

c(Lm) = −Lm,

it follows that c acts on a decomposition (2.33) by multiplying (Lm)n by (−1)n .

COROLLARY 2.12. If Pm,+
R (respectively Pm,+

iR ) denotes the subspace of Pm,+

of invariants (anti-invariants) of the map c, then we have

Pm,+
iR
∼= Pm,+

R Lm

and Pm,+
R
∼= Pu ⊗Q[(Lm)2]

with respect to some choice of decomposition (2.33).

2.11. Universal comparison map. The identity map id : Pm → Pm defines
a canonical element in (SpecPm)(Pm) which we denote by

compm
B,d R ∈ Isomωd R ,ωB (Pm).

It reduces to the usual comparison map compB,d R after applying the period
homomorphism to the coefficient ring Pm. It is given for M ∈M by

compm
B,d R : Md R −→ MB ⊗ Pm(M) (2.35)

η 7→
∑

x

x ⊗ [M, η, x∨]m,

where the sum ranges over a basis {x} of MB , and {x∨} is the dual basis. We can
also write (2.35) as an isomorphism after tensoring with all motivic periods:

compm
B,d R : Md R ⊗ Pm ∼−→ MB ⊗ Pm. (2.36)

In the other direction, we have a universal map,

compm
d R,B : MB −→ Md R ⊗ PωB ,ωd R (M),

which is defined in a similar way. It will not be used here.
The universal comparison maps can be used to compare the action of the de

Rham motivic Galois group Gd R with the action of the Betti group G B on Pm.
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3. Single-valued motivic periods

The single-valued period is an analogue of the period homomorphism for de
Rham periods. First, we construct a well-defined map which we call the single-
valued motivic period,

svm : Pu −→Pm,+,

and define the single-valued period to be the homomorphism

sv : Pu −→ C

obtained by composing with the usual period per : Pm → C. The map sv is
similar to what is sometimes referred to as the ‘real period’ in the literature [3, 23,
Section 4]. Since multiple zeta values are already real numbers, this terminology
could lead to confusion, so we prefer not to use it. Note that the single-valued
periods of a motive M are not in fact periods of M , but are periods of the
Tannakian subcategory of M generated by M .

In the second half of the paper, we shall compute the single-valued versions
of motivic multiple zeta values using the motivic fundamental groupoid of
P1\{0, 1,∞}. More precisely, we compute the map

Pm,+ πu,m+−→ Pu svm−→Pm,+

on the subspace H ⊂Pm,+ of motivic multiple zeta values. Since we know by [9]
that H is equal toPm,+

R , this computation in fact yields all single-valued motivic
periods of the category MT (Z).

3.1. Single-valued motivic periods. The weight grading on Pm is given by
an action of Gm , which we shall denote by τ . Thus τ(λ) is the map which in
weight n acts via multiplication by λn , for any λ ∈ Q× = Gm(Q).

DEFINITION 3.1. Let σ : Pm −→ Pm be the involution

σ = τ(−1)c, (3.1)

where c is the real Frobenius of Section 2.10. For example, σ(Lm) = Lm.

To spell this out, the map Spec(σ ) is a morphism of schemes from Isom(ωd R,

ωB) to itself which acts on φ ∈ Isom(ωd R, ωB) by

(Md R
φ−→ MB) 7→ (Md R

τ(−1)−→ Md R
φ−→ MB

c−→ MB).

On the level of motivic periods, σ [M, v, X ]m = [M, τ (−1)v, c(X)]m.
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REMARK 3.2. If ∆u,m : Pm→ Pu ⊗ Pm denotes the coaction, then

∆u,mσ = (σ ⊗ σ) ◦∆u,m,

where σ : Pu → Pu is given by the action of τ(−1) on Pu by conjugation. In
other words, σ acts by multiplication by (−1)n in degree n, where the degree
is (2.17).

Consider the following affine scheme over Q:

P = Spec (Pm) (=Isom(ωd R, ωB)).

The coaction Pm→ Pdr ⊗ Pm defines an action we denote by ◦:
◦ : Gd R × P −→ P,

and makes P a torsor over Gd R (by Proposition 2.10). We use the notation ◦ to be
consistent with the Ihara action which will be denoted by the same symbol later
on. The maps id, σ : Pm→ Pm can be viewed as elements id, σ ∈ P(Pm).

DEFINITION 3.3. Define svm to be the unique element of Gd R(Pm) such that

svm ◦ σ = id. (3.2)

We can view svm : Pdr → Pm as an algebra homomorphism. In order to
compute svm(Ldr), use the fact that ∆dr,mLm = Ldr ⊗ Lm, which gives

Lm = (svm ◦ σ)(Lm) = µ(svm ⊗ σ)(Ldr ⊗ Lm) = svm(Ldr)σ (Lm),

whereµ denotes multiplication. Since σ(Lm)= Lm, we deduce that svm(Ldr)= 1.
Therefore svm actually lies in the image of Ud R(Pm) in Gd R(Pm), and we can
view it as an algebra homomorphism svm : Pu −→ Pm. Even more precisely, we
have the following.

PROPOSITION 3.4. For all g ∈ Gd R , and ξ ∈ Pu,

svm(cgξ) = g svm(ξ), (3.3)

where cg denotes the action of g ∈ Gd R on Pu by twisted conjugation:

cg(ξ) = g ξ g−1,

where g = τ(−1) g τ(−1). In particular, svm defines an algebra homomorphism,

svm : Pu −→Pm,+, (3.4)

which is homogeneous for the weight gradings on both sides.
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Proof. For any g ∈ Gd R , define svm
g : Pu → Pm to be svm

g (x) = g svm(x), and
similarly define σg, idg ∈ P(Pm), where σg(x) = g σ(x), idg(x) = g id(x), and
the action of g is on the ring of coefficients Pm. By the definition (3.2) of svm,
we have

svm
g ◦ σg = idg.

