https://doi.org/10.1017/jfm.2025.201 Published online by Cambridge University Press

J. Fluid Mech. (2025), vol. 1008, A44, doi:10.1017/jfm.2025.201

(g % I = T
3 - “© v

On the wave kinetic equation in the presence of
forcing and dissipation

D. Maestrini , D. Noto~’ , G. Dematteis' and M. Onorato”’

1Dip. di Fisica, Universita di Torino, Via P. Giuria 1, Torino 10125, Italy

2Institut Jean Le Rond d’ Alembert, Sorbonne Université, Paris, France

3CNRS, UMR 9015, LISN, Université Paris-Saclay, Orsay CEDEX 91405, France
4INFN, Sezione di Torino, Via P. Giuria 1, Torino 10125, Italy

Corresponding author: M. Onorato, miguel.onorato @unito.it

(Received 2 July 2024; revised 7 February 2025; accepted 9 February 2025)

The wave kinetic equation has become an important tool in different fields of physics. In
particular, for surface gravity waves, it is the backbone of wave forecasting models. Its
derivation is based on the Hamiltonian dynamics of surface gravity waves. Only at the
end of the derivation are the non-conservative effects, such as forcing and dissipation,
included as additional terms to the collision integral. In this paper, we present a first
attempt to derive the wave kinetic equation when the dissipation/forcing is included in
the deterministic dynamics. If, in the dynamical equations, the dissipation/forcing is one
order of magnitude smaller than the nonlinear effect, then the classical wave action balance
equation is obtained and the kinetic time scale corresponds to the dissipation/forcing time
scale. However, if we assume that the nonlinearity and the dissipation/forcing act on the
same dynamical time scale, we find that the dissipation/forcing dominates the dynamics
and the resulting collision integral appears in a modified form, at a higher order.
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1. Introduction

Wave turbulence theory (WTT) provides the statistical description of the evolution of the
wave action spectral density of a weakly nonlinear interacting system of a large number of
waves (Zakharov et al. 2012, Newell & Rumpf 2011, Nazarenko 2011, Galtier 2022). The
central object of the theory is the wave kinetic equation (WKE), first introduced by Peierls
(1929), which is the analogue for a system of interacting waves of Boltzmann’s kinetic
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equation for particles in a rarefied gas Cercignani (1988). For surface gravity waves, the
WKE was derived by Hasselmann (1962) and Zakharov & Filonenko (1967a), and it is
currently the building block of wave operational models (Komen ef al. 1996, Cavaleri
et al. 2007).

Although its rigorous derivation (in a mathematical sense, establishing the convergence
of the asymptotic expansion) has been proved only for the nonlinear Schrodinger equation
in dimensions larger than one (see Deng & Hani 2023a,b), in the past decades the WKE
has been derived (without a rigorous mathematical proof) and widely used in various
systems such as internal gravity waves (Olbers 1976; Caillol & Zeitlin 2000; Lvov &
Tabak 2004), capillary waves (Zakharov & Filonenko 1967b), surface waves (Hasselmann
1962; Krasitskii 1994; Zakharov (1999), plasma waves in magnetohydrodynamics (Galtier
et al. 2000,Kuznetsov 2001, Bose—Einstein condensation (Lvov et al. 2003,Nazarenko
& Onorato 2006), gravitational waves (Galtier & Nazarenko 2021) and vibrating plates
(Diiring et al. 2006,Cobelli et al. 2009). In real systems, dissipation cannot be neglected.
For example, experiments in elastic plates revealed a discrepancy between theoretical
predictions on Kolmogorov—Zakharov spectra (Diiring et al. 2006) and experimental
results (Boudaoud ef al. 2008,Mordant 2010). Among all the reasons for which these
discrepancies can arise, Humbert et al. (2013) proposed that the origin of the mismatch
is due to dissipation, which is inevitably present in all elastic plates. For surface gravity
waves, dissipation due to white capping or wave breaking also plays an important role in
the dynamics, and different models have been developed and phenomenologically included
in the energy balance equation (Ardhuin ef al. 2010,Babanin 2011,Komen et al. 1996,Liu
et al. 2019,Cavaleri et al. 2007). In WTT, the dissipative effects, as well as the external
forcing are added a posteriori only after the WKE has been derived for conservative
dynamics. However, in principle, dissipation and forcing may play a role combined with
resonant interactions. Therefore, it is important to build a framework in which dissipation
and forcing are taken into account starting from deterministic equations of motion.

