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Abstract

For the class of self-similar measures in RY with overlaps that are essentially of finite type, we set up a
framework for deriving a closed formula for the L?-spectrum of the measure for ¢ > 0. This framework
allows us to include iterated function systems that have different contraction ratios and those in higher
dimension. For self-similar measures with overlaps, closed formulas for the L?-spectrum have only been
obtained earlier for measures satisfying Strichartz’s second-order identities. We illustrate how to use our
results to prove the differentiability of the L7-spectrum, obtain the multifractal dimension spectrum, and
compute the Hausdorff dimension of the measure.
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1. Introduction

Let u be a bounded positive Borel measure on R whose support supp() is compact.
For g € R, the LI-spectrum t(q) of u is defined as

1 (B (x)
)i lim T8 S B
6—>_0+ Iné

)

where Bs(x;) is a disjoint family of §-balls with centers x; € supp(u) and the supremum
is taken over all such families. The function 7(g) arises in the theory of multifractal
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decomposition of measures. A major goal of the theory is to compute the following
dimension spectrum:

. . Inp(Bs(x))
= dimar e sppt: fig MEBD _ )
f@) := dimyp{x € supp(u) : lim —— - @
where dimy denotes the Hausdorff dimension. The multifractal formalism, a heuristic
principle first proposed by physicists (see [7, 8] and the references therein), asserts that
the dimension spectrum is equal to the Legendre transform of 7(g), that is,

f(@) =1 (@) :=inf{ga — 1(g) : g €R}.

We are mainly interested in self-similar measures. For such measures, the multi-
fractal formalism has been verified rigorously for those satisfying the separated open
set condition [1, 3]. For self-similar measures defined by iterated function systems
satisfying the weak separation condition, Lau and the first author [13] proved that
if 7(g) is differentiable at g > 0, then the multifractal formalism at the corresponding
point holds. Feng and Lau [5] removed the differentiability condition; they also studied
the validity of the multiformal formalism in the region ¢ < 0.

The L7-spectrum also encodes other important information of the measure. For
example, 7(0) is the negative of the box dimension of the corresponding self-similar
set; if 7 is differentiable at ¢ = 1, then 7’(1) is equal to the Hausdorff dimension of
u (see [9, 13, 19, 23] and the references therein); for g > 1, 7(q)/(g — 1) is the L9-
dimension of u (see [24]).

The computation of L?-spectrum thus plays a key role in the theory of multifractal
measures. For self-similar and graph-directed self-similar measures satisfying the
open set condition, 7(g) is computed by Cawley and Mauldin [1] and Edgar and
Mauldin [3]. For self-similar measures with overlaps, the computation is much more
difficult. Lau and the first author obtained 7(g), g > 0, for the infinite Bernoulli
convolution associated with the golden ratio [12] and a class of convolutions of Cantor
measures [14]. Feng [4] computed 7(g) for infinite Bernoulli convolutions associated
with a class of Pisot numbers. The graph of 7(g) for g < 0 has been studied in [4, 6, 18].

The computation of 7(g) in [12] and [14] makes use of Strichartz’s second-order
self-similar identities. Unfortunately, very few self-similar measures satisfy these
identities. Thus, closed formulas for 7(g) have been obtained for only a few classes of
measures that are defined by iterated function systems on R with the same contraction
ratio. The main objective of this paper is to derive a closed formula for 7(g), ¢ > 0, for
self-similar measures that are so-called essentially of finite type (EFT), a condition
introduced in [21]. We recall the definition of EFT in Definition 2.16. It is worth
mentioning that recently Deng and the first author [2] used an infinite matrix method to
obtain the differentiability of the L?-spectrum for a class of iterated function systems
(IFSs) that includes some of those studies in this paper; however, the method does not
yield a closed formula for 7(g).

Throughout this paper an IFS refers to a finite family of contractions defined on a
compact subset X of R?. The derivation of 7(g) in this paper is based on the following
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equivalent definition, which holds for g > O:

(@) = infla >0 fim ——

f p(B(x))7 dx > 0}
X

- 1
= sup{a >0: 611)1})1+ STa j;u(B(;(x))q dx < oo}, (1.1)

(see [11, 12] and [13, Proposition 3.1]).

Let Q C R’ be a bounded open subset and u be a positive finite Borel measure
with supp(u) C Q and u(€QQ) > 0. We say that two subsets U and V of Q with positive
p-measure are p-equivalent if ply = wuly o o' for some w > 0 and some similitude
o : U — V, where y|r denotes the restriction of the measure u to F C R?. A u-partition
P of U is a finite family of measure disjoint sub-cells of U such that u(U) = > yep (V).
A sequence of y-partitions {Py}i>; is refining if each member of Py, is a subset of
some member of Py.

Our main assumption is the EFT condition introduced in [21], which, loosely
speaking, holds if there exists some bounded open subset Q C RY with supp(u) C Q
and u(Q) > 0, together with a finite family B := {B; ¢}ser of cells in Q such that for
each £ €T, there is a family of refining p-partition {Py ¢};>; satisfying the following
conditions: (1) there exists some cell B € P, that is not in P; ¢ such that B has the same
measure type with some cell in B; (2) Py, ¢ contains all cells in Py, that have the same
measure type with some cells in B for k > 2; (3) the sum of the y-measures of those
cells B € P, , that are not u-equivalent to any cell in B tends to 0 as k—oo. In this case,
we call Q an EFT-set, B a basic family of cells in Q, and (B, P) := ({B1 ¢}, {Pr.elis1)cer
a basic pair with respect to Q. We say that (B, P) is weakly regular if for any £ € T,
there exists some similitude o, such that o¢(2) C By 4.

Let 4 be a self-similar measure defined by a finite type IFS {S;}ica on R9 (see [10, 15,
22]) with Q being a finite type condition set. Assume that u satisfies EFT with Q ¢ R?
being an EFT-set and (B, P) := ({B1.¢}, {Pr.c}i=1)cer being a weakly regular basic pair
with respect to Q. Fix g > 0, define

1
0i(0) = f B () dx, D7) = —ogi(®) for (€T, (12)
B¢

Then we can derive renewal equations for GD(CQ) (6), and express them in vector form as:
f=fxM, +z,
where a € R, and
f =190 =" @)er, xeR;
£ = 0P (™) forlel;

1.3
M, = [/.tf'(llg]amer is a finite matrix of Borel measures on R; (13)
z2=7x) = [Zi;a)(x)]ger is a vector of error functions.
Let
M, (00) := [ (R)]rmer- (14)
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For each £ € I" and « € R, define

Fia) = Z,u(“)(R), D; = {aeR: Fya) < o). (1.5)

mt
mel’

If the error functions decay exponentially to 0 as x — oo, then the L7-spectrum of u
is given by the unique a such that the spectral radius of M, () is equal to 1. The
following is our main result.

Turorem 1.1. Let u be a self-similar measure defined by a finite type IFS {S;}ica on RY.
Assume that y satisfies EFT with Q being an EFT-set and (B, P) := ({B1 ¢}, {Pk.¢}i>1)eer
being a weakly regular basic pair with respect to Q. Let M, (o0) and F¢(a) be defined
asin(1.4) and (1.5).

(1)  There exists a unique a € R such that the spectral radius of M, (o) is equal to 1.
(2) Ifwe assume, in addition, that for the unique « in (a), there exists € > 0 such that
forall CeT, z;a)(x) =o(e™) as x — oo, then 1(q) = a for g = 0.

In Section 4, we illustrate Theorem 1.1 by the following family of IFSs on R:
Six)=px, SH(x)=rx+p(1-r), Si(x)=rx+1-r, (1.6)
where the contraction ratios p, r € (0, 1) satisfy
p+2r—pr<i, (1.7)

that is, S>(1) < S3(0) (see Figure 1). This family of IFSs is first studied by Lau and
Wang [17], and is used to illustrate the (general) finite type condition in [10, 15]. For
a probability vector ( Pi)?:p we define

k
wi(k) := ps Zp’;‘/pg' for k > 0. (1.8)
=0

THEOREM 1.2. Let u be a self-similar measure defined by an IFS in (1.6) together with a
probability vector (p,-)?zl, and w1 (k) be defined as in (1.8). Then for q > 0, there exists
a unique real number « := a(q) satisfying

P = A = plr) Y wRICT + p p =1 (19)
k=0

Hence t(q) = a. Moreover, 7 is differentiable on (0, o) and

3 3 o0
dimu() = (1) = (X piln pi = paps Y i) " wih)
i=2 i=2 k=0

; o 3
- (1—[(1 - pl-)) Z wi(k) Inw (k) — Z piln pi)
i=2 k=0 =2
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S] S3

Sa

FiGgure 1. The first iteration of :S,-}?:] defined in (1.6). The figure is drawn with p = 1/3 and r = 2/7.

X ((Pz + p3 —2pap3) Z wi(k)Inr
=0

3 00 3 _
~([Ta-p0) Y wiwintery - > pinr) .
i=2 k=0 i=2

Remark 1.3. Substituting ¢ = 0 in (1.9) gives p~™@ + 2777® — (pr)=™® = 1. Hence
—1(0) equals the Hausdorff and box dimensions of the corresponding self-similar set
(see [10, 15, 17]).

In Section 5, we illustrate Theorem 1.1 by the following family of IFSs on R?:

S$1(x) =px, S$2(x) =rx+(p—pr,0),

1.10
S3xX)=rx+(1-r,0), Sisx)=rx+(0,1-r), ( )

where the contraction ratios p, r € (0, 1) satisfy
p+2r—pr<i, (1.11)

that is, S»2(1,0) < S3(0,0) (see Figure 2(a)). For any probability vector (pi)j.‘:l, define

k
wo (k) := py Zpg_jpé for k > 0. (1.12)
j=0

THeEOREM 1.4. Let u be a self-similar measure defined by an IFS in (1.10) together with
a probability vector (p,-)?zl, and wy(k) be defined as in (1.12). Then for q > 0, there
exists a unique real number « := a(q) satisfying

4

P~ = plr (1 - plr ) Z wa ()2 + Z pl=1 (1.13)
k=0 =2

Hence t(q) = a. Moreover, 7 is differentiable on (0, o) and

3 3 o0
dimu() = 7(1) = (X piln pi = paps Y In i) " wah)
i=2 =2 k=0

; o 4
— (1—[(] — pi)) Z wo (k) Inw, (k) — Z piln pi)
i=2 k=0 i=2
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X (02 + p3 = 202p3) 2w
k=0

(]_[a —p) )i 2(k) In(prt) - i piln r)f1
=2 k=0 i=2

Remark 1.5. Substituting ¢ = 0 into (1.13), p~7@ + 37770 — (pr)™® = 1. Again,
—1(0) equals the Hausdorff and box dimensions of the corresponding self-similar set
(see [15, Example 5.2]).

We use the vector-valued renewal theorem of Lau et al. [16] to derive the stated
formulas for 7(q); the classical renewal theorem used in [12] and [14] is not sufficient,
as a finite number of renewal equations arise in our derivations. New techniques are
also used in estimating the error terms and in proving the differentiability of 7(g).

This paper is organized as follows. In Section 2, we briefly recall the definition of
EFT. In Section 3 we derive renewal equations and prove Theorem 1.1. Section 4
illustrates Theorem 1.1 by the class of one-dimensional IFSs (1.6) and proves
Theorem 1.2. Section 5 studies IFSs in higher dimension and proves Theorem 1.4.
Finally we state some comments and open questions in Section 6.

2. Self-similar measures and measures that are essentially of finite type

In this section, we recall the definition of EFT and then prove that it is satisfied by
the self-similar measures defined by the IFSs in (1.10).

2.1. The finite type condition and measure type. Let X be a compact subset of R?
with a nonempty interior, and {S;};ca be an IFS of contractive similitudes on X with
attractor K C R?. To each probability vector (p;)iea (thatis, p; > 0 and Y;cp pi = 1), let
4 be the associated self-similar measure, which satisfies the self-similar identity

p= szuoS !

Moreover, supp(u) = K. An IFS {S;};ea is said to satisfy the open set condition (OSC)
if there exists a nonempty bounded open subset U ¢ RY such that | J;c, S(U) € U and
SiU)NS (U)=0foralli=#j.