Clearly, idg = g. By an identical argument to Remark 3.2, we have the equation
∆dr,mσ = (σ ⊗ σ) ◦ ∆dr,m, where ∆dr,m : Pm → Pdr ⊗ Pm is the coaction by
Pdr and σ is conjugation by τ(−1). This implies that

µ(g ⊗ id)∆dr,mσ = µ(g ⊗ σ)∆dr,m,

where g, g are viewed as maps Pdr→ Q and µ : Q⊗ Pm→ Pm is
multiplication. The previous equation states that σg = g ◦ σ . Therefore

svm
g ◦ g ◦ σ = g.

Since P is a torsor over Gd R , this has the unique solution svm
g = g ◦ svm ◦ g◦−1,

which is precisely (3.3). Since the weight grading on Pu is given by conjugation
by g for g ∈ Gm and g = g for such g (because Gm is commutative), we deduce
from (3.3) that svm is homogeneous in the weight. In particular, since Pu has
weight > 0, the image of svm has weight > 0, is stable under Gd R , and hence is
contained inPm,+.

As pointed out by the referee, another way to see that σg = g ◦ σ is to note that
Spec(σg) corresponds to the isomorphism of Isom(ωd R, ωB) in which we first act
by g ∈ Isom(ωd R, ωd R) then apply Spec(σ ):

(Md R
φ→ MB) 7→ (Md R

g→ Md R
φ→ MB)

7→ (Md R
τ(−1)→ Md R

g→ Md R
φ→ MB

c→ MB)

and g ◦ σ corresponds to the same map:

(Md R
φ→ MB) 7→ (Md R

g→ Md R
τ(−1)→ Md R M

φ→ MB
c→ MB).

DEFINITION 3.5. Let P sv ⊂Pm,+ denote the image of the map svm. We shall call
it the ring of single-valued motivic periods.

REMARK 3.6. Formula (3.3) can be translated into coactions as follows. Let

Lu = Pu
>0

Pu
>0Pu

>0
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denote the Lie coalgebra of indecomposable elements of Pu. Projecting from Pu
>0

to Lu defines infinitesimal versions of the usual coactions (2.12):

δ : Pm −→ Lu ⊗ Pm

δL : Pu −→ Lu ⊗ Pu

δR : Pu −→ Pu ⊗ Lu ∼= Lu ⊗ Pu,

where δL, δR are obtained from the left and right coactions of Pu on itself. Then

δ svm(ξ) = (id⊗ svm)(δLξ)+ (S ⊗ svm)(δRξ), (3.5)

where S : Lu → Lu is multiplication by (−1)n in degree n followed by the
infinitesimal antipode S = −id : Lu → Lu. Thus S is multiplication by (−1)n+1

in degree n.

3.2. Properties of the single-valued motivic period. For computations, it
is convenient to trivialize the torsor P as follows. By Proposition 2.10, we
can choose an isomorphism of fiber functors s ′ ∈ Isom(ωB, ωd R). It defines an
isomorphism (2.31),

s : O(Gd R) = Pdr ∼−→ Pm, (3.6)

where s = (s ′)t , which we view as a Pm-valued point of Gd R , denoted s ∈
Gd R(Pm). The action of the involution (3.1) on its coefficients will be denoted
by σ . Via the isomorphism (3.6), the element id ∈ P(Pm) (respectively σ ∈
P(Pm)) corresponds to s ∈ Gd R(Pm) (respectively σs ∈ Gd R(Pm)). Therefore
svm ∈ Gd R(Pm) is

svm = s ◦ (σs)◦−1, (3.7)

where the inversion and multiplication ◦ take place in the group Gd R .

REMARK 3.7. To check that (3.7) is well defined, let s ′1, s ′2 ∈ Isom(ωB, ωd R)(Q).
Since the latter is a (G B,Gd R)(Q)-bitorsor, there exists an element ρ ′ ∈ Gd R(Q)
such that s ′2 = ρ ′s ′1. Transposing gives s2 = s1 ◦ ρ, where ρ is the image of ρ ′ in
Gd R(Pm) via Q ⊂ Pm. In particular, σρ = ρ, since its coefficients are rational of
weight 0. Thus

s2 ◦ (σs2)
◦−1 = s1 ◦ ρ ◦ (σρ)◦−1 ◦ (σs1)

◦−1 = s1 ◦ (σs1)
◦−1,

and (3.7) is well defined, as expected.

DEFINITION 3.8. Let Pm,0 ⊂Pm,+ denote the subring of motivic periods

Pm,0 =
⋂

s

s(Pu),
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where s ranges over maps s : Pu → Pm,+ induced by decompositions (2.33).
Since πu,m+s is the identity on Pu, it follows that πu,m+ is injective on Pm,0.

LEMMA 3.9. We have P sv ⊂ Pm,0. In particular, πu,m+ : P sv → Pu is injective.
The compositum πu,m+svm : Pu→ Pu is given by the element

id ◦ σ ◦−1 ∈ Ud R(Pu). (3.8)

Proof. A choice of isomorphism (2.32) defines a map s : Pu → Pm,+ (and
hence an element s ∈ Ud R(Pm)) which we can use to compute svm. By a similar
argument to the discussion preceding (3.7), except that we work in Ud R instead of
Gd R , we have svm = s ◦ (σs)◦−1. The coefficients of s, and a fortiori svm, lie in the
subspace s(Pu) ⊂Pm,+. This proves the first statement.

For the second statement, observe that πu,m+s is the identity map on Pu, and
therefore πu,m+svm = id ◦ (σ id)◦−1, which gives exactly (3.8).

In particular, the map πu,m+svm : Pu → Pu is not the identity, and it has a
large kernel. The previous lemma will be used in Section 6.2 to determine the
structure of P sv.

3.3. Formulae. Expression (3.7) can be translated into a formula for the
single-valued periods of an object M ∈M in terms of products of motivic periods
of Tate twists of M . The formula is ugly (see arXiv:1309.5309, Section 3.3) and
probably of limited use, so it is not included here.