In this paper, we consider this possibility and provide a derivation of the WKE,
assuming the presence of dissipation/forcing in the deterministic governing equations (in
the form of the so-called Zakharov equation). More specifically, we assume that our system
is characterised by two small parameters, € and u; the former is related to the strength
of the nonlinear interactions and the latter to dissipation/forcing. We emphasise that,
although in the literature € usually denotes the wave steepness, throughout this manuscript,
€ represents the square of the steepness. In this paper, we consider two different scalings
between the two parameters: the first is when the dissipation/forcing acts on the kinetic
time scale u ~ €2, which is the time scale of the four-wave resonances, while the second
case of study is when the dissipation/forcing acts on an intermediate time scale p ~ €.

2. The Zakharov equation with dissipation/forcing

Throughout the manuscript, we consider a physical domain [0, L] x [0, L], which implies
a two-dimensional infinite discrete Fourier space. The spacing in Fourier space is given by
Ak =2m /L. We use the following notation:

Z = Z , 8{’; = 8k, +ky,k3+k, 1S the Kronecker delta, 2.1
1234 ky,ko.k3,ky
X =Xk, AX?;EXI + X2 — X3 — X4 for any variable X, 2.2)

and the summation goes from —oo to +oo0. It is well known that, under the hypothesis
of inviscid and irrotational flow, in the limit of weak nonlinearity, the Euler equations for
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water waves reduce to the Zakharov equation (Stuhlmeier 2024; Krasitskii 1994). In the
presence of dissipation, we assume that the Zakharov equation, written in terms of the
normal variable a, is corrected by an extra term and takes the form
.day :
i =@ +e Z Tio3aaiazasdys —ipyiai, (2.3)
234

where wy = +/gk tanh(kh) is the dispersion relation, k = |k| and & is the water depth.
Although % can be arbitrary, caveats have to be considered in the limit of shallow water
in which the system becomes non-dispersive and lacks the natural randomisation of
phases, fundamental for the derivation of the WKE. The matrix elements that weight the
interactions, 77234, can be found in Krasitskii (1990) or Janssen & Onorato (2007). The
term jpray can be interpreted as a forcing or a dissipation; in general, yy is the sum of
two contributions: a positive one that mimics the dissipation and a negative one that plays
the role of forcing. The terms € and p, both greater than zero, are the nonlinear and the
dissipation/forcing coefficients, respectively. To avoid secular growths in the upcoming
perturbation theory, we isolate the trivial resonances k| = ky =k3 =ky4; k1 =k3 and
ky =ky4; ki =k4 and ky = k3 from the nonlinear term in (2.3). We reabsorb them as
corrections to the linear oscillation. The Zakharov equation becomes

/

.day

4.
i~ =S te > Tiudiazassis — ipnar, 2.4)
234
where
21 =w1 +2¢ Z Tonlaa|* — €T lar)? (2.5)
2

is the renormalised frequency, and the prime in the summation means that only the non-
trivial interactions are considered. To derive the kinetic equation, we consider the method
developed in Onorato & Dematteis (2020); we emphasise that the results we obtain do not
depend on the method used, and a check has also been carried out using a more standard
expansion of the correlators, which confirms our results.

We introduce two real functions, the action I3 and the angle 6, such that

ag(t) =/ It (t)e %W (2.6)

By inserting (2.6) into (2.4), separating the imaginary and real parts, the equations for I
and 0y, read

I ' .
E =2¢ Z T1234\/ 11 121314 sm(AQfﬁ‘)(Sfﬁ — 2/1,)/1 11, (2.7)
234
do, ' Lzl
o = 2ite > T cos(A0)833, (2.8)
234

with initial conditions 7;(0) = /; and 6;(0) = 6;.

3. The kinetic equation with dissipation/forcing

In the Zakharov equation with dissipation/forcing, the dispersion is considered to be a
dominant term, whereas nonlinearity and dissipation/forcing are assumed to be small.
In the absence of dissipation/forcing, it is well known that, for € < 1, the time scale
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at which the kinetic equation becomes relevant is # ~ 1/€2. In the Zakharov equation
with dissipation/forcing, we have the presence of two small parameters, ¢ and € (which
are assumed to be small compared with the dispersive term). Different scalings can be
considered: one possibility is that dissipation/forcing acts on the kinetic timescale u ~ €2,
and the other case is when dissipation/forcing acts on an intermediate time scale, u ~ €.
In the following, we investigate these two scenarios using the same approach developed
in Onorato & Dematteis (2020) with the appropriate modifications due to the presence of
dissipation/forcing. (Note that, in Appendix D, we verify our final results using a more
conventional approach based on the expansion of the correlators.)