For k > 1, define

={(i1,...,x):ijeAforj=1,...,k},

where we call i € A¥ a word of length k, and denote its length by [i|. If k = 0, we
define A” := {0}. Also, we let A* := Uy AF. We frequently write i := i - - - iy, instead
of i = (iy, ..., i) if no confusion is possible; in particular, we write i =: i’f, if i; = i for
all j=1,...,k.Fork>0andi=1i---i; € AK, we use the standard notation

Si=8;0---08,, rii=ricri, Pii=picccPio

with Sg :=id, ry = pp := 1, where id is the identity map on R¢.
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For two indices i, j € A*, we write i < j if i is a prefix of j or i = j, and denote by
i £ jif i < j does not hold. We say that i, j € A* are comparable if i < jor j<i. If
two elements are not comparable, we say they are incomparable; that is, i and j are
incomparable if neither i < j nor j <i. A chain in A* is a subset of A* in which each
pair of elements is comparable. An antichain in A* is a subset of A* in which each pair
of distinct elements is incomparable.

Let {Mi};2, be a sequence of index sets, where M; € A*. Let

m, = m (M) = minflil - § € My,
and

my = mp(My) = max{|i] : i € My}
We also let M, := {0}.

DeriniTion 2.1. We say that {M}2 is a sequence of nested index sets if it satisfies the
following conditions:

(1) both {m, } and {m;} are nondecreasing, and

A e = I e =
(2) foreach k > 1, My is an antichain in A*;
(3) foreach j € A* with |j| > my or j € My, there exists i € My such that i < j;
(4) for each j € A" with |j| < m, or j € M1, there exists i € M; such that j <i
(5) there exists a positive integer L, independent of &, such that for all i € M; and
J € My41 with i < j, we have |j| — |i| < L.

]

To define neighborhood types, we fix a sequence of nested index sets {My};2.
Notation 2.2.

(1) For each integer k > 0, let V; be the set of level-k vertices (with respect to { M})
defined as

Vo :={(d,0)), Vi:={(Sik):ie My} forallk>1,

we call (id, 0) the root vertex and denote it by Vyy;.

(2) LetV :=J;s0 Vi be the set of all vertices.

(3) Forv = (S;,k) € Vi, we use the convenient notation S, := S; and r, := r;. It is
possible to have v = (S;,k) = (S, k) withi # j.

(4) More generally, for any k > 0 and any subset A C V;, we use the notation

Sa(Q) = U S,(Q). @2.1)
veA

Let Q C X be a nonempty bounded open set which is invariant under {S;};ca, that
is, Ujea Si(2) € Q. Such an Q exists by our assumption; in particular, X° is such a set.
Next, we recall the definitions of neighbors and neighborhoods.
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DermniTion 2.3. We say that two level-k vertices v, v’ € V. (allowing v =v’) are
neighbors (with respect to Q and {M;}) if S,(Q) N S, (Q) # 0. We call the set of
vertices

Nao) :={v' : v’ € V, is a neighbor of v}

the neighborhood of v (with respect to Q and {M;}).

Obviously v € 9ig(v). If no confusion is possible, we omit the subscript Q in Jtg(v).
Let.” :={S;S i‘l : i, j € A*}. We define an equivalence relation on the set of vertices
V.

DermniTiON 2.4, Two vertices v € Vy and v’ € V. are said to be equivalent, denoted
v ~, v (or simply v ~ V'), if for o := §,, S, (e ) : Unenw) Su(X) — X, the following
conditions hold:

(1) Sy :u eN)} ={0S, : u € N()}; in particular, S, is defined for all u € N(v);

(2) for u € N(v) and u’ € N(v') such that S,y = oS, and for any positive integer
¢ > 1, an index i € A* satisfies (5,S;, k + €) € Ve if and only if it satisfies
(Su/Si,k/ + f) € Viear.

It is direct to check that ~ is an equivalence relation. We denote the equivalence
class containing v by [v] and call it the (neighborhood) type of v (with respect to €2 and
{Mih).

We define an infinite graph G with vertex set V and directed edges & defined as
follows. Let v € V. and u € V1. Suppose there exist i € M, j € M1, and [ € A*
such that

v=0Spk), u=(S;k+1), j=@a10.

Then we connect a directed edge / : v — u. We call v a parent of u and u an offspring
of v. We write G = (V, &), where & is the set of all directed edges defined above.
We call v = (S;, k) a predecessor of u = (Sj,k’), and u a descendent of v, if i < j and
K>k+1.

DerniTion 2.5. Let {S;};ea be an IFS of contractive similitudes on a compact subset
X C RY. We say that {S;}ica is of finite type (or that it satisfies the finite type condition
(FTC)) if there exist a sequence of nested index sets {M;};”, and a nonempty bounded
invariant open set Q C X such that, with respect to Q and { M.}, the set of equivalence
classes V/. :={[v] : v € V} is finite. We call such an Q a finite type condition set (or
FTC-set).

DeriniTiON 2.6. A subset I C Vy is called a level-k island (with respect to Q and {M})
if S7(Q) is a connected component of S+, (€2).

REMARK 2.7.

(1) For each v € V,, there exists a unique island, denoted 7 (v), containing v and,
moreover, %t(v) C I(v).
(2) If {S;}ica satisfies OSC with Q being an OSC-set, then J(v) = {v} for all v € V.
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Nortartion 2.8.

(1) Let
Ip:={7 :7isalevel-kisland}, 1I:= U Tk
k=0
be the collection of all level-k islands and the collection of all islands,
respectively.
(2) Generalizing (2.1), for any k > 0 and any subset B C I, we use the notation

S5(Q) 1= U SHQ).

IeB

DeriniTiON 2.9. We say that two islands 7 € Iy and I’ € Iy, are equivalent, and denote
itby I ~, I’ (or simply I ~ I"), if there exists some o~ € . such that {S, : v/ € I’} =
{oS, : v € T} and, moreover, v ~, v’ for any v € T and v’ € I’ satisfying S,» = o°S,.

Nortation 2.10.

(1) We denote the equivalence class of 7 by [J] and we call [1] the (island) type
of 1.

(2) For I e€ly, I’ € Ixy1, £ is said to be a parent of I’ and I’ an offspring of I if for
any v € I', I contains some parent of v. For any k > 0 and 1 € [, let

OT) :={YJ : g is an offspring of I} 2.2)

be the collection of all offspring of 7. Analogously, we define predecessors and
descendants of an island.

Dermnition 2.11. Let u be a self-similar measure defined by an IFS {S;};ca of finite
type with Q being an FTC-set. Two equivalent vertices v € V; and v’ € V). are pu-
equivalent, denoted v ~, -, v (or simply v ~,, v') if for o = S, 0 S;!, there exists a
number w > 0 such that

-1
/llsuxw)(ﬂ) =w: #|S‘J?(v)(Q) °co .

As ~ is an equivalence relation, so is ~,. Denote the p-equivalence class of v by
[v], and call it the (neighborhood) measure type of v (with respect to Q, { My} and
). Intuitively, v ~, v means that the measures uls,,, ) and pls,, @) have the same
structure. The following proposition shows that u-equivalent vertices generate the

same number of offspring of each neighborhood measure type. The proof can be found
in [21].

ProrosiTion 2.12. For two equivalent vertices v € Vi and v/ € Vi, let {u;}icn, and

{u; },-eAfl be the offspring of v and v’ in G, respectively. If [v], = [v'],, then, counting
multiplicity, {[u;], : i€ A} ={[u;], i€ A}
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Derinition 2.13. Let y be a self-similar measure defined by a finite type IFS {S;};ca on
R4 with Q being an FTC-set. Two islands 7 € I and 7’ € I, are said to be u-equivalent,
denoted 7 =, I’ (or simply I ~, I"), if I ~, I’ and there exists some w > 0 such
that

Usp@) =W+ sy 00" (2.3)

We remark that (2.3) holds if and only if v ~, ., v for any v€ 7 and v' € I’
satisfying S, = oS,. We note that =, is an equivalence relation. We denote the
p-equivalence class of 7 by [1],, and call [I], the (island) measure type of T
(with respect to Q, {M;}, and p). From the definition of ~,, we obtain an analog
of Proposition 2.12 concerning =,. That is, u-equivalent islands generate the same
number of offspring of each island measure type.

Derinition 2.14. Let u be a self-similar measure defined by a finite type IFS. Let B C I
fork>0and B, :={[7], : I € B}. We call I a level-2 nonbasic island with respect to
Bif 7 € O(J) for some J € B and [7], ¢ B,,. Inductively, for £ > 3, we call I a level-{
nonbasic island with respect to B if I is an offspring of some level-(£ — 1) nonbasic
island with respect to B and [1], ¢ B,,.

We remark that, by definition, for any ¢ > 2, 7 is a level-{ nonbasic island with
respect to B if and only if there exists a finite sequence of {7, k},‘;:1 such that 7, € B,
I,=1,[1;],¢B,, and I;is an offspring of 7;_; foralli=2,...,¢. In particular, 7; is
a level-i nonbasic island with respect to B foralli =2,...,¢.

2.2. Measures that are essentially of finite type. We recall the definition of EFT
in [21, Section 2.2]. Let Q C R? be a bounded open subset and u be a positive finite
Borel measure with supp(u) C Q and u(Q) > 0. We call a y-measurable subset U of
acell (in Q) if u(U) > 0.

We say that two cells U and V are u-equivalent, denoted U =~ .,, V (or simply
U ~, V), if there exist some similitude o : U — V and some constant w > 0 such that
o(U) =V and

ply =wply oo™,
It is easy to check that =~ is an equivalence relation.

Let U € Q be a cell. Two cells V, W in U are measure disjoint with respect to u if
u(Vn W) =0. We call a finite family P of measure disjoint cells a u-partition of U if
VcUforall VeP,and u(U) = 3 yep u(V). A sequence of u-partitions {Py}i>; is said
to be refining if for any V € Py and any W € Py, either W C V or they are measure
disjoint, that is, each member of P, is a subset of some member of Py.

Remark 2.15. Let u be a self-similar measure defined by a finite type IFS {S;};,cp on
R¢ with Q being an FTC-set. The following can be verified directly.

(1) Foranyisland 7 €1, S7(Q) is a cell.
(2) Let 7 and I’ be two islands. By definition, 7 ~, Z” if and only if 7 = 7’ and
Sr(€) =, S (Q).
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(3) Letk>m=>0. Then for any I €I, P :={S4(Q) : J €I is a descendent of 1}
is a refining p-partition of S7(Q).

Let B := {Bi¢}¢er be a finite family of measure disjoint cells in Q, and for each
t €T, let {Pys}i>1 be a family of refining u-partitions of By, with Py, := {B) ¢}. For
k > 2, we divide each Py, into two (possibly empty) subcollections, P,L , and P,%’ /> With
respect to B, defined as follows:

P,'(’[ :={B€Py,:B=~, B, forsomeiecl},

2 1 1 2.4)
Pk,f = Pk,g\Pk’f = {B € Pk’[ :B¢ Pk,l}'

DeriNiTION 2.16. We say that a positive finite Borel measure u on RY is essentially of
finite type (EFT) if there exist a bounded open subset Q C R with supp(u) C Q and
u(€) > 0, and a finite family B := {B; ¢}ser of measure disjoint cells in Q such that
for any £ €I, there is a family of refining u-partitions {Py ¢};>1 of B, satisfying the
following conditions:

(1) Py, ={Bi,}, and there exists some B € P%,e such that B # B s;

(2) if for some k > 2, there exists some B € P, ,, then B€ P, , and hence B€ P, ,
for all m > k;

Q) limyeo Xpepz p(B) = 0.

Here P,L ,and P]%, ¢ (k > 2) are defined as in (2.4). In this case, we call Q an EFT-set, B a
basic family of cells (in Q), and (B, P) := ({B1 ¢}, {Pr.c}k>1)cer a basic pair (with respect
to Q).

REMARK 2.17.

(1)  We remark that conditions (1) and (2) are needed in Section 3 to derive the
vector-valued renewal equation, and error estimate forces condition (3) to hold.
In fact, to derive the vector-valued renewal equation, we only need condition
(2) as well as (1’): the existence of some B € | i, P]i’f such that B # B .
Since condition (3) implies that | ;- P,L ¢, # 0, we have chosen to use the more
convenient condition (1).

(2) Let(B,P):= (B¢}, {(Prrlr=1)eer be a basic pair. Then for some k > 2, Pi’[ =0Qif
and only if P, ; = Py, for all m > k.

The following definition of a weakly regular basic pair is weaker than that of a
regular basic pair defined in [21].