4. The motivic fundamental group of P1\{0, 1,∞}

The main references for this section are [9, 15, 16, 18].

Let X = P1\{0, 1,∞}, and let
→
10,−

→
11 denote the tangential base points on X

given by the vector 1 at 0, and the vector−1 at 1. Denote the motivic fundamental
torsor of paths on X by

0Π
m
1 = πm

1 (X,
→
10,−

→
11).

It is an affine scheme in the category MT (Z). This means that there is a
commutative algebra object O(0Πm

1 ) ∈ IndMT (Z), and ω(0Πm
1 ) is defined to

be Spec of the commutative algebra ω(O(0Πm
1 )), for any fiber functor ω.

We shall denote the de Rham realization ωd R(0Π
m
1 ) of 0Π

m
1 simply by

0Π1 = SpecO(0Π1),
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where O(0Π1) is isomorphic to H 0(B(Ω•log(P1\{0, 1,∞};Q))), where B is the
bar complex. Writing e0 for dz/z and e1 for dz/1− z, we can identify the latter
with the graded Q-algebra

O(0Π1) ∼= Q〈e0, e1〉.
Its underlying vector space is spanned by the set of words w in the letters e0,

e1, together with the empty word, and the multiplication is given by the shuffle
product x : Q〈e0, e1〉 ⊗Q〈e0, e1〉 → Q〈e0, e1〉 which is defined recursively by

(eiw)x (e jw′) = ei(wx e jw′)+ e j(eiwxw′)

for all words w,w′ in {e0, e1} and i, j ∈ {0, 1}. The empty word will be denoted
by 1. It is the unit for the shuffle product: 1xw = wx 1 for all w.

The de Rham realization 0Π1 is therefore isomorphic to SpecQ〈e0, e1〉. It is the
affine scheme over Q which to any commutative unitary Q-algebra R associates
the set of group-like formal power series in two noncommuting variables e0

and e1:
0Π1(R) = {S ∈ R〈〈e0, e1〉〉× : ∆S = S⊗̂S}.

Here, ∆ is the completed coproduct R〈〈e0, e1〉〉 → R〈〈e0, e1〉〉⊗̂R R〈〈e0, e1〉〉 for
which the elements e0 and e1 are primitive: ∆ei = 1⊗ ei + ei ⊗ 1 for i = 0, 1.

Since the bar complex is augmented, we have an augmentation map 0Π1 →
Q which is the projection onto the empty word. Dually, this corresponds to an
element denoted

011 ∈ 0Π1(Q)

which is called the canonical de Rham path from
→
10 to −→11.

On the other hand, the Betti realization of 0Π
m
1 is the affine scheme over Q

given by the Malčev completion of the topological fundamental torsor of paths

ωB(0Π
m
1 )
∼= π un

1 (X (C),
→
10,−

→
11).

There is a natural map π1(X (C),
→
10,−

→
11)→ π un

1 (X (C),
→
10,−

→
11)(Q).

4.1. Drinfeld’s associator. There is a canonical straight-line path (‘droit
chemin’)

dch ∈ π1(X (C),
→
10,−

→
11) (4.1)

which therefore corresponds to an element in ωB(0Π
m
1 ). Via the isomorphism

(2.2), it defines an element in 0Π1(C), which we denote by

Z(e0, e1) ∈ 0Π1(C).
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It is precisely Drinfeld’s associator, and is given in low degrees by the formula

Z(e0, e1) = 1+ ζ(2)[e1, e0] + ζ(3)([e1, [e1, e0]] + [e0, [e0, e1]])+ · · · . (4.2)

In general, the coefficients are multiple zeta values. In fact, (4.2) is the
noncommutative generating series of (shuffle-regularized) multiple zeta values

Z(e0, e1) =
∑

w∈{e0,e1}×
ζ(w)w.

The coefficient ζ(w) is given by the regularized iterated integral

ζ(ea1 . . . ean ) =
∫

dch
ωa1 . . . ωan for ai ∈ {0, 1},

where ω0 = dt/t and ω1 = dt/1− t , and the integration begins on the left. One
shows that the ζ(w) are linear combinations of multiple zeta values (1.2) and that,
for nr > 2,

ζ(e1en1−1
0 e1en2−1

0 . . . e1enr−1
0 ) = ζ(n1, . . . , nr ).

4.2. The Ihara action. Since O(0Π1) is the de Rham realization of an Ind
object in the category MT (Z), it inherits an action of the motivic Galois group

Ud R × 0Π1 −→ 0Π1.

The action of Ud R on the element 011 ∈ 0Π1 defines a map

g 7→ g(011) : Ud R −→ 0Π1, (4.3)

and one shows [18, Section 5.8] that the action of Ud R on 0Π1 factors through a
map

◦ : 0Π1 × 0Π1 −→ 0Π1 (4.4)

which, on the level of formal power series, is given by the following formula:

R〈〈e0, e1〉〉× × R〈〈e0, e1〉〉 −→ R〈〈e0, e1〉〉 (4.5)
F(e0, e1) ◦ G(e0, e1) = G(e0, F(e0, e1)e1 F(e0, e1)

−1)F(e0, e1),

which was first considered by Y. Ihara. The action (4.4) makes 0Π1 into a torsor
over 0Π1 for ◦. More prosaically, given two invertible formal power series G, H ,
one can solve F ◦ G = H for F recursively by writing Equation (4.5) as

F = G(e0, Fe1 F−1)−1 H. (4.6)
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If all the coefficients in F of words of length 6 N have been determined, then the
coefficients of Fe1 F−1, and hence G(e0, Fe1 F−1), are determined up to length
N + 1. Equation (4.6) determines the coefficients of F in length N + 1. A
similar recurrence based on the number of occurrences of e1 in a word (the depth)
sometimes allows one to write down closed formulae in low depth and in all
weights (Section 7.4).

