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HERMITIAN CONFIGURATIONS IN 
ODD-DIMENSIONAL PROJECTIVE GEOMETRIES 

BARBU C. KESTENBAND 

A t-cap in a geometry is a set of / points no three of which are collinear. 
A (t, fc)-cap is a set of t points, no k + 1 of which are collinear. 

I t has been shown in [3] t h a t any Desarguesian PG(2n, q2) is a disjoint 
union of (q2n+l — l)/(q — 1) (q2n+1 + l ) / ( g + l ) -caps . These caps were 
obtained as intersections of 2n Hermi t ian Varieties of a certain kind ; the 
intersection of 2n + 1 such varieties was empty . Fur thermore , the caps 
in question const i tuted the ' l a r g e po in t s" of a PG(2n,q), with the 
incidence relation defined in a natura l way. 

I t seemed a t the t ime t h a t nothing similar could be said abou t odd-
dimensional projective geometries, if only because \PG(2n — 1, q)\ \ 
\PG{2n- l,q2)\. 

Closer investigation shows, however, t h a t in PG(2n — 1, q2), the inter­
section of 2n Hermi t ian Varieties of a suitable kind has cardinal i ty 
2\PG{n - l,q2)|; besides, \PG(2n - l,q)\ does divide \PG(2n - l , g 2 ) | 
-2\PG(n- l,q2)\. 

T h u s it turns out t ha t by removing two disjoint subspaces 
PG(n — 1, q2) from a PG{2n — 1, q2), wha t is left behaves more or less 
as a PG(2n, q2) does, in the sense t h a t it can be par t i t ioned into caps 
(see the s ta tement of the Theorem below) and it can be also viewed as 
a PG(2n — 1, q) the "large po in ts" of which, however, are not the caps 
t h a t appear in the theorem (except in the case q = 2) , bu t ((q2n — 1 ) / 
(q + 1), q — l ) -caps obtained as unions of q — 1 (q2n — l)/(q2 — 1)-
caps. 

T h e main purpose of the present paper is therefore to prove the 
following: 

T H E O R E M . Given any two disjoint subspaces PG(n — 1, q2) of a 
PG(2n — 1, q2), the point-set of the latter is a disjoint union of the former 
and of q2n - 1 {q2n - l)/(q2 - l)-caps. 

M a n y terms and symbols in the present paper are the same as in [3]. 
We have avoided repeti t ions whenever we could, with a view, however, 
to making the present paper as self-contained as possible. 

A square matr ix H = (htj) over the finite field GF(q2), q a prime 
power, is said to be Hermi t ian if / ^ / = hjt for all i,j [2, p . 1161]. In 
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HERMITIAN CONFIGURATIONS 501 

particular, ha G GF(q). If H is Hermitian, so is p(H), where p(x) is any 
polynomial with coefficients in GF(q). 

Given a projective geometry PG(2n — 1, q2), n ^ 2, we denote its 
points by column vectors: 

x = 

We shall use "point" and 'Vector" interchangeably. 
All matrices in this paper will be 2n by 2n, n ^ 2. 
Further, A = (a 0 ) being a matrix, we denote A(Q) = (a*/). 
In PG(2n — 1, g2), the set of points x satisfying xTHx(Q) = 0, where 

if is a Hermitian matrix, will be called a Hermitian Variety (abbreviated 
HV) and denoted by {H}. The HV {cH\ is the same as {H}} as long as 
c 7* 0. If H is nondegenerate, {ifj is a nondegenerate HV [2, p. 1168]. 

The pointsu and v are said to be conjugate with respect to the HV {H} 
if ur/Zv(ff)

 = o, or, equivalently, \THu^Q) = 0 [2, p. 1169]. We will say 
t h a t u is conjugate with a set of points with respect to {H\, if u is con­
jugate with all points in that set, with respect to {H}. 

It is convenient to denote the number of points of PG(2n — 1, q2) and 
of a nondegenerate HV by m0 and Wi, respectively: 

mo = ( Ç 2 n _ l ) ( g 2 » + l ) / ( 3 2 _ 1 ) . 