DermniTioN 2.18. Assume that u satisfies EFT with Q being an EFT-set and (B, P) :=
({B1.¢}; {Pr.c}k=1)cer being a basic pair with respect to Q. We say that (B, P) is weakly
regular if for any £ € I', there exists some similitude o such that o¢(€2) € B; . In this
case, we call B a weakly regular basic family of cells (in Q).

Measures studied in this paper are mainly self-similar. The following result is
modified from [21, Proposition 2.15] to suit our purposes. The proof is similar. A
connected FTC-set Q is replaced by an FTC-set Q2.
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Prorosition 2.19 [21]. Let u be a self-similar measure defined by a finite type IFS on
R? with an FTC-set Q. Suppose there exists some m > 0 such that the following two
conditions hold.

(1) There exists a finite index set I' such that 1, = {1, : € €T}, moreover, for
each € € T, there exists some constant c(€) > 2 (chosen to be the minimum) and
descendant J € Lyico)-1 of L1 satisfying Sq(Q) # S7,,(Q) and J =, I,; for
someiel.

(2) Fork=2and{teT, let It be the collection of all level-k nonbasic islands with
respect to 1, that are descendants of I . Then limy_e 3 rer,, u(S1(€2)) = 0 for
allCeT.

Then u satisfies EFT with Q being an EFT-set and with B = {S1, ,(Q) : € € I'} being a
basic family of cells in Q.
In the proof of Proposition 2.19, for any € € T', we define
Pl’( = {Bl,(} and
Py, :={Sq(Q) : J € Lice)-1 1s a descendant of 1 ¢},

where By, = S7,,(Q). For k > 3, if Pi_u, =0, define Py, :=P

(2.5)

I, ;> otherwise, define

Py, = P}HI U{S7(Q) : I € O(9) for some island S
satisfying S7(Q) € P_, ). (2.6)
The following two classes of examples for EFT are proved in [21].

ExampLE 2.20. Let u be a self-similar measure defined by an IFS {S;},cpo on R4
satisfying OSC with Q being an OSC-set and u(Q) > 0. Then u satisfies EFT with
Q being an EFT-set and B := {B) ;} = {Q} being a weakly regular basic family of cells.

Let {S i}?zl be defined as in (1.6) and u be the self-similar measure associated with
a probability vector (p,-)?:l. Let wy(k), k > 0, be defined as in (1.8). We remark that for
k>0,

PPy + powi(k) = pip5t + pswi(k) =wi(k+1) and
wik+ 1) <w(k) < D1-

ExampLE 2.21. Let u be the self-similar measure defined by an IFS {S,-}f:l in (1.6)
together with a probability vector (p;)?_,. Then u satisfies EFT with Q = (0, 1) being

an EFT-set and there exists a weakly regular basic pair with respect to Q.

2.3. EFT for a class of IFSs on R2. In this subsection, we prove that any self-similar
measure defined by an IFS in (1.10) satisfies EFT.

Let {Si};‘:1 be defined as in (1.10) and u be the self-similar measure associated with
a probability vector (p; le. Let wy(k), k > 0, be defined as in (1.12). We remark that
fork >0,

PP+ pawa(k) = pipitt + pawa(k) = wa(k + 1) and

walk + 1) < wa(k) < py. 2.7
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Throughout this subsection we let X = [0, 1] x [0, 1],
Q=X°, We:={2"13:i=0,1,...,k} fork>0. (2.8)
To simplify notation we let
yi:=1-rF fork>0. (2.9)
Define
Ty ={S1, D, (S, DY Zi2:=1{(S5. DY 25 :={(Ss, D} (2.10)
(see Figure 2(a)) and
By 1 1= 87,,(Q) = $1(€) U S2(Q) = (0, py1) X (0,p) U (py1,py1 + 1) X (0, 1),

By :=87,,(Q) = $3(Q) = (y1, 1) x (0, 1),
B3 :=87,,(Q) = 8$4(Q) = (0,r) X (y1, D), (2.11)

where 7' ;,i = 1,2,3, are defined in (2.10).

ExampLe 2.22. Let u be a self-similar measure defined by an IFS {S,»};‘:1 in (1.10)

together with a probability vector (p,»)j.‘zl. Let Q and W; be as in (2.8). Then u satisfies
EFT with Q = (0, 1) x (0, 1) being an EFT-set and there exists a weakly regular basic
pair with respect to Q.

To prove Example 2.22, we first summarize without proof some elementary
properties. Proposition 2.23(1) below implies that all multi-indices in W correspond
to the same vertex.

ProrosiTiON 2.23. Let {Si}f=1 beasin(1.10) and {Il,i}?:l be as in (2.10). The following
relations hold:

(1) Si3 = S21. Moreover, for any i, j € Wy, S; = Sj;

2 L={Z11,L12, 113}

ProrosiTion 2.24. Assume the hypotheses of Example 2.22 and {Bl,i}?:] defined as in
(2.11). Then (1)—(3) below hold, and (4)—(6) hold for all k > 0:
1 S3(B11) = (1, (1 + pryy) X (0, pr)
U (1 +pryyr, (1L +pryys + 1) x (0,1),
S4(B1,1) = (0, pry)) X (y1, 71 + pr)
U (prynpry + ) X (1 + 1)
2 S1(B12) = (py1,p) X (0, pr),
S3(B12) = (2, 1) x (0, 1),
Sa(B12) = (ry1, 1) X (1,71 + 17);

(3)  S3(Bi13) = (y1,y1 + r*) X (ry1, r) and S4(B13) = (0,7%) X (2, 1);
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S Sx1(Br1) = (pYe pyi + p°*y1) X (0, p77)
U (pyi + 2Py oy + 021 + o) x (0, pr* 1,
Sx1(B13) = (oY pyi + pr*) x (pr*y1, pr);

®) S(B11) = (0¥ pYs1) X (0,07 U (0yist, pyast + 7541 x (0, 41,
Sy (B12) = (Fy1 + pyi, 7 + pyr) x (0,747,
Sx(B13) = (pye pyr + ) x (Fyr, %),

(6)  S21(Q) = (pyx: p) X (0, pr*) and Sy (Q) = (pyx, pyx + 1) x (0, 7).

Proor. (1)—(3) follow from (2.11), and (4)—(6) can be proved directly by induction; we
omit the details. O

Lemma 2.25. Assume the hypotheses of Proposition 2.24. Then for k > 1,

3
uSi@ 0 52@) = (| JSi B n52@) =usm@). @12

i=1
Proor. First, we prove the first equality in (2.12). Since u(S,(Q2)) = ,u(Uf:1 S1(B1.4)),
u(S1(Q) N A) = (UL, S1(B1,)) N A) for any A C Q. Hence u(S(Q) N Sx(Q)) =

u(UL; S1(B1) N Sx(Q)).
Next, we show that
3

L $1(B1.) 0 $2(Q) = $11(Q) fork > 1. (2.13)

i=1

By Proposition 2.24(2,4,6),

S1(B11) = (0,0%y1) X (0,0%) U (0*y1,0°y1 + pr) X (0, pr),
S1(B12) = (py1,p) X (0,pr), S1(B13)=(0,pr) X (py1,p),

and S»(Q) = (py1,py1 + 1) x (0,r). It follows from (1.11) that pr + p*y; < pyi
and hence S{(B;1) N S2(Q) = 0. Since p <r+ py1, S1(B1a) N S2(Q) = (py1,p) X
(0, pr) = §21(Q), where Proposition 2.24(6) is used in the last equality. Since r < y1,
S1(B13) N S2(Q) = 0. Hence U?:l S1(B1,;) N $2(Q) = S21(). Assume that the stated
inequality holds for k = m, that is, Uil S1(B1.i) N Som(Q) = Som1(€2). Then S;(B12) N
Som(Q) = Som1(Q) and S1(By;) N Sm(Q) =0 fori=1,3. Fork=m+ 1, since S1(B1;) N
Some1(Q) € S1(By;) N Sm(Q), S1(B1;) N Sy (Q) =0 for i =1,3. By (2.11) and
Proposition 2.23(1),

S1(B12) N Soma(Q) = S13(Q2) N Spmer () = §21(€2) N Spme1 ()

= $,(51(Q) N S (@) = 52((0 $1(B1)) 01 S2()
i=1
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3
= 53| 1B 0 52 @)
i=1
= 82(8211(€2)) = Spme11 ().
This proves (2.13). Hence the second inequality in (2.12) holds. O

For any k > 0, wy(k) denotes the sum of probability weights corresponding to all
multi-indices in Wy. Part (1) of the following lemma explains the meaning of the factor

Wz(k).

LEmmA 2.26. Assume the hypotheses of Proposition 2.24 and let wy(k) be defined as in
(1.12). Then:

(1) fork=0andi=1,3, pls, s, =wrk)uoSy;

Q@) fork= 1, s, = walk = Do S5, + phuo S35
(3) forkzlandi=23 pls, s, = pg,u o S;AI;
4) fori=1,2,3and j=3,4, uls,s,,) = pju° Sj‘l.

Proor. We only prove (1) for i = 1 as an example. By Proposition 2.24(4), S1(B1,1) =
(0, p*y1) X (0, p*) U (p*y1, pr + p*y1) X (0, pr). Note that Sy(Q) = (py1,py1 + 1) X
(0, r). Moreover, since py; — (p*y1 +pr) =p(1 =2r—p +pr) 20, S;(By;)C
S1(Q\S2(Q2). Hence u(A) = pjuo Sl’l(A) for any A C S1(B;,1). Assume that the
stated equality holds for k = m, that is, uls,.(,,) = wa(m)u o Sz‘mll. For k=m+1,
by Proposition 2.23(1), Spw+11(B11) = Sizm1(By1,1). Then SI_I(A) C S3m+1(By1) and
SEI(A) C Somi(By1) for any A C Spwe1((By,1). It follows that M(Sf](A)) = ng]# o
SS‘,,LI(SI‘I(A)) and ,u(Sz‘l(A)) =wo(m)u o Sz‘ml1 (SZ‘I(A)). Thus,

H(A) = piuo STHA) + papt o S;(A)
= PPy o S (STHA)) + pawa(mu o S5 (S5 (A))

m+1

= p1Py o S (A) + pawa(mp 0 S5, (A)

m+

(P15 + pawa(m)p 0 S50, (A)

wam + Do S50 (A).

The last equality follows from (2.7). This proves part (1) for i = 1. For the proof of
part (3) in the case i = 3, we use Lemma 2.25. O

Proor (ExampLE 2.22). It suffices to show that for m = 1, all the assumptions of
Proposition 2.19 are satisfied. By (2.8), Q = (0, 1) x (0, 1). For each k > 0, let M; =
{1,2,3,4}. Let I be defined as in (2.10). Thus, I} = {7,715, L3} Let I, :=
{71,110, [L12)s [T 131} Next, we show that for any k > 2, 713 1= {(Sp-11, k), (Sox, k)}
is the only level-k nonbasic island with respect to I; (see Figure 2(b)). For £ = 2, 3,
since J (Vroot) 1 1,¢, none of the I € O(Z ) are nonbasic islands with respect to I
(see Figure 4) and hence assumption (1) of Proposition 2.19 holds for £ = 2,3 with
c(€) = 2. Upon iterating the IFS once, 7| generates the following five islands:
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———————————————————————

n.d L
L {12,3,1'};3:10111]”@1
1,1+ : | P 1122, 1i—
A I T ] ] ] 1
(a) level-1 islands {Z; ¢} () level-2 islands {Z5¢,}

FiGure 2. (a) First level iterations containing {Z'u}';:]. (b) Second level iterations containing [I2~U}?:|
and {]2,(‘,-}“’ , for £ =2,3. The figures are drawn with p = 1/4 and r = 7/20.

i=

Ir01 ={(511,2),(512,2)},  T212:=1{(514, D)},
T213:={(521,2),(52,2)}, T214:=1{(823,2)}, T215:={(S2,2)}

(see Figure 3). Lemma 2.26 implies that [ ], € I;, fori=1,2,4,5, and [15 3], ¢
I, ,. Thus, assumption (1) of Proposition 2.19 holds for £ =1 with ¢(1) =2 and
755 is the only level-2 nonbasic island with respect to I;. Assume that 73 :=
{(Spk-11, k), (S, k)} is the only level-k nonbasic island with respect to I;. Similarly,
713 generates five islands, namely,

Tt = {11,k + 1), (Sper1, b+ 1)}, Trgr12 := {(Sor-114, k + D)},
T3 =S, k+ 1), (Sorsr, k+ 1)}, Tpyr 14 = {(Sxs, k + 1)},
Tii115 = {8, k + D}

Lemma 2.26 again implies that [ £y, 1], € Ij, fori=1,2,4,5, and [ i41,13]y € L1
Thus, Zj.1,13 is the only level-(k + 1) nonbasic island with respect to I;. Since the
closure of Sz, ,,(Q) converges to a point, limy_,. u(Sz,,,(€2)) = 0. Thus, assumption
(2) in Proposition 2.19 holds. Equation (2.11) implies that S1(2) € By 1, S3(2) = B
and S4(Q2) = By 3, and hence B :={B;,: € = 1,2, 3} is weakly regular. O

3. Renewal equation and proof of Theorem 1.1

Let {S,}ica be a finite type IFS on a compact subset X C R? with Q C X being
an FTC-set and let u be the self-similar measure defined by {S;};ca together with
a probability vector (p;)iea. To compute 7(g) for g > 0, we will use the equivalent
definition in (1.1).