4.3. Motivic multiple zeta values. Let dchB ∈ ωB(0Π
m
1 )(Q) denote the Betti

image of the straight-line path (4.1). It defines an element dchB ∈ ωB(0Π
m
1 )
∨. Let

w be any word in {e0, e1}. It defines an element w ∈ O(0Π1) ∼= Q〈e0, e1〉, the de
Rham realization of O(0Πm

1 ).

DEFINITION 4.1. The motivic multiple zeta value ζm(w) is the motivic period:

ζm(w) = [O(0Πm
1 ), w, dchB]m.

The algebra of motivic multiple zeta values H ⊂ Pm is the graded Q-algebra
spanned by the ζm(w), that is, the image of the map w 7→ ζm(w) : Q〈e0, e1〉 →
Pm.

Since O(0Πm
1 ) has weights > 0, and is stable under Ud R , it follows that H ⊂

Pm,+, by Definition 2.7. Thus H =⊕n>0 Hn is positively graded, and there is a
natural map

Q〈e0, e1〉 −→ H (4.7)
w 7→ ζm(w)

which is a homomorphism for the shuffle product. The period map (2.9) yields

per : H −→ R (4.8)
ζm(w) 7→ ζ(w),

and the periods of motivic multiple zeta values are the usual multiple zeta values.
There is a corresponding notion of unipotent de Rham multiple zeta value.

Instead of dchB , we now take a de Rham framing 011 ∈ 0Π1(Q) ⊂ O(0Π1)
∨.

DEFINITION 4.2. The unipotent de Rham multiple zeta value ζ u(w) is

ζ u(w) = [O(0Πm
1 ), w, 011]u.

The algebra of unipotent de Rham multiple zeta values A ⊂ Pu is the graded
Q-algebra spanned by the ζ u(w), that is, the image of the map w 7→ ζ u(w) :
Q〈e0, e1〉 → Pu. The objects ζ u(w) were denoted by ζ a(w) in [10].
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Since O(0Πm
1 ) has nonnegative weights, and because the de Rham image

Z(e0, e1) of dch has leading term 1 (see (4.2)), we verify that
t c0(dchB) = 011.

By Equation (2.20), we deduce a surjective homomorphism

πu,m+ : H −→−→ A (4.9)
ζm(w) 7→ ζ u(w).

The motivic multiple zeta values ζm(w) were defined in [9], and simplified by
Deligne [17]. The unipotent de Rham multiple zeta values ζ u(w) are equivalent
to the ‘motivic multiple zeta values’ considered in [22].

REMARK 4.3. It is important to note that ζm(2) 6= 0, whereas ζ u(2) = 0 [9].

The algebra A = ⊕
n>0 An is again positively graded, and is a commutative

Hopf algebra by (2.6). We have a commutative diagram:

H −→ A⊗H
↓ ↓
A −→ A⊗A.

Let us write A = Spec (A), and H = Spec (H). Then A is isomorphic to the
image of O(0Π1) in O(Ud R) via the map (4.3). Furthermore, A is a pro-unipotent
affine group scheme over Q, which embeds in H via (4.9), and acts upon it on the
left:

A×H −→ H. (4.10)
See [9, Section 2] for further details.

4.4. Compatibility with the Ihara action. The fact that the action of the
motivic Galois group factors through the Ihara action (Section 4.2) can be
expressed by the following commutative diagram, where the maps A ↪→ H ↪→
0Π1 are induced by (4.9), (4.7):

A × H −→ H↪→ ↪→ ↪→

0Π1 × 0Π1 −→ 0Π1,

and the map along the bottom is the Ihara action ◦ : 0Π1 × 0Π1 → 0Π1. Dually,
we have the following commutative diagram [9, Section 2.2]:

O(0Π1) −→ O(0Π1)⊗O(0Π1)

↓ ↓
H −→ A⊗H,
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where the map along the top is the Ihara coaction, which can be effectively
replaced with an explicit formula which is due to Goncharov (who proved it
for unipotent de Rham periods ζ u, that is modulo ζm(2), but in fact gives the
correct coaction for ζm also. See [13] for a direct and short proof using the Ihara
coaction).

4.5. The motivic Drinfeld associator. In this section, all the Hom’s are in the
category of commutative unitary Q-algebras.

DEFINITION 4.4. Define the motivic version of the Drinfeld associator by

Zm(e0, e1) =
∑

w∈{e0,e1}×
ζm(w)w ∈ 0Π1(H) ⊂ H〈〈e0, e1〉〉.

Define the unipotent de Rham version of the Drinfeld associator by

Zu(e0, e1) =
∑

w∈{e0,e1}×
ζ u(w)w ∈ 0Π1(A) ⊂ A〈〈e0, e1〉〉.

It is useful to view Zm as a morphism via the following general nonsense. For
any commutative unitary ring R, we have an isomorphism

Hom(Q〈e0, e1〉, R)
∼−→ R〈〈e0, e1〉〉.

The subspace of algebra homomorphisms on the left maps to the set of group-like
formal power series on the right. Via this isomorphism, we see that Zm is simply
the image of the canonical map (4.7). Composing with (4.7) gives a map:

Hom(H, R) −→ Hom(Q〈e0, e1〉, R) −→ R〈〈e0, e1〉〉.
Restricting to algebra homomorphisms retrieves the morphism H(R) ↪→ 0Π1(R).
Setting R = H, we can view the motivic Drinfeld associator as the image of the
identity map

idH ∈ Hom(H,H) −→ Zm ∈ H〈〈e0, e1〉〉. (4.11)

The usual Drinfeld associator is the image of the element

per ∈ Hom(H,C) −→ Z ∈ C〈〈e0, e1〉〉.
The unipotent de Rham Drinfeld associator is the image of the map (4.9):

πu,m+ ∈ Hom(H,A) −→ Zu ∈ A〈〈e0, e1〉〉.
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4.6. Decomposition with respect to ζm(2)’s.

