SOME REMARKS ON THE EXCEPTIONAL
SIMPLE LIE GROUP 4

Y0ZO MATSUSHIMA

1. Let € be the Cayley algebra of dimension 8 over the field R of real
numbers and let 3 be the set of all 3x3 Hermitian matrices

St X X
(1) X=| % & x
X2 %1 &3

with coefficients in €. We define the multiplication in 3 by
Xo Y= (XY +YX).

Then & becomes a distributive algebra over B. A non-singular linear trans-
formation « of & is said to be an automorphism of §, if

a(XeY)=aXcoaY

for all X, Y& 3. The group A of all the automorphisms of 3 is compact and
the connected component containing the identity of % is the exceptional simple
compact group 34" Denote by E; the matrix (1) with § =1, all remaining
terms zero. Let )t be the subgroup of #. consisting of all automorphisms «
such that aE;=F; for 1=1, 2, 3 and let §; (i =1, 2, 3) be the subgroups of F
consisting of all a €74 such that aE; = E;. Then the left coset spaces §./ i are
homomorphic to the set /T of all irreducible idempotents of & and I is geome-
trically the “plan projectif des octaves.””

In this note we prove the following two theorems.

THEOREM 1. N is connected and isomorphic to the universal covering group
SO(V8) of the proper orthogonal group SO(8) of 8 dimensional euclidean space.

THEOREM 2. ©; are connected and isomorphic to the wuniversal covering

group @@/) of the proper orthogonal group SO(9) of 9 dimensional euclidean
space.

Theorem 2 gives a proof of a result anounced by A. Borel.”

Received October 22, 1951.

9 See, Chevalley-Schafer [2] and Freudenthal [3].
?) See, Freudenthal [3] §7 and Hirsch [4].

3 See, Borel [1], Théoréme 1.
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2. Proof of Theorem 1. Let F? be the matrix (1) with x;=a and all
numbers except x; zero. Then E;o F{ =0, E,-OF?=—%~F}‘ if ixj. Let a&€.

Then E;o aF¢ =0 and E; o aF? = -%«F;‘. It follows that

aF}=F{, (i=1,2,3),

where a; are the linear transformtions of €.
Now F¢oF!=(a, b)(Ej+ Er),” where {i, j, k} is a permutation of {1, 2, 3},
implies
(aia, aib) = (a, b).
Denote by O(8) the group of all linear transformations of € which leave the

positive definite bilinear form (g, b) invariant. (i.e. orthogonal transformations
of €.) Further Fi*o F¥ = Fi™), F{*o F¥ = F* and F§ o F¥ = F§* imply

a (%) as(y) = kas(xv),
(2) ax(x)as(y) = ray(xy),

aa(x)m(y) = xaz(xy) N
where rai(x) =ai(%). Let r be the orthogonal transformation of € defined by
%=X for all x€€. Then ki =ra;v and «;— rca; is an automorphism of O(8).
We shall show that a;&S0(8) i.e. det.a; =1.

LemMA 1. (Principle of Triality.)® For every 0& SO(8), there exist 6, and
0> in SO(8) such that

0(x)0:(y) = 0:(xy)

for all x, yEG. If there exist the other 6, and 65 in SO(8) such that 6(x)6i(v)
= ﬁé(xy), then 01 = +0, and 63= +0,. The same holds also, if we start from 0,
or 0, instead of 0.

LemMma 2. Let 6; be in O(8) and let
(3) 0:(x)0:(y) = kBs(xy)
JSor all x, yEG. Then 0:(x)0:(y) = rb6(xy) and 05(x)0,(y) = k0:(xv) for all x, yE .
Proof. Multiplying the both sides of (3) by 6,(x)/|x|% ¥ we have
1 —
0:(y) = Tx*l'z"lh(x) Os(xy) .

4 The positive definite bilinear form (a, b) on € is defined by (a, b) = Re(ab), where
Rex:%—(x+§).

5 See, Freudenthal [3] p. 16.
® |x|%=(x, x) =x+x=X+x. In the following proof, we use the formulae || =!x|, |xy|
=|x||¥], A(xa) = (%x) a and (ax)x = a(Xx). See, Freudenthal [3] p. 7.
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Analogously we have
1 I
Iy 0:(¥)+0:(¥%) = ,(x) -
Let ¥ =vz. Then

1 ———
**lzﬂz(y)ﬂ;;(i(yz)) =0(yz).

|y
Hence 6:(y)0x(2) = x:(yz).