3.1. The dissipation/forcing acting on the kinetic time scale j ~ €*

3.1.1. Small-€ perturbative expansion
We expand Ij and 6y, in powers of the nonlinear coefficient € as follows:

=1"+elV + 17 + 0, 3.1)

O =0" +€6" + €207 + O(e), (3.2)

which can be inserted into (2.8) and (2.7), and we match powers of €. Because the
dissipation/forcing enters at order €2, the expansion up to order € remains identical to
the one presented in Onorato & Dematteis (2020). Here, we report the main results.

3.1.2. Order €°.
At order €°, we find

drl? do?
—L_—o

=0, = §2, 33
dr A G
which can be integrated from O to ¢, leading to
P0=5L, 620 =211 +86, (3.4)

where the bar denotes the quantity evaluated at time t = 0.

3.1.3. Order €.
At order €, after inserting the results at order 60, we obtain

/

ar»
— =2 > Tiaay/ L LI sin(AGY + ARE 06T, (3.5)

234

o’ L,

d_lt =" Tio 213 cos(AGY + AR3183, (3.6)
234 !

which can be integrated from O to ¢, leading to

/ 734
— — - - cos(Af;y) — cos(AQ + A.Q t)
11(1)(0 =2Z T34y 1 21314 12 833, 3.7

34
234 AS2i5
M ’ L3I sin(AG) —sin(AGH + ARH1)
0, (1) =— Z T1234 12 o 127533, (3.8)
234 I A5
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3.1.4. Order €. i i
After inserting (3.7) and (3.8) in the expansions I (¢) = Iy + ellgl)(t) and 6 (t) =0 +
Qit + e@,ﬁl)(t), we substitute them into (2.7) and keeping terms at order €2 gives

@ R Y A
dr VILLLELE 4 _
=2y E ' T1234Thnser NV 53855 {sin(AG + AQH1 - 0, ATD)
m mS

234 m=1
567

+ sin [0 (ABSS + AQSLH — A — A2 || - 2n T, (3.9)

where g, = {+1, +1, —1, —1}. The next step in the derivation of the kinetic equation is to
perform averages on the distribution of the initial data. We assume that phases and actions
are independent identically distributed random variables. More specifically, phases will be
considered to be uniformly distributed, whereas for actions it is not necessary to specify
any distribution (random phase and amplitude (RPA)) assumption, Nazarenko 2011). The
procedure of averaging over the phases is described in Appendix (A); the first non-zero
contribution is at second order and is given by

sm(AQ )

N ? —2m 1. (3.10)

d(n
<d i _ 4 Z 12,0 b Iy Z m
! 234 Im

3.1.5. The large-box limit

So far, the calculation has been performed by assuming that, in physical space, the wave
field is periodic in space with period L; the derivation of the kinetic equation requires the
large box limit, which is achieved by considering the limit L — 400, and it corresponds
to taking the distance between Fourier modes approaching zero. An additional step in
the derivation of the kinetic equation is to evaluate the average over the initial actions

which, by hypothesis, are assumed to be statistically independent, i.e. (I1/21314); =
(11) (12) (13) (14) Therefore, we define the spectral action density

(Ig i

() =nk, 1) = lim 5

(3.11)

and by following the standard rules for correspondence between sums and integrals,
Kronecker’s delta and the Dirac delta,

dk
> — / i 835 — 8(Ak33) (AK)?, (3.12)
we obtain

any om SIN(AR233T2/€2)
_4/dk234T1234n1n2n3n4 Z M2 CS(AKYS) =2y, (33)

8T2 — lm AQ%"

where the new time 75 = €2¢ has been introduced.
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3.1.6. The small-€ limit
The last step for obtaining the wave kinetic equation consists in taking the limit for small €.
Recalling that, under the assumption tp = O (1), we have

sin(AQfgrz/fz)
m _

i L =78(A2) (3.14)
34 12/
e—0 A‘QIZ
then (3.13) becomes
on; ’ 11 1 1 34 34

(3.15)

Note that we have removed the bar from the right-hand side, assuming that the RPA persists
up to the kinetic time. This is the kinetic equation with dissipation/forcing that is normally
used in wave forecasting models once the functional form of y; is specified Komen et al.
(1996). A similar equation has been rigorously derived in Grande & Hani (2024) for the
nonlinear Schrodinger equation with an additive stochastic forcing and viscous dissipation.