LEMMA 4.5 (See also [9, Lemma 3.2]). We have

ζm(2) = − (L
m)2

24
. (4.12)

Proof. The action of Ud R on ζm(2) is trivial, by [9, Section 3.2]. Since ζm(2)
has degree 2, it must be equal to a rational multiple of (Lm)2. The rational
multiple is determined by applying the period map and using Euler’s formula
ζ(2) = π 2/6.

REMARK 4.6. The analogue of Euler’s theorem (4.12) is false for de Rham
periods, since ζ dr(2) = 0, but Ldr is nonzero.

LEMMA 4.7 [9, Section 2.3]. There is a noncanonical isomorphism

H ∼= A⊗Q[ζm(2)]. (4.13)

Proof. Since the motive O(0Πm
1 ) has weights > 0, and is stable under Ud R , H

is contained inPm,+. Furthermore, since the path dch is invariant under complex
conjugation, we deduce that H ⊂Pm,+

R . By Corollary 2.12, there is an injective
map

H −→ Pu ⊗Q[(Lm)2] ∼= Pu ⊗Q[ζm(2)], (4.14)

which is compatible with the Pu-coaction. Since, by definition, πu,m+(H) = A,
and because ζm(2) ∈ H, the image of (4.14) is equal to A⊗Q[ζm(2)].

A choice of decomposition (4.13) defines a homomorphism Zm
o : A → H.

Applying ε ⊗ id, where ε is the augmentation on Pu, defines a homomorphism
γm : H→ Q[ζm(2)].

COROLLARY 4.8. There exist elements γm ∈ H(Q[ζm(2)]), and Zm
o ∈ A(H)

such that

Zm = Zm
o ◦ γm. (4.15)

Proof. The map H→ A⊗Q[ζm(2)] →H is the identity, where the second map
is µ(Zm

o ⊗ id) and µ denotes multiplication. This implies that idH = µ(Zm
o ⊗

γm)∆; that is, idH is the convolution product of Zm
o and γm. This is exactly (4.15),

by (4.11).
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5. A class of multiple zeta values (elementary version)

The class of single-valued multiple zeta values is constructed in this section in
a completely ‘elementary’ way, that is, with no reference to motivic periods.

5.1. Deligne’s canonical associator. Consider the continuous antilinear map

σ : C〈〈e0, e1〉〉 −→ C〈〈e0, e1〉〉 (5.1)
σ(ei) 7→ −ei

which acts by complex conjugation on the coefficients of words. Let Z ∈
R〈〈e0, e1〉〉 denote the Drinfeld associator (4.2).

LEMMA 5.1. There exists a unique element W ∈ R〈〈e0, e1〉〉 such that

W ◦ σ Z = Z . (5.2)

Proof. By Section 4.2, the Ihara action is transitive and faithful. Equation (5.2)
can be solved recursively using (4.6) and the comments which follow.

The series W is Deligne’s associator. We show in Section 6.1 that it is indeed
an associator.

5.2. Single-valued multiple polylogarithms. We briefly recall the construc-
tion given in [11]. See Section 6.3 for a more conceptual derivation. The
conventions for iterated integrals will be switched relative to [11] in order
to remain compatible with the above. The generating series of multiple poly-
logarithms is

Le0,e1(z) =
∑

w∈{e0,e1}×
Lw(z)w,

and is defined to be the unique solution to the Kniznhik–Zamolodchikov equation

d
dz

Le0,e1(z) = L(z)
(

e0

z
+ e1

1− z

)
which is equal to h(z) exp(e0 log(z)) near the origin, where h(z) is a holomorphic
function at 0, where it takes the value 1.

DEFINITION 5.2. There is a unique element e′1 ∈ 0Π1(R) = R〈〈e0, e1〉〉 which
satisfies the fixed-point equation:

Z(−e0,−e′1)e
′
1 Z(−e0,−e′1)

−1 = Z(e0, e1)e1 Z(e0, e1)
−1. (5.3)
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One can easily show that (5.3) can be solved recursively in the weight, and so
e′1 does indeed exist and is unique [11].

The generating series of single-valued multiple polylogarithms was defined by

L(z) = L̃e0,e′1(z)Le0,e1(z), (5.4)

where ˜ denotes reversal of words. Since the antipode in the Hopf algebra
C〈〈e0, e1〉〉 is given by ei1 . . . ein 7→ (−1)nein . . . ei1 , and since L(z) is group like,
we have

Le0,e1(z)
−1 = L̃−e0,−e1(z), (5.5)

and therefore we can rewrite (5.4) as

L(z) = (L−e0,−e′1(z))
−1 Le0,e1(z). (5.6)

In [11], it was shown that the coefficients Lw(z) of w in the generating series
L(z) are single-valued functions of z, are linearly independent over C, and satisfy
the same shuffle and differential equations (with respect to ∂/∂z) as Lw(z). The
last two properties are obvious from (5.4). Their values at 1 are given by

L(1) = (Z(−e0,−e′1))
−1 Z(e0, e1). (5.7)

5.3. Values of single-valued multiple polylogarithms at 1. The values
of single-valued multiple polylogarithms at 1 are exactly the coefficients of
Deligne’s associator.

LEMMA 5.3. Equation (5.3) has the unique solution e′1 = W e1W−1.

Proof. By the formula for the Ihara action (4.5), we have

W ◦ σZ(e0, e1) = σZ(e0,W e1W−1)W. (5.8)

Let e′1 = W e1W−1, and write Z ′ = Z(e0, e′1), and σZ ′ = Z(−e0,−e′1). We have

σZ ′ (5.8)= (W ◦σZ)W−1 (5.2)= Z W−1, (5.9)

which implies that σZ ′e′1
σ(Z ′)−1 = Z W−1(W e1W−1)W Z−1 = Ze1 Z−1.