In the rest of this section, we assume that y satisfies EFT with Q being an EFT-set
and (B, P) := ({Bi1¢}, {Preli>1)cer being a weakly regular basic pair with respect to Q.
Let ¢¢(8) and @\ (5) be defined as in (1.2).

ProrosiTioN 3.1. Assume the above hypotheses and let g > 0. Then there exist constants
c1,¢2 > 0 such that

Be,s(x))? dx <
clfxm s dx <y

tel’

f u(Bs(x)) dx < fx pBs(x)dx.  (3.1)

B¢

https://doi.org/10.1017/51446788718000034 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788718000034

72 S.-M. Ngai and Y. Xie [17]

77777

kY
IQ,l,lﬂﬂl lr Ll > I214

(a) Tha (0) {Z21.:}0

FiGure 3. 7 and its offspring {IZ‘IJ}L-

I
Top3™) |

,,,,,,,,,,

I— I ]
12’5.1‘1 1 F’IQ.LQ
I I I ’

(a) Tog 0) {Zoei}iy
FiGure 4. T, ¢ and its offspring {[2‘/‘:‘}11 for £ =2,3.

Consequently,

— c Tim (@)

7(q) = 1nf{a' >0: <511>I(I)1+ Z ®,7(0) > O}
lell
Tim (@)
= > . . .
sup{a/ >0 61;%1 21; @, () < oo} (3.2)

Proor. Since B is a finite family of measure disjoint cells in Q and Q C X,

Y | wtEsorans [ ubsontx< [ o ax
B¢ Q X

tel’

proving the second inequality in (3.1).

To prove the first inequality in (3.1), we note that by the weak regularity of B,
for any ¢ € I', there exists some similitude o, such that o,(Q) € By ,. For € €T, let
ri, ==max{r; : Si(Q) S By, i € AFand k> 1} and o := Si,. Then

fB p(Bs()) dx > | (pip oSy (Bs(x))? dx

B¢
=pir f HB1;()dy  (let S PREIES)
,7[' 10)

I‘d

q
z P T,

[ tbysnran (3

where p; = min{p;, : (€'}, r;, = min{r;, : £ €I}, and r;,, = max{r;, : L €T}
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For convenience, let Y := X\ﬁ. Since Q, 0Q, Y are mutually disjoint and X =
QUIQUY,

f H(Bs(x))? dx
X

- f J(Ba())" dx + f J(Bs()! dx + f WBs(Y dx. ()
Q oQ Y

For any x € 0Q, there exists y € Bs(x) N Q € Q such that Bs(x) C Bs(y). Hence

f H(Bs(x))? dx < f H(Bas(y))? dy. (3.5)
oQ Q

Let Qs(Y) be the largest subset of Y satisfying Bs(x) C Y for any x € Qs(Y). Combining
this with the fact that u(Y) = 0, we see that u(Bs(x)) =0 for any x € Qs(Y). Let
Rs(Y) := Y\Qs(Y). Then

f u(Bs(x))? dx = f H(Bs(x))? dx. (3.6)
Y Rs(Y)

Since Bs(x) N Q# 0 for any x € R;(Y), there exists y € Bs(x) N Q C Q such that
Bs(x) N Q C Bys(y), and thus p(Bs(x)) = u(Bs(x) N Q) < u(Bys(y)). Combining this
with (3.4), (3.5), and (3.6),

f H(Bs(x))dx <3 L u(Bas(x)? dx. (3.7)
X

Equations (3.3) and (3.7) imply that
1/3 'P,?mril f#(Bl/z 1) dy < Zf H(B5(x))! dx,
ter Y Bie

and hence the first inequality of (3.1) holds with ¢; = 1/3 - pq ry and c=1/2- Ti
Multiplying both sides of (3.1) by 6=“*® and using (1.2),

S f HBes) dx < Y B(5) < e fx H(Bs(x)" dx. (3.8)

el

Taking lim;_+ in (3.8),

61._0‘r §d+(l fﬂ(BCz(f(x))q dx < hm Z (D(Q)((S)
61 6d+0’ fX#(Bé(x))q dx. (39)

Note that ¢; > 0. Letting 6’ := ¢,

C1
lim
550+ 6d+a

— 1
fX H(Bess () dx = ere™ Tim —os fX H(By(0)dx.  (3.10)
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It follows from (3.9) and (3.10) that

infla>0: im >° 0["®)>0}
tel’

1
= inf{a >0: hm \ Sire fu(B5(x))q dx > 0},
X

and
- Tim (@)
sup{a >0: (Slir(r)1+ Z ®,7(0) < oo}
lell
1
- sup{a/ >0: fim = fx (Bs(x))! dx < oo}.
Equation (3.2) holds by combining these with (1.1). O

We denote the contraction ratio of a contractive similitude o by r,. In view of
Proposition 3.1, it suffices to study (Dg’)(é) for{eT.

Step 1. Derivation of a functional equation for d)g’)(é) fort{el.Forfel and k > 2,
let P,i’ ,and P]%, . be defined as in (2.4). Without loss of generality, we assume that I" can
be partitioned into two (possibly empty) sub-collections, I, and I",, defined as follows.
For ¢ e I, we say € € I if there exists some integer «, satisfying PZ[ = (), where we
choose «; to be the smallest number satisfying the above condition. Let I, :=T'\T.,.
Define k; := oo for £ € I,

Fix ¢ €T, by the definition of EFT, for any 2 < k < k¢, there exist two finite disjoint

subsets Gy ¢, G,'( , € N such that

k
1 ] 2 _ ]
Pk,t’ = U{Bj’fsi M AS Gj,g}, Pk,é’ = {Bk’[’,’ S Gl;’[}.
=2

Define
Biei=S8r5,,,(Q) for2<k<k andie€ G, UGy,

Condition (1) of EFT implies that G, , # 0 for all £ e I'. If £ € I, condition (3) of EFT
implies that limy_, ZiEG;,{ U(Byi) = 0. Thus, forall £ € T',,

w(«S)—Z D f p(B5(x))! dx, (3.11)

Jj=2i€Gj, Bjei

while for all £ € I, and n > 2,

00(0) = ZZ f u(Bs(x))" dx

Jj=2 G, Bjci

+ Z f 1(Bs(x))! dx. (3.12)

IEG/ n Ci

https://doi.org/10.1017/51446788718000034 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788718000034

[20] Li-spectrum of self-similar measures with overlaps 75

For £ €I',2 <k <« i€ Gy and 6 > 0, let Bkg,((i) be the largest subset of By,
satisfying Bs(x) C By y,; for any x € Bkgl(é) We denote Bkg,(é) = Bk[,\Bk[,(é) So
for £ €T, (3.11) can be written as

¢u(6) = ZZ f H(B5(x)" dx

Jj=2 i€G, Bj¢i(9)

f MU(B5(x))? dx,
o)

while for £ € I, and n > 2, (3.12) can be expressed as

¢0(6) = Z D f u(B5(x))" dx

J 2 lEG i j[l(6)

+ Z > f H(B5(x)) dx

Jj=2 i€G, Bij¢i(6)

+ > f p(Bs(x))? dx.

teG’

Jj= 2 i€G ¢

For £ €T,2 < k <k and i € Gy ¢, there exist unique o(k, ¢, i) € .7, w(k,{,i) > 0 and
c(k,€,i) € I' such that Il,c(k,[,i) R o (kL0 wik,C,0) fk,g,,'. By Definition 2.13,

Hls;, @ = wlk, 60) - s, @ 0 ok, £,

For Ek’[,i(é) C By, let El,c(k,[,i)(é [Toke,)) be the largest subset of By c,) satisfying
Bs/ry0s(X) € By for any x € By een(6/Totken). Where Bicen = Sy ()
Thus,
— . _ w1
MlEk!,i(ﬁ) =wk, D) ﬂIB],(:(k,(,i)(6/r:r(k,f,i)) ook, L, i)

We denote By ckc.iy(6/Tok,t.i) = Bkt \Ble.e.i)(0/Toke.))- Hence for € € Ty,

©(6) = Z D WG iy f H(Bsfry;0 (X)) dx

Jj=2 i€G, Bt
+ Z(eﬁ(é) - (o)), (3.13)
j=2

where
FOEDY ﬁ p(Bs(x))! dx,
i€G ¥ Bii(d)

éi(é) = Z W(.]’ f’ i)qrg—(j’[’i) j:\ #(Bé‘/r[r(jy[i)('x))q d-x'

i€G Bie(jei 0/ To(je)
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Forf{el” andn > 2,

@)=Y S w6, [ B o x

Jj=2 i€G, Bi et
+ Z(ef(a)—*’(a)n > f H(Bs(x))? dx, (3.14)
i€G,,, Buei

where
SOEDY ﬁ H(B5())! dx,
i€G Bji(0)

2i(6) = Z Wi 6 DT ﬁ H(Bsjry ;0 (X)) dix.

i€G ¢ Bi ety (O Te(jitiy)

Multiplying both sides of (3.13) and (3.14) by 6-“*® and using (1.2), we have for

terl,,
7 (6) = Z D WG b iy @ (6 Tie)
Jj=2i€Gj,
+E(0), (3.15)

where

Ke

EP6) = Y 67"l (8) - 26))

j=2

and

D\”(8) = Z D WG b s @ (6 Tie)

J ZZEGI(

+ Z 5~ e(6) - 2(6))

+ 5+ Z f

tEG’ By,

U(Bs(x))?dx fortel’ andn>2. (3.16)
Li

For 6 >0 and £ €T, let N = N({) := max{n € N : § < min{ry(je; : i € G, for all
j<n}}. Taking n:= N in (3.16) for £ € I, and N > 2,

O00) = " DT Wl b O (6 es)

j=2 l'EGj,[
+E{"(6) - E;7(6), 3.17)
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where
N
E @)= ) 671 0(l(6) - #(6))
j=2
+o @ f U(Bs(x))! dx
lEzG; N[r
EQ©)= Y > Wl 6T @) (6ren)-
J=N+1ieG;,

Step 2. Derivation of the vector-valued equation. For each ¢ € T', define
fe®) = £ = O (™), (3.18)

If we let 6 = ¢, then d)i,“)(,&i) = fy(x — InB) for any 8 > 0. Combining (3.15) and
(3.17), we have for £ € T,

Ke
Fil0) = >0 w0 6 DTS feten (6 + e

j:2 iEGj(

+27 (), (3.19)

where 2\ (x) = E\”(e™). For ( e T, and N > 2,

fe(x) = Z Z w(j, €, D JeGien(x + In(rae))

=2 icGy
+27(0), (3.20)

where 2" (x) = E{”(e7*) = E\) (7).
For {,meT, let ,u(a) be the discrete measure such that for 2 < j < kg, i €

J»f’ C(Js f l) -
N =In(rjei) = Wi, €SS - (3.21)

Then (see (1.4) and (1.5))

((l)(R) — Z Z w(j, €, 0)? Ty (Jt’z)’

Jj=2i€Gj¢

Fela) = Zi Z w(i, € D715 iy

mel j=2 i€Gq

and

We summarize the above derivations in the following theorem.
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TueEOREM 3.2. Let u be a self-similar measure defined by an IFS {S;}ien oOf finite type.
Assume that u satisfies EFT. Let £, M, and z be defined as in (1.3). Then f satisfies the
vector-valued renewal equation f = £« M, + z.