LemmA 3. Let 6;:€0(8) (=1, 2, 3) and 6.(x)6:(v) = kb3(xy) for all x, yEE.
Then 6;,=S0(8) (i=1, 2, 3).

Proof. Suppose that 0; is not in SO(8). For every 7 & SO(8), there exist
72 and »; in SO(8) such that

MmO %) 720:(y) = kmaok0s(xy) = £(2°0:) (xy) .
Let us choose 7 such that 76; =7y, where yx =% for all x&6. Then
(4) 56_:2(}’) = xcs(xy)

for all x, y&€, where {z =70, and {s=70. Putting ¥ =1 in (4), we have %&(y)
= k3(y). Hence & =«{; and

(5) Zo(y) = Calxy) .
Putting y =1 in (5), we have
(6) Ca(x) = %8:(1) .

Let &(1) =a. Then a=0. It follows from (5) and (6) that X(¥a) = (5%)a.
Hence x(ya) = (yx)a for all x, v=6. It follows that ¢ =0 and this is a con-
tradiction. Hence ¢, £S0(8). We may prove analogously that 6; and 6§; are
also in SO(8).

Thus a; (=1, 2, 3) in (2) are in SO(8). Thus if a €N, then

& a’::(xa) Irdz(fz)
(7) aX =\ rai(X;) & ai (%) B
ax(xs) K(lx(f1) &s

where X is the matrix (1) and a;’s satisfy the relations (2).

Conversely let a; be an arbitrary element in SO(8) and let a2 and a; be
the elements in SO(8) such that ai(x)a(y) = kas(xy) for all x, yE€ (cf. Lemma
1). Then the relations (2) hold for these a/s by Lemma 2. Now we define
the linear transformation a(ai. a2, a3) of & by (7). For every aiES0(8) we
have thus two linear transformations a(ai, a», a3;) and alai, —as, —as) (cf.
Lemma 1). We may easily verify that these linear transformations are the
automorphisms of 3 and form a closed subgroup M of the group A of all auto-
morphisms of 3. It is clear that every automorphism in M leaves fixed the
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elements E; (i=1, 2, 3) and M=2N. The mapping filalai, az, a3)) =a; is a
homomorphism of M onto SO(8) and the kernel of fi consists of a(1, 1, 1) and
(1, =1, =1).” Let M, be the connected component of M containing the iden-
tity. Then fi(My) = SO(8). Since fi'(as) ={a(ay, az, as), ala, —az, —as)}, at
least one of a(ai, as, as) and alai, —az, —a3) is in My. We shall prove that
M =My. Suppose, on the contrary, that M xMy. Since MU a(l, —1, —1)MWM,
=9, M consists of two connected components and a(1, =1, —1) EM,. Now
a(=1,1, =1) and a(—1, —1, 1) belong to the distinct components of IR, for
otherwise a(—1,1, —1) a(-1, ~1,1) =a(l, =1, —1) isin My. Let, for example,
a(~1, =1, 1)eM,. Let falalai, az, a3)) =as. Then f; is also a homomorphism
of M onto SO(8) and the kernel of f3 is {a(1, 1, 1), «(~1, —1, 1)}. Hence f;
is a local isomorphism and f3(My) =SO(8). By assumption the kernel of f; is
contained in My and hence M =M, and this is a contradiction. Hence M = M,.
Moreover  we have shown that It is a two sheeted covering group of SO(8).
Hence M is isomorphic to the universal covering group §6\‘8/) of SO(8). Since
M is connected, M is contained in F+ and each automorphism in 9N leaves fixed
the elements E;. Hence MESN. Since we have already shown that M 2N, we
have M =N and this completes the proof of Theorem 1.