For the uniqueness, any solution to (5.3) is of the form e′1 = Ae1 A−1 for some
group-like series A whose coefficient of e1 vanishes (this is the case for Z ). Then
Equation (5.3) is just (A ◦ σZ)e1(A ◦ σZ)−1 = Ze1 Z−1. This readily implies that
A ◦ σZ = Z , since the unique group-like series B satisfying Be1 B−1 = e1 with
vanishing coefficient of e1 is B = 1. We conclude that A = W by (5.2).

By Equation (5.7), L(1) is (σZ ′)−1 Z , which is exactly W by (5.9).

COROLLARY 5.4. L(1) = W .
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In other words, the coefficients of Deligne’s associator W are the values at 1 of
single-valued multiple polylogarithms.

6. The single-valued associator (motivic version)

6.1. Single-valued motivic multiple zeta values. Recall that Zm ∈ H(H) is
the motivic Drinfeld associator (4.11), and that the action of σ (definition 3.1)
on the ring H of coefficients of H(H) is denoted by σ . Since the straight-line
path dch is invariant under complex conjugation, it follows that σ acts by (−1)n

on motivic multiple zeta values of weight n. Recall from Section 3 that σ is the
induced action on A, and that it also acts by (−1)n in weight n.

LEMMA 6.1. There exists a unique Wm ∈ A(H) such that

Wm ◦ σZm = Zm. (6.1)

Proof. One can follow a similar argument to Lemma 5.1. Alternatively, use a
decomposition Zm = Zm

o ◦ γm (4.15), and set Wm = Zm
o ◦ (σZm

o )
◦−1, where the

inversion and multiplication take place in the group A(H). Since σ acts trivially
on the coefficients of γm, it is independent of the chosen decomposition: replacing
(Zm

o , γ
m) with (Zm

o ◦h, h◦−1 ◦γm), where σh = h, gives rise to the same element.
Then Wm ◦ σZm

o = Zm
o , which implies (6.1).

The element Wm is the motivic version of Deligne’s associator W .
Via A(H) = Hom(A,H), we view Wm as an algebra morphism

Wm : A −→ H.
Composing with Q〈e0, e1〉 → H→ A gives a map we also denote by

Wm : Q〈e0, e1〉 → H.

DEFINITION 6.2. For every word w ∈ {e0, e1}, define the single-valued motivic
multiple zeta value to be the image of w under the map Wm. Denote it by

ζmsv (w) ∈ H.
Let Hsv ⊂ H be the algebra spanned by the ζmsv (w).

The fact that the map Q〈e0, e1〉 →Hsv factors through A means the following.

COROLLARY 6.3. The elements ζmsv (w) satisfy all the motivic relations between
motivic multiple zeta values, together with the relation

ζmsv (2) = 0.
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In particular, the ζmsv (w) satisfy the usual double shuffle equations and
associator relations. Note, however, that the map A → Hsv is not injective,
so the elements ζmsv satisfy many more relations than their usual counterparts.

We can write the element Wm as a generating series:

Wm =
∑
w

ζmsv (w)w.

Its period per(Wm) is precisely W defined in (5.2), which shows that W is an
associator. Therefore, by Corollary 5.4, the period of ζmsv (w) is given by the value
at 1 of the corresponding single-valued multiple polylogarithm:

per(ζmsv (w)) = Lw(1). (6.2)

6.2. Structure of Hsv. Let Asv ⊂ A denote the image of Hsv under πu,m+.

LEMMA 6.4. The map πu,m+ : Hsv → Asv is an isomorphism, and Hsv ∼= Asv is
the image of A under the homomorphism

svA := id ◦ σ ◦−1 : A −→ A, (6.3)

where the multiplication ◦ and inverse take place in the group A(A).

Proof. This follows from Lemma 3.9 since Hsv ⊂ P sv.

Denote the Lie coalgebra of indecomposable elements of A by

L = A>0

A>0A>0
.

Since A is a commutative graded Hopf algebra, it follows from standard facts that
A is isomorphic to the polynomial algebra generated by the elements of L.

PROPOSITION 6.5. The algebra Hsv of single-valued motivic multiple zetas is
isomorphic to the polynomial algebra generated by elements Lodd of L of odd
weight.

Proof. By Lemma 6.4, Hsv ∼= svA(A), where svA = id ◦ σ ◦−1. Since svA is a
homomorphism, it defines a map svL : L→ L. Writing svA = µ(id ⊗ σ ◦−1)∆,
where ∆ : A → A ⊗ A is the coproduct, and µ is the multiplication on A, we
see that

svA ≡ id− σ (modulo products),
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and therefore svL = 2π odd, where π odd : L→ Lodd is the projection onto the part
of odd weight. It follows that the images of odd generators in A under the map
svA are algebraically independent.

On the other hand, applying σ to the defining equation Wm◦σ Zm = Zm implies
that σWm ◦ Zm = σ Zm, and hence σWm ◦Wm ◦ Zm = Zm. By uniqueness,

σWm ◦Wm = 1,

which implies the equation µ(σ svA ⊗ svA)∆ = ε on A, where ε is the
augmentation. Using Sweedler’s notation∆(ξ) = ξ ⊗1+1⊗ ξ +∑ ξ ′⊗ ξ ′′, this
gives

svA(σ ξ)+ svA(ξ)+
∑

svA(σ ξ ′)svA(ξ ′′) = 0, (6.4)

since svA is homogeneous in the weight, and hence commutes with σ . This
implies that, if ξ is σ -invariant of weight > 1 (that is, of even weight > 2), then
svA(ξ) is a product of elements in Asv of strictly smaller weight. It follows that,
for any ξ ∈ A, svA(ξ) is a polynomial in svA(ξi), where ξi are generators of odd
weights only.

6.3. Single-valued multiple polylogarithms revisited. We can rederive the
construction of the single-valued multiple polylogarithms of [11] and Section 5.2
as follows. Single-valued versions of classical polylogarithms were considered
in [31, 32].