Proor (THEOREM 1.1). We use a similar argument as that in [20, Theorem 1.1]. (1) We
observe that each F() is a strictly increasing continuous positive function of o and

lim Fea)=0, lim Fy(a)= oo. (3.22)
Thus, there exists a unique « such that the spectral radius of M, (c0) is 1.
(2) Let a be the unique number in part (1). Let m := (")] = fo xd,u(“)] be the

moment matrix. Following the proof of [20, Theorem 1. l(b)] we need to show that
some moment condition holds, and it suffices to show that

0< Z m(“)

kel

It is easy to check that for £ € I, Y m ) takes the following values:

Ke
> W iy i)l

kel j=2 icGj,

Equation (3.22) implies that there exists € > 0 such that 0 < Fy(a + €) < co. Thus,

K¢
0< > > DT WGy lInGoica)

kel j=2 ieGj;
Ke
_ . . —(a+€)
= 3 > WG b i)
kel' j=2 ieG ¢
< 09,

Moreover, it follows from (3.21) that X,,cr ££90(0) = 0 < 3,1 #9(c0), that is, each
column of M,, is nondegenerate at 0. From Theorem 3.2, f = f « M, + z, where, by
assumption, z is directly Riemann integrable on R.

We first consider the case M,(c0) is irreducible. It follows from the above
observations and [20, Theorem 4.1] that there exist positive constants C; and
C, such that 0 < C; < limy_e f7(x) < C> < oo for all £€T. By (3.18), 0<C; <

limg_q- (D;”)(é) < C, < oo for all £ € T. Consequently, (D;”)(é) < Yier (Difl)(é) and thus,
Tim @ Ti (@)
0<C < fim ©[(9) < 61%3;@ 6)

Tim H@
< ; Tim ©7(6) < Co#T < co.
€

It now follows from (3.2) that 7(g) =

https://doi.org/10.1017/51446788718000034 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788718000034

[24] Li-spectrum of self-similar measures with overlaps 79

It remains to consider the case M, (o) is reducible. As in the proof of [20, Theorem
1.1(b), Case 2],

lim f”(x)=0 forall ¢ €T andall 8 < a. (3.23)
Moreover, there exists some £ € I' such that
lim £ (x) > 0. (3.24)

Combining (3.23) with (3.18), we see that for all £ € I" and all 8 < a, lims_,o+ d)[(ﬁ)(d)
= 0. Thus, Proposition 3.1 implies that 7(g) > . Similarly, combining (3.24) and

(3.18),
; (@) Tim (@)
0< lim &) < Tim »" ®{(©).
6—0* ter
It follows from Proposition 3.1 again that 7(q) < e, which completes the proof. ]

4. A class of one-dimensional IFSs with overlaps

In this section, we derive renewal equations and compute the L?-spectrum of self-
similar measures u defined by the IFSs in (1.6). Let X := [0, 1] and Q = (0, 1). Define

L1 =11, D, (S2, D}, Ti2=1{(83, D},

and
Bl,[ = SIIJ(Q) for{eT,

where I' = {1,2}. For £ e I' and k > 1, let P, , be defined as in (2.5) and (2.6). It follows
from Example 2.21 that u satisfies EFT with Q = (0, 1) being an EFT-set, B := (B ¢}¢er
being a weakly regular basic family of cells in Q, and (B, P) := ({Bi ¢}, {Pr.slis1)cer
being a weakly regular basic pair with respect to Q.

In the rest of this section, we use the notation defined in Section 3. For I €1, let
S7(Q) and O(J) be defined as in (2.1) and (2.2), respectively. For € € I', i = 1,2, and
k>2, let Pj'(,{, be defined as in (2.4). We first observe that O(Z ) = {71221, 2222},
where 1571 = {(831,2), (S32,2)} and T525 := {(S33,2)} (see Figure 5). Since
I(vrool) X ,83.p3 .z-l,z, Il’,‘ X ,S3.p3 I2,2,,‘ fori= 1, 2. Define

Byoi:=81,,,(Q) =83(By;) fori=1,2. 4.1)

Thus, Py, = Pé,z ={B22.1,B22,} and P%,z = (. It follows that Py, = P, for all k > 2;
in particular, 2 € ', k; = 2, and G, = {1, 2}.
Define

Ti11 = {(Sx211,k), (Sax212, )},
Ti12 = {(Sa11, k), (S, B}, Ti13 := {(Sa13,k)}

for k > 2. By the proof of [21, Example 3.3],
OZ11)=1{121;:i=1,2,3}, Ox12) ={Ls+10i:1=1,2,3},
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0 1
Ill Il,?
r---- - - - - - -~ -~ "~ "~ "~~~ - T=T=T====== hl [777777777777771
I L
e e T )
Ioi T2 Io21 Tr22
= s pogEse=se D23 = S
‘L,,,,j: ! === ‘L,,,j,:
I I
T T30
Lyap ~——"0—
= 1313

Ficure 5. First, second, and third levels of iterations containing {7 ¢}, {Z2¢;}, and {73 ;}. The figure is
drawn withp = 1/3 and r = 2/7.

and 7 > is the only level-k nonbasic island with respect to I;. For k > 2, let

Bi11 :=87,,,(€Q) = Sp21(B1,1),
Bii2 = 81,,,(€) = So1(B11), 4.2)
Bi13 = 81,,,(Q) = Sp1(B12).

Thus, P} | = US_,{B)1.1, Bj13} and P}, = {B,} for all k > 2. Consequently, 1 €I,
k| = o0, Gy ={1,3}, and G,’(S1 ={2} fork > 2.

In the rest of this section, fix ¢ > 0 and let w; (k) be defined as in (1.8).

First, we derive functional equations for <D§f’)(6) for £ =1,2. Combining (3.12),
(3.11), (4.2) and (4.1),

o) = B 9d B, 9d
01(6) ]Z;( fB - fB m)#( S(0) dx + fB B
s02(5)=(f +f ),u(B(;(x))qu.

Br» Broo

For ¢ € F, 2<k< Ke, i€ Gk,g and 6 > 0, let Ek,g’i(é), ’B\k,g’i(é), Elsc(k’g,i)(é/ro—(k,g,i)) and
B ¢tk.£,)(0/To(k,c,i)) be defined as in Section 3. Combining (4.2) and (4.1), we have for
jz2,

and

Bj11(8) = (S2r211(0) + 6, S5i215(1) = 8),
Bj1,1(6) = (S2211(0), S2211(0) + 6) U (Sp212(1) = 6, Sa212(1),
Bj13(6) = (S213(0) + 6, Sp13(1) = ),
Ej,l,3(6) = (82-13(0), S2-13(0) + 6) U (Sp-13(1) = 6, So-13(1)),
B15,1(8) = (S31(0) + 6, 532(1) = 6),
B>,1(6) = (S31(0), $31(0) + 6) U (S32(1) = 6, S32(1)),
B1,,(6) = (S33(0) + 6, S33(1) = 6),
B>5(8) = (33(0), $33(0) + 6) U (S33(1) = 6, S33(1)).

(4.3)
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Su(0)+9 Sip(1) — 6
t
| 41_. By 1,1 = (511(0), S12(1))
S11(0) Sli(l)
- _ . B11(8) = (S11(0) + 6, S1a(1) — 6)

— Ba1.1(6) = (511(0), 511(0) + )
U (Slg(l) — 5, 512(1))

Ficure 6. Figure showing the sets By 1, Ez_]_] (), and Ez‘u(é').

523(0) +0 523(1) -4

¢ T T ¢ 32’1,3 = (323(0)7523(1))
S23(0) Sa3(1)

Ba,13(8) = (S23(0) + 4, Sas(1) — )

Ba,13(8) = (S23(0), S23(0) + )

] (523(1) — 0, S23(1))

Ficure 7. Figure showing the sets B | 3, 53_1_3(6), and 52_1,3(6).

(See Figures 6 and 7.)

It follows from (4.2), (4.1), and [21, Lemma 2.14] that for j > 2,

U(Bj11) =wi(j—2)u(Bi1), wu(Bji12)= Pé_l,u(Bl,z).
Thus,
w(i, LD =wi(j-2), c(GLD=1 o L1 =582, regy :Prj_z,
w(i 1,3 =py ", e 1,3)=2, 0(i1,3) =S, regumy =1
and
B1i(6/pr ™) = ($1(0) + 8/pr 2, $2(1) = 5/pr72),
Bio(S/r") = (S3(0) + 6/, S3(1) = 5/r77),
B11(8/pr') = ($1(0), $1(0) + 6/pr'?) U (S2(1) = 6/pr ™2, 5(1),
B12(8/r1™") = (83(0), S3(0) + /=) U (83(1) = §/r/~", $3(1).

Since pls,s,,) = p3m © S3’l on S3(By;) for i = 1,2, by using (4.1), we have u(B,;) =

p3p(Byi). Hence w(2,2,1) = p3,¢(2,2,i) = i,01(2,2,1) = §3,ro22,) = r and
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B11(6/r) = (51(0) + 6/, S2(1) = 8/1),
B12(8/r) = (S3(0) + 6/, S3(1) = 6/1),
By1(8/r) = (81(0), $1(0) + 6/r) U (S2(1) = 6/r, S»(1)),
B12(8/r) = (S3(0), $3(0) + 6/r) U (S3(1) — 6/r, S3(1)).
By (3.14) and (3.13),

n

1(6) = Z(wlu = 2)tpr=? f

:u(Bé/prf’2 (x))q dx
= Bu

+(pin’! fB ﬂ(Ba/rf—l(X))”dX)

+ Z(e}(&)—é}(é))+ fB u(Bs(x))? dx,
=2 n1,2

and

e20) = pir fB ¥ fB sy ) dx + 6) - B,

6o = ﬁ * ﬁ sy d,
Bj1,1(6) Bj13(0)

24(8) = wi(j — 2)%pr' f H(Bypri () dx

B1.1(6/pri=2)

+ (Pgr)j ! f H(Bspi1(x)) dx,
Bi(8/ri-)

&0 = ﬁ ¥ fA B0y dx,
B2.1(6) B22(6)

2(6) = pgr( fA + fA ) (B ()1 dx.
By,1(6/1) Bi2(5/1)

Multiplying both sides of (4.4) and (4.5) by -1+ and using (1.2),

where

®\7(0) = ) (w1l = 2pr ) D6 /pr )
=2
+(plr ey 06/
R ORI e f H(B5(x))? dx
=2 Bu,i2

and

D (8) = plr (@ (5/r) + O(6/r)) + 671 7(€3(6) — E3(5)).
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Let N := max{n € N : § < min{pr"~2, ¥*~'}}. Substituting n = N in (4.7),

O(6) = Y (m(j =2 or ) D\ (S pr'™)
j=2

+(pir 056/ )

+E\"(5) - E\”.(6), (4.8)
where
N
E©)= ) 677 (e}(0) — &) + 67 fB H(B5(x))? dx,
j=2 N,1.2
ER©0)= Y, ni(j=2%pr )0l 6/pr )
Jj=N+1
+ (P g8/ ).
Let
L(6) = plr (@ (5/r) + DL(S/r) + ES(6), (4.9)
where

E\(8) = 6717(€3(8) — & (5)).
Next, we derive a vector-valued equation. It follows from (3.20), (3.19), (4.8), and

(4.9) that
[0 = D il =2)%(pr ) filx + In(pr/ ™))
j=2
+ (P A+ InG) + 47 ()
and

fx) = plr Z filx+1nr) + 29,

i=1

where 2\”(x) = E\”(e™) — E (e7), 24" (x) = E\” (7). For £,m = 1,2, let 4/'*) be the
discrete measures such that for j=2,

p7 (=Inori ™)) = (i (j = 2))(pr )7,
K5 (=InGr ) = (Y,
w5 (Inr) = g5 (<Inr) = pire
Then

K R) = Zwl(] 2)%pr/ ),

Jj=2

KSR = Z@z i,

Jj=2
) (R) = p5) (R) =
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For fixed g > 0, let

Fi(@) =) wi(i=2%pr 2 + > (Y™,
= = (4.10)
Fr(a) = 2p‘31r76',

Dy :={adeR: Fia)<o} forf=1,2,

and

D wi(i=2)pr 2y plre
M, (o) =7 & :
Dy pre
j=2

Finally, we show that the error terms zgl)(x) = 0(e™) as x—oo, that is, EE,“)((S) =

0(6¢) and E(]“;((S) = 0(6%) as 6—0 forsome e >0 and £ = 1, 2.
ProposiTION 4.1.