3.2. The dissipation/forcing acting on an intermediate time scale [ ~ €

3.2.1. Small-€ perturbative expansion

We now assume that the dissipation takes place on an intermediate time scale, i.e. between
the linear and the kinetic one, and we show that a standard perturbation method leads to
a secular growth of the solution at order €. In fact, if we start from (2.7) and (2.8) and we
consider the same expansion as in (3.1) and (3.2), at order €% we find again (3.4), while at
order € the solution for the action is

’ 534 734 534
1 — — - - cos(AB7,)) —cos(ABy + AS275t) -
1) =2 Tina/ b 1314 12 2 2253 —2pit, (3.16)
234 AQIZ

which clearly shows a secular growth in time. To prevent this behaviour, we start from
(2.3) and we introduce a new variable

Ji = Ie> (3.17)
so that (2.7) and (2.8) become
dJ ’
1 .
=26 ) Tiosay/ T3 Jasin(A6) exp (eay@s)sit, (3.18)
234
do; ! JrJ3Jy
Sr=2i+€ Y T | S cos(A0E) exp (earPn)sit. (19
234

where Ay1234 =91 —y2 —y3 — ¥4 and the initial conditions are J;(0) = Ji=1; and

61(0) = 6;. If we expand Ji and 6y in powers of €, and we match order by order, at order
€? we obtain

IO =0, 600 =2i1+6;. (3.20)
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3.2.2. Order €.
Taking (3.20), inserting the equations into (3.18) and (3.19), and keeping terms at order ¢,
leads to

dr”

=2 ) s T Do i sin(AG} + AG) exp (eAy234 ) 5% (32D

234

9(1) /

Z 1234

234

2 cos(AGH + A2 1) exp (eAy234 )5?;‘, (3.22)

whose integrals between 0 and ¢ are

R OEY) Z Tiozay [ 3 JaP(AGY, A3, e Ay, 1)833, (3.23)

234
J2J3J4
0<”<z)—ZTm4,/ 7 QAT ALY, eAyPH, 8}, (3.24)
234

where we introduced

elzsin(x + yt) — y cos(x + yt)] + y cos(x) — z sm(x)

Px,y, z, 1) = (3.25)
y +72
zt _ _
O y.2.0) = e“'[zcos(x +yt)+y s1n(x + yzt)] ysin(x) — z cos(x) (3.26)
y +2z
Since
(exp(iAG)) = (27r) — ]_[ / exXp(iGmOm)db,, =0, (3.27)

the phase averaging of (3.21) is zero.

3.2.3. Order €. .
After inserting (3.23) and (3.24) into the expansions Jx(¢) = Ji + ellgl)(t) and 0 (t) =

Ok + 2kt + 66,£1>(t), we substitute them into (3.18) and (3.19). Keeping terms at order €2
leads to

— — e = 5 n
gP 2 1234y 12 J3Ja | 5 7 A J4 S i
+ A0V cos (AGY + A23r) |exp (earPr) o3, (3.28)

where we used sin(x +¢)~sin(x) + ¢ cos(x) with x = A0 + AQ¥t and ¢ =

EAQ(I)f; . By using (3.23) and (3.24), after further algebraic manipulations (see Appendix
(B)), (3.28) becomes

G B
/i =5 Su _R"g’ Ra.m - (3.29)
de T (ARSL) + (eAyd)
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where

/ \/ﬁ
J1J2J3JadsJed7
Sn=2_ Tiz3aTser exp (GA)/Z%4 ) 873805,

234 \/ﬂ

567

Rim = ome Ay T Re {( (€AY —iou AQT )t ) ei(Aéﬁg‘—omAé%)eiM‘zfgz} ’
R2 = A.Q65Jm {( (eAym 7lUmAS265)t 1) ei(Aéfgfom 9,275) iAS_Zi?;l‘} . (330)

The phase averaging of (3.29) (see Appendix (B)) is

d<J(2)> om AR sin (AQ31) A
—_4ZZT123411]213J nA82ip sin (A2i31) € 83, (330D

234 m=1 I [(A-Qf;) +(€Pm)2]

where we defined

4
P =2Vm—Y_ Vi (3.32)
j=1
and where we only considered terms proportional to €2. Note that we have not discarded
the O(e2) term in the denominator because AQ?S can be arbitrary small.