Consider X = P1\{0, 1,∞}, with the base points {→10,−
→
11, z} for some z ∈

X (C). Its de Rham fundamental groupoid consists of a copy of Q〈e0, e1〉 for
each pair of these base points. We shall only consider the copies 0Π0, 0Π1, 0Πz ,
corresponding to the canonical de Rham paths between the base points indicated
by their subscripts.

Let Aut denote the group of automorphisms of π1(X, {
→
10,−

→
11, z}) which fixes

the copy of exp(e0) in 0Π0 and exp(e1) in 0Π1. Modifying [18, Proposition 5.9],
accordingly, the action of Aut on the elements 011, 01z defines an injective map

Aut ↪→ 0Π1 × 0Πz (6.5)
a 7→ (a1, az),

where, for any a ∈ Aut , we write az = a(01z) and a1 = a(011). We leave to the
reader the verification that this is an isomorphism of schemes. Since 0Πz is a left
0Π0-torsor, we immediately deduce a formula for the generalized Ihara action,

Aut × 0Πz −→ 0Πz

a ◦ b = 〈a1〉0(b) · az, (6.6)
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where 〈a〉0 denotes the action of a ∈ 0Π1 on 0Π0 ([18, (5.9.4)]). Concretely,

(0Π1 × 0Πz)× (0Π1 × 0Πz) −→ (0Π1 × 0Πz) (6.7)
(F1, Fz) ◦ (G1,G z) = (G1(e0, F1e1 F−1

1 )F1,G z(e0, F1e1 F−1
1 )Fz).

The action of 0Π1 × 0Πz on 0Π1 factors through the usual Ihara action of 0Π1

on 0Π1.

Let us fix a path chz from
→
10 to z in X (C). Its de Rham image in 0Πz(C)

is exactly (some branch of) the generating series of multiple polylogarithms
(Section 5.2)

chd R
z = L(z) ∈ 0Πz(C).

By the general single-valued principle, we seek an element W = (W1,Wz) in the
group Aut (C) ∼= 0Π1(C)× 0Πz(C) such that

W ◦ (σZ , σL(z)) = (Z , L(z)).

It has a solution since 0Π1×0Πz is a torsor over Aut ∼= 0Π1×0Πz . By the formula
for the action (6.7), this is equivalent to the pair of equations

σLe0,W1e1W−1
1
(z)Wz = L(z) (6.8)

σZ(e0,W1e1W−1
1 )W1 = Z ,

and so W1 ◦ σZ = Z , and W1 is equal to the element W defined in (5.2). As in
Section 5.2, write e′1 = W e1W−1. Therefore, by (6.8), we deduce the following
formula for Wz:

Wz = L−1
−e0,−e′1

(z)L(z).

It is independent of the choice of path chz , and is therefore single valued (compare
(5.6)). This gives another derivation of the construction in [11].

7. Generators for Hsv and examples

Up to this point we have used no deep results about the category of mixed Tate
motives, nor about the structure of motivic multiple zeta values.

7.1. Periods of mixed Tate motives. In [9], it was shown that

A ∼= O(Ud R) = Pu. (7.1)

The following proposition, due to Deligne [17], is a more precise statement about
periods of mixed Tate motives than the one stated in [9].
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PROPOSITION 7.1 [17]. Let M ∈MT (Z) be a mixed Tate motive over Z with
nonnegative weights; that is, W−1 M = 0. Let η ∈ (Md R)n and X ∈ M∨B .

(i) If c(X) = X, then the motivic period [M, η, X ]m is a rational linear
combination of motivic multiple zeta values of weight n.

(ii) If c(X) = −X, then the motivic period [M, η, X ]m is a rational linear
combination of motivic multiple zeta values of weight n−1, multiplied by Lm.

Proof. By (7.1), and Section 4.6, H ∼= Pu ⊗ Q[(Lm)2] ∼= Pm,+
R . The

result then follows immediately from the definitions of Pm,+
R and Pm,+

iR , and
Corollary 2.12.

The methods of [17] give an equivalent but slightly different proof of
Corollary 2.12.

7.2. A model for Hsv. Applying a choice of trivialization (2.32) and a
choice of generators for O(Ud R) to (7.1) gives a noncanonical isomorphism [9,
Section 2.5]:

H ∼= U ⊗Q[ f2] (7.2)

such that the natural map πu,m+ :H→A induces an isomorphism U ∼=A, where

U = Q〈 f3, f5, f7, . . .〉
is the graded Hopf algebra cogenerated by one element f2n+1 in every odd degree
2n+ 1 > 3, equipped with the shuffle product and the deconcatenation coproduct

∆dec( fi1 . . . fin ) =
n∑

k=0

fi1 . . . fik ⊗ fik+1 . . . fin .

The element f2 corresponds to (Lm)2, and satisfies ∆( f2) = 1⊗ f2.
The map sv : A→ A defines a homomorphism

sv : U −→ U (7.3)

w 7→
∑
uv=w

u x ṽ,

where˜ denotes reversal of words. To see this, note that σ : U → U is the map
f2n+1 7→ − f2n+1, and the antipode S on U is given by w 7→ σ(w̃). By formula
(6.3), we have sv = µ(id⊗ σS)∆dec, where µ is multiplication, which gives (7.3).

Since πu,m+ : Hsv ∼= Asv by Lemma 6.4, we conclude that

Hsv ∼= Asv ∼= U sv,
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where U sv is the image of the map (7.3). By way of example,

sv( fa) = 2 fa, sv( fa fb) = 2( fa fb + fb fa)

sv( fa fb fc) = 2( fa fb fc + fa fc fb + fc fa fb + fc fb fa),

where a, b, c are odd integers > 3. In general, we have formula (3.5), which
implies, in particular, that

sv( faw fb) = fa sv(w fb)+ fb sv( faw)

for any word w ∈ { f2n+1}, and a, b odd integers > 3. This also follows
immediately from (7.3), since, via the recursive definition of x , we have

fau x fbṽ = fa(u x fbṽ)+ fb( fau x ṽ).