(1) ®'S/pr*) < 1foranyk =N~ 1;
2) O\(6/r*) < 1 foranyk > N.

ProOF.
(1) It follows from the definition of N that § > pr* for any k > N — 1. Hence

a 1 +a
@\ (6/pr*) = Gl fB (B (X)) dx < (pr*[6)'+* < 1.

Hence d)(lo‘)((S/prk) <l1foranyk>N-1.
(2) The proof is similar to that of (1). O

The following proposition can be proved directly by using induction; we omit the
details.

ProrosiTiON 4.2.

() Su(D)=rk+p(1 =) forany k> 1;
(2)  Sy11(0) = p(1 = FF 1) for any k > 1.

Prorosition 4.3. For g > 0, let Fi(a) and D be defined as in (4.10). Then D is open.

Proor. Let p := max{p,, p3}. In view of (1.8), we consider the following two cases for
wi (k).

Case 1. py = p3. Then wy (k) = (k + l)plp’é; moreover,

pipt <wik) = (k+ )py pt. 4.11)
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Thus,

Tim A (09(pr) e = Tim (K + Dp1 phys(pry
= lim U+ Dyaplp= - pf/r

= p?/r°. (4.12)

Case 2. py # p3. Assume p; > p3. Then

k
: 1= (ps/p)*"!
wik) = piph ) (ps/p2) = piph =
= - p3/p2
Note that

1 - k+1 1
| < L= /o)™ __ P
1= ps3/p2 1-p3/p2» p2—p3

. C.

Thus, plpg <w(k) < cplpg. Similarly, if p3 > p», plp’; <w(k) < cplp’;. Soif py #
P3»
pipF <wik) < epip®. (4.13)

lim \Jwi (09(pr) = p?/r" it p # pa. (4.14)

Combining (4.12) and (4.14), limy_,« AIwi(kya(prky— = pi/re. By the root test, the
series ) wi(k)4(pr¥)~® is convergent if p7/r® < 1, that is, Do wi(k)?(pr*)~ and
Y0P/ r*)¥ have the same radius of convergence. If p?/r® = 1, then DreoPl/ royk =
oco. It follows from (4.11) and (4.13) that (p;p*)? < w(k)? for ¢ > 0. For k >0,
(p1P")(pr*)™ < wi(k)?(pr*)~®. Thus,

Hence

00 = plp™ D \(p!/r)F < D wik (prt) .
k=0 k=0

Hence D; is open. O

Prorosition 4.4. For g > 0, assume that @ € Dy for £ = 1,2. Then there exists € > 0
such that:

(1) IR w1 = 2pr )0 (6/pr/2) = 0(5°);
Q) XN P06/ = 0(69);

B3) I, 677(ek©6) - 24(6) = 0(6%);

@ o7 [ H(Bs(0)) dx = 0(5);

(5)  6717(e3(0) — E4(6)) = 0(6°).
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Proor.

(1) By Proposition 4.3, D; = {a € R: F(a) < oo} is open. Thus, there exists € > 0
sufficiently small such that & + € € D;. So there exists a positive constant C such that

D wil=D%pr T Y (YT <
Jj=N+1 J=N+1
Since
(N Y wiGi =N < Y wi(j = 2 (e
j=N+1 J=N+1

XEna wi(G = 2)(pri )™ < C(pr"~")¢ < C5¢, where the last inequality follows
from the definition of N. Combining these with Proposition 4.1(1), 52y, wi(j —
2)(pri ) 0" (6/pr?) = 0(59).

(2) The proof is similar to that of (1).

(3) It suffices to show that e}(é) = 0(6'**€) and é}.(é) =0(6"" ) for2< j< N. It
follows from (4.6) and (4.3) that

| Szj_211(0)+6 S2j‘212(1)
el(6) = ( f i f
Syi-211(0) Syj-21,(1)=6
Szj*l3(0)+5 Szf’l3(l)
+ f +f )y(B(;(x))q dx.
S,j-15(0) Syj-15(D)=6
As an example we only prove f S22 040

O 1(Bs(x))? dx = o(6'+2*€). It follows from (1)
2/==11
and (2) that

wi(N = D) < 5™, pl? < cs™. (4.15)

Since Bg(X) - Bzg(Szj—Zl 1 (O)) for any x € (SQj—Z]](O), Szj—Z]l(O) + (5) and /,t(Bz5(S2j—2“
0)) = piw1(j = Du(Basp2,i2(0)) < prwi(j = 2),

Sz/—2| 1 (0)+5
f H(Bs(x))? dx < (u(Bas(S2i211(0))?6 < piwi(j - 2)76
$,j-211(0)

< (pipy M)Iwi(N = 1)76 < C(pipy M)76' e,
where the third inequality holds because for 0 <k < N — 2

pi(PY T+ pY o+ PV HE + pi ps + -+ )
Py~ +pY2ps+ -+ py!

wi(N = D(p2 + p3)¥ _
< N D) Ny (v - ), 4.16)
p2 +p2 p3+...+p3

wi(k) =

and the last inequality follows from (4.15). The estimate &}(6) = o(6'***€) can be
established as that for e}(é) = o(§!*a+e),
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(4) By (4.2),

SZN‘] 1(0)+5 SZN(I)—5 SZN(I)
f uBs ) dx = ( f + f " f s dx
BN,I,Z S2N—l 1(0) S2N—l 1(0)+6 SZN(I)_6
=: (I) + (ID + (1D).

We first show that 6~'=%(I) = 0(6/?). For any x € (Syv-11(0), Son-17(0) + 6), Bs(x) C
B)5(Sov-11(0)) and

U(B25(S2v-11(0))) = wi(N = Du(Bospv-1(0)) < wi(N = 1).

Combining these with (4.15),

(D) < p(Bas(Sv-11(00)76 < wi(N — 1)76 < Co'**e,

It follows that 6~'*(I) = 0(6¢/?).
Next, we show that §~'~*(I) = o(6¢/?). It follows from [21, Lemma 2.14] that

Hls,r By = WiN =20 Syin, +pd oS5, on Sy (Byy).

Thus, u(Bs(x)) < wi(N —2) + p)~" for x € (Sp-11(0) + 6, Spv(0) — 6). Combining
Proposition 4.2, (4.16), (4.15), and (1.7),
(D) < (Spv(1) = Sov-11(0) = 26)(wi (N = 2) + py =)
<M1 @r 4+ p(1 = m)(py M wiN = 1) + p3' py)*
< N @+ p(1 = P)(C™)Va + (Co™+4) oy
< C/rN—160+e < C/r—161+a+5;

that is, 6~ '~2(1I) = 0(6</?).
The proof of 6~'~*(II) = 0(6/?) is similar to that for 6~'~%(I) = 0(6/?). Hence

ol f U(Bs(x))? dx = o(6°/%).
Syn-1(B1,1)

(5) The proof is similar to that of (3). O

Proor (THEOREM 1.2). Combining Theorem 1.1 and Proposition 4.4 yields 7(q) = a.
Let

G(g, @) := (1= pir)(1 = pir) > witky'(pr')™
k=0

+r%(pl + pg) - 1.
We show that G(g, @) is C'. It follows from Proposition 4.3 that

Z wl(k)q(prk)_“ < oo forany (¢q,a) € (0,00) X Dj.
k=0
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Since wi(k) < p1 <1, X2, wi(k)1(pr*)~@ is strictly decreasing in ¢ and strictly
increasing in . Thus, for any (qg, @g) € (0, ) X Dy, the series converges uniformly
on {(g,@) : g = qo, @ < @p}. Moreover, it follows from (4.11) and (4.13) that

klim wi(k) = 0.
Hence, for any (g, @) € (0, ) X Dy,
Gylg. @) = (=p3r (1 - pir ) Inp,

= P4 = i) Inp3) ) wi k) (pry ™
k=0

+ (1= pir)(1 = plr™) > wi®)(pr*) ™ Inwi (k)
k=0

3
+r ¢ Z p? In p;
i=2

and

Galg, @) = (P11 = pir™) + pi(L = pir= N Inr Y wik)(pr)™
k=0

(1= plr )1 = pir®) D wi () In(pr)™!
k=0

3
- q -1
+r E p;Inr—.
i=2

A similar argument as above shows that G(g, @) is C'.

We now show that G,(§, @) # 0 for any (g, @) € (0, 00) X D satisfying G(g, @) = 0.
Since 7(gq) is convex, we can let {g,} be an increasing sequence of positive numbers
such that lim,_,, ¢, = ¢ and that 7 is differentiable at each g,. Then (1.9) implies that

Gq(qna an) + Ga(q;'u an) . a'(qn) =0 foralln,

and thus,
Gy(G. @) + Go(G, @) - () = 0,
where a’ () denotes the left-hand derivative of a(q)(= 7(g)) at §.

Suppose, in contrast, that G,(g, @) = 0. Then G4(g, @) = 0. So G(§, @) — G,(g, @)
= 0. It follows from G(g, @) = 0 that

) i i 1-— q + q @
S kit = LTI
=0 (1 - pir-od - pir-9)

(4.17)
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Ficure 8. Graphs of 7(¢) and f(a) for the self-similar measure in Example 2.21 with p = 1/3, r =2/7,
p1=1/2,py=1/4,and p3 = 1/4.

Substituting (4.17) into the above expressions for G, and G,, simplifying the result,
and using the fact that 0 < p/r~* < 1 for i = 2,3,

0 = Go(q, @) - G, @)

o q..—a o pqr_‘~I
= pir(nr! —Inpp)——— + pir*(nr" —In p3) ———
_ pgr—a 1- p%’r“’

+ (1= plr 1 = pir®) 3wtk (o) (in(or) ™ — Inwy (k)
k=0
> 0,

a contradiction. Hence G,(q, @) # 0 for any (g, @) € (0, 00) X D satistying G(g, @) = 0.
The implicit function theorem now implies that 7 is differentiable on (0, c0) and
the stated formula for dimg(u) follows by computing 7'(1) = —Gq(l,O)G(,(l,O)*l
(see [9, 19]). This completes the proof. O

Figure 8 shows the graphs of 7(¢) and f(a), g > 0, for some measure in the family.
For this example, dimyg(u) = 7(1) = 0.720268 and dimy(K) = —7(0) = 0.797012,
where K is the self-similar set corresponding to the IFS in (1.6).

5. A class of examples in R?

In this section, we derive renewal equations and compute the L?-spectrum of self-
similar measure y defined by the IFSs in (1.10) together with a probability vector
(p,»)j.‘zl. Let X :=[0,1] x [0,1],Q = (0,1) x (0, 1). Define

i ={S1, 1,2, D), Tio={3D}, Z13=1{(Ss 1)},

and
B¢ :=87,,Q) forleTl,

where I' = {1,2,3}. For £ €T and k > 1, let Py, be defined as in (2.5) and (2.6).
It follows from Example 2.22 that u satisfies EFT with Q = (0, 1) X (0, 1) being
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an EFT-set, B := {B) ¢}ser being a weakly regular basic family of cells in Q, and
(B,P) := ({B1.¢}, {Prer=1)eer being a weakly regular basic pair with respect to Q.

In the rest of this section, we use the notation defined in Section 3. For J € [, let
S7(Q) and O(J) be defined as in (2.1) and (2.2), respectively. For £ €T',i= 1,2, and
k>2, let Pj{f be defined as in (2.4). We first observe that for £ =2,3, O(Z,) =
(L2061 =1,2,3}, where To¢1 := {(Sie+1)15 2)s (Se+1)2, 2)} L2.02 := {(Se41)3, 2)}, and
L5053 :={(See+1)4,2)} (see Figure 2). Since for € = 2,3, T(Vroot) ®u.Spur.pen L 1,6 We have
T ~uspen Loei fori=1,2,3. For £ =2,3, define

Boyi:=871,,,(Q) =81 (B1y), i=1,2,3. (5.1

Thus, Py, =P} , = {Bai,i = 1,2,3} and P3 , = 0. It follows that P, = P forall k > 2;
in particular, for € =2,3, € €T, k, = 2, and G, = {1, 2, 3}.
By the proof of Example 2.22,

O )={121i=1,...,5, OWy13)={Trs1,1,,i=1,...,5},
and 7 3 is the only level-k nonbasic island with respect to I;. For k > 2, define

B, :=81,,,(€) = So21(By,1),
Bi12 := 81,,,(€) = Sp21(B13),
Bi13 = S1,,,(€2) = So-1(B1,1), (5.2)
Biia:=87,,,(Q) = Sy-1(B12),
Bi15:= 81,,5(Q) = Sp-1(By3).
Thus, P, = US_{Bj1ini = 1,2,4,5} and P} | = {By 3} for all k > 2. Consequently,
1el7, ky =00,Gyy =1{1,2,4,5}, and G;{’l = {3} fork > 2.