3. Proof of Theorem 2. Since the subgroups ©:; of ¥+ are conjugate to
each other in %> it is sufficient to consider the group . The derivation 4
of J such that 6E; = 0 may be represented uniquely as the sum of two derivations

8=A+4,
where 4E; =0 (=1, 2, 3) and
0 0 O
A=l0 0 a], ae=€,
.0 —a 0

and AX=[A, X]=AX~- XA. Conversely for each such a metrix 4, A is a
derivation of & such that AE; =0." Since 4's form the Lie algebra of the group
N, dim.{4} =28 and dim.{A } =8, where {4} and {A} denote the linear spaces
consisting of 4’s and A’s respectively. Hence the derivations which maps E:
to 0 form a Lie algebra of dimensions 36 and this is the Lie algebra of 9.
Hence dim. 9 =36. Now let IT be the set of all irreducible idempotents of 3.1
Further let I be the set of all X&IT such that Ei°X=0. Then an element
XeJ is in IT; if and only if
") We denote by 1 and —1 the identity transformation and the transformation defined by
x -» —x respectively.
8 For, there exist « and 8 in s such that «&; = E> and BE;= Es. See, Freudenthal [3]
p. 27. This fact is also proved in the following.

9 Chevalley-Schafer [2] and Freudenthal [3] p. 20.
10) See, Freudenthal [3] §5. Note that the set TT is invariant under the transformations

of Fa.
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000
(8) X={0 & Xy Y
0% &
where & =8+ x%, &+8&=1. Then &H=~&+x%. Hence 1=2£+ & +2x%.

Now the bilinear form (X, Y) =Sp(X oY) defined on & is positive definite and
invariant under the transformations of F.'" Let [X[?=(X, X). If X is the

3 3
matrix (1), then |X l§2=‘§_]1$i+221xi9?1. Hence if X& I, then | X|=1. Now

let 81 be the 10 dimensional linear subspace of { consisting of the matrices of
the form (8), and let S° be the set of all X& 3y such that | X|=1. Then S°is
a 9 dimensional sphere and IT; is the intersection of S° and the hyper-plane
&+&=1in $i. Hence I is an 8 dimensional sphere. Let a€$;. Then
a(EieX) = EicaX, hence a(Il}) =I;. Thus « induces a transformation R. of
the sphere II;. Since « is an orthogonal transformation of &, R, is an isometric
transformation of IT; and hence a (proper or improper) rotation. Thus g(a) = R,
is a homomorphism of ©; into the group O(9). Let ® be the kernel of g
Since each a €D leaves fixed the elements E;, a is contained in . Hence
a(ED) is of the form a = alay, a2, az) (see §1) and

0 0 0
aX=|0 &2 m(xl)A):X
0 kai(%) &a

for all Xe/I,. We see easily that a;=1 and hence ® is the finite group of
order 2. Since dim. 9; = dim. O(9) = 36, the component ] containing the identity
is mapped by g onto SO(9). As HIDNDD by Theorem 1, H) is a two-sheeted
covering group of SO(9) and hence it is isomorphic to the universal covering
group SO() of SO(9). We may easily see that if $; = 9!, then the order of
the group 9./91 is 2 and g(9,) = 0(9). Now the mapping

<0 0 07
X->RX=|0 & xl)
0% &
is an improper rotation of the sphere I7i. If D, 9], there exists a €9, such
that aX=RX for all XelIl,. Then aEi=E:, aE:=E; and aE;=E.. Since
g(91) = SO(9) and SO(9) is transitive on IT;, there exists E 9! such that SE; = Es.
B(E1°E3) = E1°BE3 = 0, B(Ez"Ea) = E3°ﬁE3 =0 and ﬁE3°BE3 = BEg imply BE:; = E,.
Then B 'aE;i=E; for i=1,2,3. Thus f'«cNNP!. Hence a9’ and this is
a contradiction. Thus $; is connected and isomorphic to S/O\/(.())

Remark. The group of all automorphisms of & is not connected. For
example,

1) See, Freudenthal [3], §4.
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£ X3 X2 &1 X2 X3
X=X & % |maX={ % & 1
\ %2 %1 &s Xz %1 &2

is an automorphism of 3. « is an improper orthogonal transformation of ¥
and hence a EF..
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