Formula (7.3) makes it obvious that

sv( fi1 . . . fi2n+1) ≡ 2 fi1 . . . fi2n+1 (mod products)

for all words of odd weight. An immediate corollary of (7.3) is

sv(w) = sv(w̃).

Recall that the map u 7→ (−1)|u|ũ is the antipode on U , giving∑
uv=w

(−1)|u|ũ x v = ε(w).

Applying sv implies the following explicit version of Equation (6.4)

2 sv( fi1 . . . fi2n )+
2n−1∑
k=1

(−1)ksv( fi1 . . . fik )x sv( fik+1 . . . fi2n ) = 0

for words of even weight > 2, and confirms that single-valued motivic multiple
zeta values in even weight are decomposable in Asv

>0.

7.3. Hoffman-type generators for Hsv. Let V be a finite ordered set. A
Lyndon word in the elements of V is a word which is smaller in the lexicographic
ordering than its strict right factors: if w = uv, then w < v whenever u, v are
nonempty.

In [9, Section 8], the following theorem was proved.

THEOREM 7.2. The ring of motivic multiple zeta values H is generated by the
Hoffman–Lyndon elements ζm(w), where w is a Lyndon word in the alphabet
{2, 3}, for the ordering 3 < 2.
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We immediately have the following corollary of Proposition 6.5.

COROLLARY 7.3. The ring of single-valued motivic multiple zeta values Hsv is
generated by the single-valued Hoffman–Lyndon elements

ζmsv (w),

where w is a Lyndon word of odd weight in the alphabet {2, 3}, where 3 < 2.

A Hoffman–Lyndon word of odd weight necessarily has an odd number of 3s.
It follows from Theorem 7.2 that the Poincaré series of H is given by∑

n>0

dimHn tn = 1
1− t2 − t3

.

The dimensions `n = dimLn of the Lie coalgebra L are determined by∏
n>1

(1− tn)−`n = 1
1− t2 − t3

.

The numbers `n can be interpreted either as the number of Lyndon words of
weight n in {2, 3}, where 3 < 2, or as the number of Lyndon words of weight n in
the alphabet { f3 < f5 < f7, . . . , }, via the isomorphism (7.2). By Proposition 6.5,
we have the following.

COROLLARY 7.4. The Poincaré series of Hsv is given by∑
n>0

dimHsv
n tn =

∏
n odd>1

(1− tn)−`n .

7.4. Examples. For the convenience of the reader, we list the dimensions of
the space of motivic multiple zeta values H and its version modulo products L:

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
dimLN 0 1 1 0 1 0 1 1 1 1 2 2 3 3 4 5 7 8 11 13
dimHN 1 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65 86 114

Next, their single-valued versions Hsv and Lsv:
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

dimLsv
N 0 0 1 0 1 0 1 0 1 0 2 0 3 0 4 0 7 0 11 0

dimHsv
N 1 0 1 0 1 1 1 1 2 2 3 3 5 5 8 8 13 14 21 23

Note that dimQ Hsv
N happens to equal dimQ LN+2 for 1 6 N 6 12, which adds

to the large supply of evidence for exercising caution when identifying integer
sequences!
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Below, we list algebra generators for Hsv
N for 1 6 N 6 14. They were calculated

by Oliver Schnetz using [27], which gives a very efficient way to compute
(5.2) [28].

N 3 5 7 9 11 13
Generators ζmsv (3) ζmsv (5) ζmsv (7) ζmsv (9) ζmsv (11) ζmsv (13)

of ζmsv (3, 5, 3) ζmsv (5, 3, 5)
Hsv ζmsv (3, 7, 3)

Here, ζmsv (2n + 1) = 2 ζm(2n + 1) for all n > 1, and

ζmsv (3, 5, 3) = 2ζm(3, 5, 3)− 2ζm(3)ζm(3, 5)− 10ζm(3)2ζm(5) (7.4)
ζmsv (5, 3, 5) = 2ζm(5, 3, 5)− 22ζm(5)ζm(3, 5)− 120ζm(5)2ζm(3)

− 10ζm(5)ζm(8)
ζmsv (3, 7, 3) = 2ζm(3, 7, 3)− 2ζm(3)ζm(3, 7)− 28ζm(3)2ζm(7)

− 24ζm(5)ζm(3, 5)− 144ζm(5)2ζm(3)− 12ζm(5)ζm(8).

To obtain formulas for the numbers ζsv, simply drop the superscripts m.

REMARK 7.5. Let us denote the commutative generating series of unipotent de
Rham multiple zeta values in depth r by

Zr (x1, . . . , xr ) =
∑

n1,...,nr>1

ζ u(n1, . . . , nr )x
n1−1
1 . . . xnr−1

r . (7.5)

The operator σ acts by multiplying ζ u(n1, . . . , nr ) by (−1)n1+...+nr . Let Z sv
r denote

the corresponding single-valued version. Using the methods of [12], we can verify
that

Z sv
1 = Z1 − σZ1

Z sv
2 ≡ Z2 − σZ2 − 2Z1 ◦ σZ1

Z sv
3 ≡ Z3 − σZ3 − 2Z1 ◦ σZ2 − 2Z1 ◦ (Z1 ◦ σZ1),

where the equivalence sign means modulo ζm(2) and modulo terms of lower
depth, and where ◦ is the linearized Ihara operator defined in [12, Section 6].
For example,

f (x1) ◦ g(x1) = f (x1)g(x2)+ f (x2 − x1)(g(x1)− g(x2))

f (x1) ◦ g(x1, x2) = f (x1)g(x2, x3)+ f (x2 − x1)(g(x1, x3)− g(x2, x3))

+ f (x3 − x2)(g(x1, x2)− g(x1, x3)).

In particular, this confirms the formulas (7.4) in odd weights, modulo ζm(2).
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It is likely that David Broadhurst’s knot numbers (see for example [8],
Equations (9) and (10)) are further examples of single-valued multiple zeta values
in depth 3. If true, this could certainly be verified with the coaction, but I did not
check this.
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