In the rest of this section, let w, (k) be defined as in (1.12). First, we derive functional
equations for ®(6) for £ = 1,2, 3. Combining (3.11), (3.12), (5.2), and (5.1),

w(é):(g( fB ¥ fB o fB o fB )+ fB m)u(Ba(x»qu,

JiL1

and

3
@e(0) = Zf u(Bs(x))?dx for£=2,3.

i=1 YBosi

For £ €T, 2 <k <k i€ Gry, and 6> 0, let By i(6), Biri(6), Blewei S/ osi), and
B ckt.y(6/ 7o) be defined as in Section 3. Recall from (2.9) that y; :=1 - k.
Combining (5.2), (5.1), and Proposition 2.24, we have for j > 2,

Bj1.1(8) = (pyj-2 + 8. pyja + PPr 2y1 +6) X (6,071 = )
U (072 + 0217291 + 6,pY2 + 0221 + pri- — 6)
X (6, pr’=t = ),
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B;11(8) = (pYj2.pYj2 + P*ry1 + pyj-1) X (0,6)

U (pYjo2,pYj2 + P71 2y1 + 6) X (p°r1 72 = 6,p°117%)

U (pyjoa + 07 2y, p7j2 + 071 2y + pr' 7))
X (prj_1 - 6,prj_1)

U (pYj-2:pYj2 + 0) X (6,01 % = 6)

U (pyj-a + 07 2y1. 072 + P y1 +0)
X (p*r 2, pr’™ = 6)

U (pyja +0°r 2y 4+ pr’ ™t =6, py 0 + 0P 2y 4+ pr )
X (6,pr"™! = 6),

B;12(0) = (pyj2 + 8.pYj2 +pr'™! = 8) x (pr/y1 + 6.0/ = 6),
Bj12(8) = (pYj-2.pYj2 +pr'™")
X ((pr’ ™y, pr' 2y, + ) U (pr' ™% — 6, pri™?))
U ((pYjo2:pYj2 +0) U (pyjoa + pr'™" =6, pyja + pri™"))
X (pr'2y1 +6,pr' 7 - 0),

Ej,1,4(6) =y +pyi + 6,7 + pyis = 0) X (6,17 - 6),
Bj14(0) = (Wi +pyjot, 77+ pyjo) X ((0,6) U (Y = 6, 17))
Uy + pyjon iy + pyjo +6)
U+ pyjn = 6.7 4 py o)) x (8,7 - 6),
Bj1500) = (pyjo1 + 6,17 + pyjoy = &) X (' y + 6,077 - 6),
Bj15(8) = (pyj-1. 7 + pyis)) X (P 'y, Py 4 6) U (7 = 6, ¢7Y)

U ((pYj-1,pYj-1 +O) U +pyj1 = 6,77 + pyj1))
X (W lyy + 6,771 = 5),

B2.1(6) = (y1 + 6,(1 + pr)y1 +6) X (8,pr — 6)
U (1 + pr)yr + 6, (1 + pr)ys + 12 = 8) X (6, — ),

B22.1(8) = (y1, (1 + pryyr + 2) X (0,6) U (1, (1 + pr)y; +6) X (pr — 6, pr)

U (1 +pryyr, (1 +pryyy + 1) X (= 6,17)

U (1,1 + 6) X (6, pr — 6)

U (1 + pr)y1, (1 + pryyr +6) X (pr,r* = )

U (1 +pryyr + 2 = 6,(1+ pryyr + rH) x (6,7 - 6),

By22(8) = (y2 + 6,1 = 8) X (6,17 = 8),
B22(8) = (72, 1) X ((0,6) U (* = 6,7%))
U ((y2,y2 +0) U1 =6, 1) x (8,1 = 9),
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Ba1.1(9)
S B214(9)

R Ao

Figure 9. The middle part and the shaded region are Ez,l_l((s‘) and Eg_l_l(d), respectively. The union is
By

B223(6) = (y1 + 6,77 +y1 = 8) X (ry) + 6,7 §),
B123(8) = (y1,71 + ) U (P + 91 = 6,7 +y1) X (ry; + 8,7 = 6)
U (r1, 72 +y1) X ((ry1, ry«6) U (r = 6, 1),

By31(6) = (8. pry1 +6) X (y1 + 8,pr +y1 — )

U (pry1 +6,pry1 + 17 = 8) X (y1 + 6,17 + y1 — 6),
By3.1(6) = (0.pry1 + 1) X (y1,y1 +0)

U (0, pryr + 6) X (pr +y1 — 6, pr +y1)

U (pry1,pry1 + 1) X (7 +y1 = 6,7 +y1)

U (0,0) X (y1 + 6, pr +y1 — 0)

U (pry1,pryn +6) X (pr+y1,7° +y1 = 6)

U (pry; + - o, pry1 + r2) X (y1 + 6, P+ Y1 —0),

By32(6) = (ryi + 8,7 = 8) X (y1 + 6,7 +y1 = 6),
By32(68) = (ry1. 1) X (y1,71 + ) U (P +y1 = 6,77 + 1))
U +6,7 +y1 =) X ((ry1,ry1 +8) U (r = 6,1),
By33(8) = (6,7 =) X (y2 + 6,1 = ),
B233(0) = (0.7") X (72,72 + ) U (1 = ,1))
U ((0,8) U = 6,r)) X (y2 + 6,1 —6).
(See Figures 9 and 10.)
It follows from (5.2), (5.1), and Lemma 2.26 that fori = 1,2,3 and j > 2,
“(Bj11) =wa(j = 2)u(B11), (Bj12) =wa(j— 2)u(Bi3),
H(Bji4)= Pé_l,u(Bl,z), u(Bjis5) = Pé_lﬂ(Bl,s),
U(Br2i) = p3(B1i), (B23,;) = papt(By,).
Thus,

wii L, 1) =wa(j=2), c(il,)=1, oG L1 =Sy regany=pr’™

W(.]’ 1’ 2) = WZ(] - 2)$ C(j$ 1, 2) = 3’ 0-(,]9 19 2) = S2-/"219 ra(j,l,Z) = prj_z’

>
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= B12(9)

=5 §2,1,2(5)

I IIIIIIIIIIIE= J

Ficure 10. The middle part and the shaded region are Ezj\z((s) and /552,]4,3(6), respectively. The union is
By io.
. ji—1 . . —
w(],1,4)=pé , c(j1,4)=2, o(j1,4) =S8, r(f(j,l,l):r/ ',
. —1 . . i—
W(.]9195)=p£ > C(], 1’5):33 O—(,]a 1a5):S2I"1’ ”(r(j,l,Z) :r] la
W(2’ 2’ l) = p39 C(2’ 2’ l) = i» 0—(2’ 2’ l) = SS’ r()'(z,z,i) =r
w(2,3,0)=ps, ¢2,3,0)=i, 02,3,0)=84, Te3h=T1

B1.1(6/pr’™) = (6/pr'™2, py1 + 8/pri ) x (8/pri =2, p — 6/pri~?)
U (py1 +6/pr' ™, py1 +r = 8/pr’™?)
X (6/pri=2,r = 8/pr’™?),
By.1(8/pr’™%) = (0,py1 + 1) X (0,8/pr' %)
U (0, py1 +6/pr’™*) x (p = 6/pr’~, p)
U (py1,py1 + 1) X (r=8/pri=2,r)
U (0,6/pri™) x (6/pr’ 2, p — 8/pr’™?)
U (py1,py1 + 6/pr'™2) x (p,r — 6/pri™?)
U (py1 + 1 =0/pr’, py1 + 1) x (8/pr' =, r = 6/pr'™),

Bi5(8/pr"™) = (8/pr’ %, r = 8/pr’™2) x (y1 + 8/pri 2,1 = 8/pri™),
By 3(8/pr" %) = (0,r) X (y1, 71 + 6/pr' ) U (1 = 6/pr'™2, 1))
U ((0,8/pr %) U (r = 8/pri2,r))
X (y1 +6/pri 2,1 = 6/pr’ ™),

Bia(6/r'™") = (yy +8/r77 1 1= 6/r ) x 8/ r = 6/,
Bi2(8/r™") = 1, DX (0.8/r" ) U (r = 6/r77 1)
Uy + 6/ ua =6/ )
X(@/r ' r=6/rh,

Bia/r™Y) = 6/r " r = 8/r )y sy + 6/ 1 = 6/,
B13(5/r'™") = (0.7) x (y1y1 + 6/r ") U (1 = 6/ 1))
0.6/ U (= 6/
X(y1 +6/r7 1 =6/r),
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By.1(8/r) = (8/r,py1 + 8/r) X (8]r,p = 5/1)
U (py) +0/r,py1 +r—906/r) X (/r,r —06/r),
B1.1(8/r) = (0,py1 + 1) % (0,8/r) U (0, py; +6/r) X (p = 8/1,p)
U (py1.oy1 + 1) X (r = 6/r,1) U (0,6/r) X (6/r,p — 6/7)
U (py1,py1 +6/r) X (p,r —=6/r)
U (pyr+r—96/r,py1 +1r) X (6/r,r —06/r),
Bi2(6/r) = (y1 +8/r, 1 = 8/r) X (8/r,r = 6/1),
B12(8/r) = (y1,1) X ((0,6/r) U (r = 8/1, 1))
U (1,71 +6/r) U1 =6/, 1)) X (8/r,r = 8/7),
Bi5(6/r) = (8/r,r = 8/r) X (y1 +6/r, 1 = §/1),
B15(6/r) = (0,1) X (y1,71 +6/r) U (1 = §/r, 1))
U ((0,8/r)U(r—96/r,r) X (y1+06/r,1 =6/r).
By (3.14) and (3.13),

1) = ) wal=20pr 2 [
=2 L1

+ Zn:(pgrz)j_](f +f ),U(Ba/rf—l(x))qu
=2 By,

B3

+\f‘ B0
B3

Yo -gons [ ubsoorax
= 1,3

and
3
®) = plor ) f (B (X)) dx + €5(8) — 84(6)  for £=2,3,
i=1 Y Bui
where
e}-(é) = (j; + j; + j; + j; )#(Bé(x))q dX,
Bj,l,](5) B,;;,z((i) Bj,],4(6) Bj,],5(6)
== ([ e [ oo as
' Bi@lpr)  JBia@lpr)

+ (Png)J'l(f +f )#(Ba/r/—l (x))? dx,
Bia(8/ri7Y)  JIBi36/rih)

3
4@;Z£ p(Bs(x))! dx,
i=1

2.0,i(0)

3
&) = pl,r? Y. ﬁ p(Byy () dx  for £=2,3.
i=1 ¥ BuLi(6/r)
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Multiplying both sides of (5.3) and (5.4) by 6~?*®, and using (1.2),

O(6) = Y walj = 2%pr ) Y O6/pr )

j=2 i=1,3

+ YT Y e/
j=2

i=2,3
+ 5Tl O) — (o) + 6 f H(Bs()) dx,  (5.6)
j:2 n,1,3

and

3
O(6) = pi, 1 > D(G/r) + 672 (eh(8) = 84(8))  for £=2,3,
i=1

Let N := max{n € N : § < min{pr"2, ¥""'}}. Letting n = N in (5.6),

O70) = > wa(j = 2)Upr )™ Y B (5/pri?)
j=2

i=1,3

+ ) Iy e/

j=2 i=23
+E\"(5) - E\").(9), (5.7)
where
N
E©6) = ) 677 (e}6) - &} (0) + 57 f H(B5(x))* dx,
j=2 N,1.3
EQL©0) = Y wali=2%pr )™ Y &P(6/pr?)
j=N+1 i=1,3
DI U SR
j=N+1 =23
Let
3
O(6) = pi, 7 D (/) + EL©6)  for £=2,3, (5.8)
i=1
where

E(8) 1= 6777(e5(6) — &5(9)).

Next, we derive a vector-valued renewal equation. It follows from (3.19), (3.20),
(5.7), and (5.8) that
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fix) = Z waj =2 pr 7 Y file + In(pr' ™))

i=13

- Z(p T fGe InG ) + 27 ),

j=2 i=23

and

fox) = plre Z flx+1In(r) +27x)  for€=2,3,

where
(0/)(x) _ E(a)(efx) E(Gf) (Eix), (llf)(x) E(gﬂ)(eﬂC).