3.2.4. The large-box and small-€ limits
As usual, we consider the average over the initial actions, and in the large box limit we
define the spectral action density

(JKlg. 7
Ak 0 (AK)Z"
By following the substitution rules (3.12), we obtain

)

on lof
1 _ (J) )~ (J) (J) me
ot 4€/dk234T1234” ny nyn § : A

n6)=n" (k, 1) = (3.33)

P A$23 sin (AQ?;‘L]/G) ( k34>
[(AQ?&‘) +(epm)?] |
(3.34)

where we have introduced the timescale t; = €t. The last step to obtain the wave kinetic
equation consists of taking the limit for small €. Recalling that

: 534 534
/+oo x2sm(x‘t/e)2 dr = 7e=P" and lim AQI% 51n2(AS212r/e)
[x2+ (epm)?] “O[(a28) + epn)?]

—DPm 534
=re s (ARY),

(3.35)
equation (3.13) becomes

on{” 2 (D) ()= () e €T 34 =34
:4ne/dk234T1234e A Y e (akit) 6 (a23).
n.
J

aT] 5
j=l1
(3.36)

Strictly speaking, this equation is valid at initial time. Here, we assume that RPA holds for
arbitrary time: thus, we can replace 7/) with n/). Returning to the original variable by
using (3.17)
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n,(cj) = nkezy"”, (3.37)

we obtain the final kinetic equation in the dissipative/forced case

on e 2r
8_11 = —2yin+dre / dko3aThsninonsng § : 8(Ak3 )8 (Awis).  (3.38)
1 — nj
=1

Note that the modified collision integral is now a correction to the dissipative/forced
dynamics.

4. Discussion and conclusions

The energy (or wave action) balance equation is a fundamental tool for operational wave
forecasting. Although the nonlinear interactions are obtained directly from the dynamical
equations, the forcing and the dissipation source terms are added a posteriori. The
derivation of the wave kinetic equation indicates the time scale at which the collision
integral becomes relevant. The time scale associated with the forcing and dissipation in
the energy balance equation is more obscure, as those terms are, in general, not derived
analytically from first principles. In this paper, we have included a dissipation/forcing term
in the dynamical equations and we have attempted a derivation of the wave action balance
equation, assuming that the dissipation/forcing is small compared with the dispersion. Two
relevant cases are studied: (i) the dissipation/forcing in the dynamical equation acts on a
longer time scale than the nonlinearity; and (ii) the dissipation/forcing term acts on the
same time scale as the nonlinearity. For the first case, the standard wave action balance
equation is derived: the kinetic time scale, ¢t ~ €72, is the same as the dissipation/forcing
time scale. In the second case, the dissipation/forcing dominates the dynamics at a time
scale t ~ e~!, and the collision integral appears, as usual, at higher order. However, the
collision term is modified by the presence of an exponential term that depends on time. It is
interesting to note that if we avoid to take the small € limit and study the dynamics at fixed
€, we are left with a broad function over frequencies that accounts for near resonances,
and whose width depends on the dissipation/forcing coefficient. To clarify this issue, if we
assume that y; = y, we can define in (3.34) the function

ez’”A!—Zi”f sin (A[_for/e)
=342
(AR27])) + (2ey)?
which quantifies near-resonant interactions in the system that occur at finite €. The exactly
resonant interactions occur in the limit as € — 0 for which f (A.Qfg , €, v, T) tends to
a function proportional to the Dirac delta. In figure 1(a), we plot the function (4.1)
by fixing € =0.1, T =1 for different values of y shown in the legend. In the limit as
y — 0, (4.1) has the same behaviour as the function on the left-hand side of (3.14) for
the non-dissipative/forced case (the difference is a factor € due to the different time

scale). Figure 1(b) shows the behaviour of (4.1) by fixing y =0.1, t =1 for different
values of € reported in the legend. This function has two symmetric peaks about .Qf; =0

where its value is zero, and as € — 0, the two peaks merge at 5212 =0 and the function

converges to nezVTS(A.Qu). From this analysis it is clear that all resonant interactions
have zero contribution to the collision integral at short time scale, as also discussed for
conservative systems in Stiassnie & Shemer (2005); Janssen (2003); Annenkov & Shrira
(2006). Moreover, we note that the envelope of the function in (4.1) is proportional to the
Lorentzian function that has been introduced heuristically in some ’broadened’ versions
of the wave kinetic equation (see e.g. Lvov et al. 2012).