For {,m=1,2, let u(“) be the discrete measures such that for j > 2,

L (=In(pr'=2)) = wa(j = 2)%(pr'™2)™  form = 1,3,
O =InG ) = (plry! form =2,3,

1(~In(r)) = pl, r™* form=1,2,3and (=2,3.

Then

PR = Zwm 2% pri2), u21)<R>—Z(p ey

KPR = Zwm 2% (pr’) +Z(pr o,

HOM®R) = p?, 1™ form=1,2,3and {=2,3.
For fixed g > 0,

Fi(a) = 2(i wa(j = 2 (pr’ )™ + i(pgr_“)j‘l),
j=2 j=2

Fela) = 3p?+1r_“ for£=2,3,
D;={adeR: Fya)<oo} forf=1,2,3,

(5.9)

and
a plre pire
M,(c0)=| b pgr’“ er’“ ,
a+b pgr“Z er“’
where @ := Y, wa(j - 2%(pr/ ) and b 1= I, (plr ).
Finally, we need to show that the error terms z(“)(x) = o(e™®") as x—oo, that is,
E}“)(é) = 0(6¢) and Egago(é) = 0(6¢) as 6—0 for some e >0 and £ = 1,2, 3.
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ProposiTioN 5.1.

(1) OS/pr*)<1fori=1,3andanyk>N - 1;

2) O8/r*) <1 fori=2,3andanyk>N.

Proor.

(1) It follows from the definition of N that ¢ > prk forany k > N — 1. Thus, fori =1, 3,

O\ (5/pr*) = #i6/pr") < f

(6/priy2+e = /J(Bé/pr"(x))q dx < f dx < 1.

By, By,
This proves part (1).

(2) The proof is similar to that of (1). O
ProposiTioN 5.2. For g > 0, let F((@) and D be defined as in (5.9). Then D, is open.

Proor. The proof is similar to that of Proposition 4.3. ]

Prorosition 5.3. For g > 0, assume that a € Dy for € = 1,2,3. Then there exists € > 0
such that:

(1) Xy w2l = DUpr )™ Doy s 06 pri2) = o(h);
@) I P i @6/ = 0(6%);

(3) I, 677(el6) ~ 24(6) = o(5%);

@) 072 [, u(Bs(x) dx = 0(6°);

(5)  672(eL(6) - 84(6)) = 0(6) for £ = 2.3,

Proor.

(1) By Proposition 5.2, D; = {& € R : Fi(a@) < oo} is open. Thus, there exists € > 0 such
that @ + € € Dy. So there exists a positive constant C such that

2 W= Dpr Ay s iy <
Jj=N+1 J=N+1
Since
(prV e Z wa(j = 2)4(pr/™2)™ < Z wa(j = 2)%(pr/ )™,
j=N+1 J=N+1

Z;‘;N awa(j=2) (pr’=3)7@ < C(pr"=1)¢ < C6¢, where the last inequality follows from
the definition of N. Combining this with Proposition 5.1(1),

DW= 20pr )™ Y DS /pri?) < 266,
J=N+1 i=1,3
This proves part (1).

(2) The proof is similar to that of (1).
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(3) It suffices to show that e}(é) = 0(6%+**€) and é}.(é) =0(6****) for2 < j<N.In
order to estimate the remaining error terms, we will need the following facts. It follows
from (1) and (2) that

wa(N — 17 <206, pl? <2067 (5.10)
By (5.5),
HOERY ﬁ p(Bs(x, ) dx dy.
i=1.24,5 v B1i®)

As an example we only prove that fB} © U(Bs(x,y)? dxdy = 0(6*r**€). Note that
L

ﬁ W(Bs(x,y)? dxdy
Bj1.1(0)

0y 2407 140y DY 240 T 148 rptri
-(f [
Y2 0 Y2 pPrizt=6
0y j-2+pP P y14prTt o 0Yj2ts 7 riT=5
“J [ |
pYj-2+pri 2y prit=6  Jpy; 5
0 j2 0 148 roriT! =6
o Il
pYj24p7ri 7y prriz2

0 ja o yi4prTt mpriTl =6
v [ [ Juestaaxas
6

PYj2tp iy 4pritl =6
= 5 +E+E3+E4+ E5 + .

For &, since

\/(pzrf‘zyl +pyj-1)? + 62 <2p+6,

Bs(x,y) € Bopi25(S2i211(0,0)) for (x,y) € (pyj-2, p¥jz + P*r>y1 + pyj-1) X (0, 6).
Note that

H(B2p125(S2211(0,0))) = prwa(j — 2)u(Bap+25)/021-2(0,0)) < piwa(j — 2)
andforO<k <N -2,
Py pY s+ pY TS+ P s e+ ph)
Pyt +pY P ps+ -+ piTh
< N_:"l(NN—_Zl)(PZ + p3)t <MV 1), 5.11)
Py Py TPy A+
Combining these with the definition of N,
&1 < (pw2(j = DV (P*r >yt + pyj-1)8 < 2ppiwa(j - 2)%6
< 2p(l]p(21_N)qW2(N — 1Yt AN < o(py phNyapioN g2eare

The proofs for & < C6****€ and E; < C6**€ are similar.

wa(k) =
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For &4, since

0Yj-2+0

pzr-f’z—(S
&4 < f (Bs(x,y)? dx dy
0

PYj-2

and /(62 + (P22 = 6)2) < p*r/72 < p?, then,
Bs(x,y) € By215(82i-212(0, 0))
for (x,y) € (pyj-2,pYj-2 + 6) X (0, p*r/~% = §). Note that
H(B245(52-212(0,0))) < pawa(j — 2).
Combining these with (5.10) and (5.11), and using the definition of N,
Es < (Pawa(j = 2)1(p*r' = 6)5 < piwa(j - 2%
< p(zz_N)qwz(N — Dpr'=NprN1s

< 2Cpr1_Np(22_N)q52+d+5,

The proofs for &5 < C6>***€ and E < C6*** are similar. Combining the estimates
for &, ..., &, we have fé-l .(5)“(Bé(x’ W) dx dy < C52Fate,
Sl

Next, we will show that é} (6) = 0(677**€). By (5.5),

24(0) = wa(j - 2o ﬁ + fA By dx

By,1(6/pri7%) B 3(6/pri=%)

+ (3! fA + fA ) By 0 dx
Bi2(8/ri71) By 3(5/ri71)

As an example, we only prove

ﬂ(Bé/Pr];z (X))q dX = 0(62+Q+e)‘

By1(8/pri=?)

walj - 20 (pri 2y f
Note that

wa(j =2 (pr’ 2y | H(Bsjpri-2(x))T dx
By1(8/pri72)

) py1+r 8/priv oy1+8/pri? mp
— i — )4 J=2\2
=wa(j —2)(pr’™) +
0 0 0 p—0/pri~2
oyitr o Ipri= rp=6/pri= oY1 +6/pri rr=5/pri
A O e A |
o r=6/pri-2 0 8/pri=2 o 14

oY1+ r=5/pri”?
+ f f ),U(Ba/prf—z (x,yN?dxdy
s

py1+1=6/pri=t Jo/pri-?
=& +6 +83 +84+85 +86.
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Since

\/(pyl + 12+ (8/pri)? < p+r+6/pr’?,

Bé/prf*z(xa y) < Bp+r+26/pr~’*2(Sl(O, O)) for (x, )’) € (09 PY1t 7') X (O, 5/,0”j_2)- Note that
,u(Bp_'_r_,.z(g/prjfz)(S](O, 0)) < Pi1. Thus,

& <wa(j =2 (pr Y pl(pyr + 1) - 8/pr’
< wa(j = 2pr!pi(p + 16
< pIp s (N = 1)p(p + )6
< ' Np1py ™Y Iwa(N = Dp(pr" ™ + )5
< 2Cpr1_N(p] pé—N)q62+a/+E.

The proofs for & < C6****€ and E; < C62**€ are similar. For &,

_ s lpri™ ~p=6/pri~?
Ey < wa(j = 2)1(pr’™) f f U(Bspri2(x, ) dx dy
0 0

< wa(j = 2(pr" ) u(Byys)pri2(S1(0, 00)) (o — 8/ pr/~)5/pri
< pipy " waN = D0’ = 8)6

< (p1py ™Y wa(N = Dpr ' pr' s

S 2Cprl—N(p1pé—N)q62+(l+6.

The proofs for Es < C5***€ and E < C62**< are similar. Hence,
wa(j = 2 (pr’ ) | H(Bs 2 (X)) dx = 0(5747*).
B1.1(8/pri72)
Similarly, we can derive analogous results for the second, third, and fourth terms of
é} (6). Thus, é}.(d) = 0(6*+2*€). This proves part (3).
(4) It suffices to show that fBle U(Bs(x))? dx < Co>**€_ Tt follows from (5.2) and
Proposition 2.24(4) that B

f u(B5(x))? dx
Bnis

oyy o oyn+r et
([T [+ [ Juseyyaray
pyn-1 Y0 PYN 0
OYN+O orN -5 oyn+rN =8 N -6
oL Y I |
PYN-116 J O PYN+O 0
oyn+r ~6 oyn+6  rpr!
A )
PYN-1 0 pyn-1 JprN1-6
pyn+r oYN-1+6 oV -6
O A O N
PYN ) PYN-1 6
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OYN+0 N5 pyN+rN N-§
¥ f f " f f JuBstx ) dx
PYN pri=1 pyn+r¥—6 Jo
= & +&) +&) + &) +&EY + &) + &N + &

By Lemma 2.26(2), s,y s, = w2(N = 2uo Sy, +pi'uoS5y,, and hence

p(Sav-1(By1)) < wa(N —2) + pY~'. Since Bs(x,y) € Sov-1(By,y) for (x,y) € (pyn—1 +
S8, pyn +6) X (6, pr" "1 = 8) U (pyn + 6, pyn + 1Y = 6) x (6, 7Y = 6), (5.10) implies

EY + &Y < waN = 2) + pYY((pyn — pyn-1)(pr" ™! = 26) + (" = 26)%)

< (py sV = 1) + 3 ) Cor™ )2 + )
< 2C(pé_N + P£1)52+a+5_

For the other six terms,

EY < u(Byrs25(Syv-11(0,00) (pyn + Y = pyn-1)d
<wr(N — DA + prVhHs < 2087,

The proofs for &) < C6****¢ and EY < C6****€ are similar. & can be estimated as

follows:
oyn-1+6  rpr =6
e [0 ustyyaray
0

PYN-1

< U(Bpris(S1(0,0))(pr ™! = )5 < plpr'~'s

—Ng _N. - a+e
< plp, 1py16° <2C(p1p;y ") 7.

The proofs for &) < C6****€ and &) < C6****€ are similar. This proves part (4); part
(5) can be proved similarly. O

Proor (THEoREM 1.4). Combining Theorem 1.1 and Proposition 5.3, we have 7(q) = a.
Let

) 4
G(g,@) == (1 = pr o)1 - plr ) Z wa (k) (prk) ™ + @ Z pl-1.
k=0 =2

Similar to the proof of Theorem 1.2, we can show that G(g, ) is C' and that
Go(g, @) # 0 for any (g, @) satisfying G(a, @) = 0. The implicit function theorem now
implies that 7 is differentiable on (0, c0) and the formula for dimg(w) follows by
computing 7'(1) = —G,(1,0)G,(1, 0)~!. This completes the proof. O

Figure 11 shows graphs of 7(¢) and f(«) for one of the measures. For this example,
dimyg(u) = 7(1) = 1.13748 and dimy(K) = —7(0) = 1.18726, where K is the self-
similar set.
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Fiure 11. Graphs of 7(g) and f(a) for a self-similar measure in Example 2.22, with r = 7/20 and
p=pi=1/4fori=1,23,4.

6. Comments and questions

The spectral dimension of certain infinite IFSs has been computed in [21]. The
method in this paper can be applied to those IFSs to obtain 7(g).

It is interesting to compute 7(g) for g < 0 and see whether there is any phase
transition. Our method cannot be applied to this case. We do not know whether the
condition in Theorem 1.1 can be removed. Finally, we are not sure whether the method
in this paper can be applied, after modifications if necessary, to infinite Bernoulli
convolutions associated with Pisot numbers other than the golden ratio.
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