f (M_Zfé‘, € v, r) = “.1)
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AS273

Figure 1. (a) Plot of f (A(_fo , €, ¥, T) for a fixed value of the nonlinearity € =0.1 and for different values
of the parameter y as indicated in the legend. The limit y — O is the non-dissipative/forced case. (b) Plot of
f (AQ?; , €, ¥, T) as a function of Af)ff for a fixed value of the dissipation y = 0.1 and for different values of
the parameter € as indicated in the legend. In both cases, the time is fixed t = 1.

Whether the results presented here will have implications for operational wave
forecasting models remains an open question that will be explored in the near future. In
the wave forecasting community, it is common to assume that wind input, dissipation due
to white capping and wave—wave resonant interactions are of the same order of magnitude.
We have demonstrated that this description is consistent with a deterministic model, where
dissipation and forcing act at a higher order relative to nonlinearity. This assumption allows
the study of these processes in isolation, significantly simplifying the development of wave
forecasting systems. However, it is plausible that, at certain scales, within the deterministic
equation of motion, dissipation becomes comparable with the nonlinear interaction term.
The transition between these two described regimes is not fully understood, and the
derived WKE may provide valuable insights. As for forcing, there are certainly ocean
conditions with strong winds where the forcing term operates on a faster time scale, after
which nonlinear interactions could begin transferring energy across the spectrum. Again,
our wave kinetic equation could serve as a useful tool for investigating such scenarios.
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Appendix A

We define the phase averaging of a function f (61, 02, ...0y) over the initial phases
01,05, ...0) as

2
(f (él,éz,...éM))é:/O B (01,02, ...0m) f(O1, 02, ...00)d01d0, ... dOy, (Al)

where P61, 05, . .., Oy) is the joint probability density function. If we assume the phases
to be statistically independent and uniformly distributed, we have B(61, 62, ..., 0y) =
PODBO) ... POy) = 27)~M and hence

1008 A44-10


https://doi.org/10.1017/jfm.2025.201

https://doi.org/10.1017/jfm.2025.201 Published online by Cambridge University Press

Journal of Fluid Mechanics

- 1 2t - _
(f (61,02 ...0m));= L f(61,0,,...04)d01d6, ... dOy. (A2)
Appendix B
‘We note that
4 6)) 4 T
1 J5]6J 67 567
EZ‘]—L:ZZ H 'P( 0m5’ ‘Qms’eym ’ >5m5’ (Bl)
m=1 “"M m=1 567
4 4 J5J(,J7
2605 3 g, 080 Z Q (05, AT €3, 1) 8%, (B2)
m=1 m=1

where we used (3.7) and (3.8), and 0;, = {+1, +1, —1, —1}. Plugging (B1) and (B2) into
(3.28) yields

dJ(z) h
- = 8w P@n. by, cm. 1) sin(a + bt) + 0, Q(am, b cm. 1) cos(a + bt)] ,
m=1 B3
where we used (3.30), (3.25), and (3.26), and we introduced
a:Aéfg, b—AS_.?fg, c_eAy234,
am =A%, by =AR%L, =€y (B4)

Exploiting the terms in the square brackets of (B3) gives

i bt
—sz(a i 3 ) {e“" [cm sin(am + bmt) — by cos(am + b)) + by c08(am) — cm sin(am) }
b + ¢4
bt
% {ec’”’[cmcos(am—F b t) + bysin(ay, + byut)] — by sin(ay,) — cmcos(am)}.
m cm

(B5)

Noticing that o,%l =1, cos(o,,x) = cos(x), sin(oy,,x) = oy, sin(x) we can collect the first
two terms in the two brackets as

Ymer™" [sin(a + bt) sin(a,, + by,t) + oy cos(a + bt) cos(ay, + byut)]

= et [0,31 Sin(a + bt) sin(am + byt) + om cos(a + br) cos(am + bmt)]

= yme"™ o, [sin(a + bt) sin(o, (am + but)) + cos(a + bt) cos(oy, (apy + bput))]

= Yme'™ o, cos(a + bt — o, (ay + b)), (B6)
the second two terms in the two brackets as

bme’™ [— sin(a + bt) cos(ay + bpyt) + oy cos(a + bt) sin(a,, + byt)]

= be’" [— sin(a + bt) cos(o,, (am + bmt)) + cos(a + bt) sin(oy, (am + bit))]

= —b e’ [sin(a + bt) cos(o, (am + bt)) — cos(a + bt) sin(op, (am + bmt))]

= —bpe’" sin(a + bt — o (ay + byt)), B7)
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the third two terms in the two brackets as

by, [sin(a + bt) cos(ay,,) — oy, cos(a + bt) sin(ay,)]
= by, [sin(a + bt) cos(o,a;,) — cos(a + bt) sin(oy,a,,)] (B8)
= b,, sin(a + bt — opay,),

and the last two terms as
— Ym [sin(a + bt) sin(ay,) + oy, cos(a + bt) cos(an)]
= —Vm [a,i sin(a + bt) sin(ay,) + o, cos(a + bt) cos(am)]
= —Ymom [sin(a + bt) sin(oy,ay,,) + cos(a + bt) cos(oam)]
= —Ymom cos(a + bt — opay). (B9)

We gather all terms and we define R ,, and R» ,, as follows:

Ry = e oy cos(a + bt — 0 (ay + byt)) — Cpom cos(a + bt — opay,)

= Re {cme oy expli(a + bt — oy (am + bt))] — cmom exp [i(a + bt — omam) }
— Re {Gmcmei(a—amam)eibt (e(cm —iombm)t _ 1)}

= o, cmiRe {(e(Cm*l-O'mbm)t o 1) ei(afomam)eibt} ’

Ry = e b,, sin(a 4+ bt — oy (am + bit)) — by, sin(a + bt — oapm)
= Jm {e“"' by, expli(a + bt — oy (@ + bt))] — by exp li(a + bt — opan) |

—Jm {bmei(a—amam)eibt (e(cm—iambm)t _ 1)}
— b, Jm {(e(cm—iambm)t _ 1) ei(a—crmam)eibt} . (B10)

We insert these expressions in (B3) and we return to the variables (B4) to finally obtain
(3.29).

Appendix C

The relevant terms to the phase averaging of (3.29) are the exponential terms in Rj ,, and
R» ,, involving the angular variables. In particular, if Aéf; - amAér% is proportional 6
the integral is zero, and if Aéf; — JmAQ_,% =0, the contribution of the integral is equal

to 1. We also note that if Aéfﬁ‘ — omAér% =0 then AQ%‘ — omAQSZS =0 and hence, the
phase averaging of (3.29) can be simplified as

d(](2)>_ 4 Sm .
03" 5 (o [ o] s}

where we used again the notation (B4). In what follows we will be using the following
properties:
AR =—AQ% Ayt = AP 42 — va). (C2)

a
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We consider the first term m =1 and we impose Aéfﬁ‘ — 01 Aéfg =0 which is satisfied
when ky = ks, k3 = kg, and k4 = k7, or when ko = ks, k3 =k7, and k4 = k. In both
cases the terms on the right-hand side of (C1) are

bl:A[_Zf’;, C]=EA)/1234, b—O’]bl:Aéfg—AQ%l:O,

TV T3 dadn T3, T
S1=2 Ty YAESARTR a0 N BT Jaet T SH,(©3)
234 \/71 234

567

which leads to the following term:

e A2M sin(AQHD +eayP [ —cosa2iin]}
12

/
43 T2y i i
; e (AZTH? + (edyy?

(C4)

where the factor 4 is due to the second case k> = ks, k3 = k7, and k4 = k¢. If we neglect
the term proportional to € which leads to an overall €> contribution, then the first term of
(3.29)is

! - _ARY sin(AQ34t)e€AV1234’
=43 Thyhhl—2 12— 5, (C5)

(%)
dr

where pj is given by (3.32) for m = 1. Terms for m = 2, 3, 4 can be evaluated analogously.

Appendix D
Equation (2.4) can be written as

i% — Z /b*b3b4eiAgf§z+eAy1234z334 (D1)
dr 234 ’ .

where by = ay exp(—i(£2x — iyx)). Multiplying the above by b7, subtracting its complex
conjugate, and taking the mean value leads to

djbi|?
dr

=2¢ Y 'Jm {(b’fb;bglu)eiAgfffﬁAVf“f} 53, (D2)
234

We consider the time derivative of the four point correlator

d db* db% dbs dby
3 (D03b3ba) = (~Lb3b3ba) + (—2bibsba) + (~>bib3ba) + (~~b{b3b3). (D3)

We insert (D1) in each term on the right-hand side and we integrate both sides between 0
and ¢ and we obtain
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! t
(bt (03 (b3 ()ba(t))— (b}D3b3ba) = i€ Y (bsbibsb3bsby)s] / e~ iBR2steays g
567 0
o ro o6l 567
+ie Z(bsbgb;bi{bﬂM)S%/ e DS sTeAY s g6
567 0

4 t
—————— . 67 567
—ie Yy (bibsb7b}b3ba)oS] f e A TssHeAYTs g
567 0

4 t
TR~ W T A 67 567
—ie Y (bbebrb}b3b3)s5] / e AysS AV
567 0
—iARt+eAt _

—i AR + eAy®

567
oo —iAQ8It+e Ayt _ 1
+ie Y (bsbibibtb3bs)s8l
;7: 677 P A8 + ey

inQi+eay _

iNQS] +eAyy

inQY ey _

iARY +eAy®
(D4)

567

where we assumed that the six points correlator does not evolve in time and therefore all
terms in the six points correlators are equal to their value at initial time bx = bk (0). This
corresponds to the condition of closure
d(b7bgb7b3babs) , d(btb3bEbibebr)
=0(), j=1,2
dr dr
We now insert (D4) into (D2) and we obtain

=0(), i=3,4. (D5)

djbi|?
dr

/
e ra T T : 34 234
=262Zjm{<bTb;b3b4>€lAlet+€Ayl t

234
567

: 67 567
—IA2)5t+e Ayt 1

PRINCEARRIN
—i AR+ eAy®
—iA25T1+eAy; "t _

eiA.Qfgt—l—eAylet
_'A967+ A 567

LA3Hs T €AY,
inQ+eAyr _ 4

o ARG 1HeAy P

iA8] + eAy®
______ inQ+eAy "t _

. 34 234
61A912[+€A}/1 t}ai’é— (D6)

iAR5] +eny®
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The first term in the curly brackets can be evaluated by using Wick’s decomposition
(b1b3b3ba) = |b3[?1bal> (8587 + 8384, (D7)

so that
R - - A o34 234 - - .

(b1b3b3ba) = 1b3 |2 |bal* (8387 + 838,)¢' SZRITERVITE = by P o Pe 727, (DS)
which we note is a pure real quantity and hence, it will not give contribution to (D2). The
other terms in the curly brackets can be evaluated again by using Wick’s decomposition:
for instance, for the second term in (D6) we can use

(b3babsbibiby) = |ba|*|be|* b7 (5%525} + 88562 + 876788 + 538182 + 618552
+836357) (DY)

and the non-trivial terms are those proportional to 8?818? and 8; 828?. Evaluating both
terms leads to

—iAQRi+e Ay _

2i|by | 1B31 |ba ol AR Ny g3 (D10)

—i AR + ey

Rationalizing the denominator and removing the term proportional to €, which gives an
overall €3 contribution, leads to

AR <efiA.Qf;t+eAy1234t _ 1)

A o3 234
342 234)2 e AFRITeAY; t‘s%g‘ (D11)
(AR7)" + (eay?™)

—2|ba|*|b3|?|bal?

Carrying out the multiplication gives

34 ( 2eAyBtr  eAyPH 34\ .o 34\ Ay
A2y, <e 1 e =V cos (A.let) i sin (Alet)e 1

—21baf*1b3 1 ba? 3 3 55
(AR2E)" + (eary™)
(D12)
According to (D2) we only need to consider the imaginary part so we have
o A2 sin (AR34) e
by 221250 (AZ151) 5. (D13)

2 2
(A25)" + (ear™)

The calculation for the other terms can be done in analogous way and, after inserting all
terms into (D6), we recover (3.31) for m = 1.
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