By [2, p. 1175], 

m1 = (q*n - l ) ^ - 1 + l)/(<z2 - 1). 

For convenience's sake again, we will say that the intersection of 
zero HV's is the whole geometry and the intersection of one HV is, of 
course, the HV itself. 

A collection of HV's will be called dependent or independent according 
as the corresponding collection of Hermitian matrices is one or the other. 
By a linear combination of HV's we shall mean the obvious thing. 

Let now Hf be a Hermitian matrix with characteristic polynomial 
p2n(x), irreducible over GF(q). Since H' satisfies p2n (H') = 0, the 
polynomials p (Hf) over GF(q) form a shield GF(q2n). Let H be a primitive 
root of this field. H satisfies an irreducible equation p2n{H) — 0 and thus 
p2n(%) is a fortiori its characteristic and minimal polynomial. 

Let n be a characteristic root of H. Then ixT is a characteristic root 
of Hr. The smallest power of pt belonging to GF(q) is the (q2n — 1)/ 
(q — l)-th. Hence the characteristic polynomials of the Hermitian 
matrices H\ i = 1 , 2 , . . . , (q2n — q)/(q — 1), have no roots in GF(q). 
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Thus , if we consider the family x = {H^.i = 1, 2, . . . , (q2n — 1 ) / 

(q — 1)}, the polynomial \Hl — \Hj\ has no roots in GF(q) for any 

H\ W G x, i * j . 
We denote by {xî the collection of H V ' s {H*}, Hi G x-

LEMMA 1. Any polynomial of degree divisible by m, with coefficients in 
GF{q), is reducible over GF{qm). 

Proof. L e t / ( x ) , of degree mn, with coefficients in GF(q), be irreducible 
over GF{q). T h e n / ( x ) generates a GF(qmn) in which it has mn dist inct 
roots aQt, i = 0, 1, . . . , mn — 1. All the m polynomials of degree n, 

PJ(X) = (x - a«y)(* - aqj+m) . . . (x - a*y + ( n- l ) m) , 

j = 0, 1, . . . , m — 1, 

have coefficients in the subfield GF{qm). On the other hand, given two 
fields GF(qm), there is always an isomorphism between them which fixes 
each element of GF(q) and this completes the proof. 

If p(x) = 2^=o ai%ii w e denote p(q) (x) = 2Zl=o afx1. 

COROLLARY 1. Let f{x) be a polynomial of degree 2n with coefficients in, 
and irreducible over, GF{q). Then f(x) = rn{x)rn

{q) (x), where rn, rn
iQ) have 

degree n, coefficients in GF(q2), and are irreducible over GF(q2). 

Proof, fix) is reducible over GF(q2) by Lemma 1. If rn(x) is reducible 
over GF(q2), then rn(x) = s(x)t(x) and it follows t h a t 

rn<
Q)(x) = 5 ( ç )(x)/ ( ç )(x) . 

Bu t s(x)s(q)(x) will have coefficients in GF{q) and thus f(x) will be 
reducible over GF(q), a contradict ion. 

T h e following lemma is actually Lemma 1 in [3]. 

LEMMA 2. Given the independent WW's {Hi}, . . . , {Hm\, consider the 
collection T of all their linear combinations with coefficients in GF(q). Then 
for any n ^ m, the common intersection of any n HVs from V, m of which 
are independent, is the same set of points. 

T h e proof of the next lemma is quite similar to t ha t of Lemma 2 in 
[3], so we omit it. 

LEMMA 3. Any j independent HV's from {%}, j S 2n, intersect on 
m j = (q2n - l)(q2n~j + l)/(q2 - 1) points. 

L E M M A 4. For any number N ^ 2n, the intersection of N HV's from (x ) , 
exactly 2n of which are independent, consists of two disjoint projective 
subgeometries PG(n — 1, q2). 

Proof. Since x, as a vector space, has dimension 2n, wha t this lemma 
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actually says is that the common intersection of all HV's in {%} is a 
disjoint union of two PG(n — 1, q2). Proceeding to the proof, we first 
remark that the intersection in question contains 

m2n = 2(g'« - l ) / (g 2 - 1) 

points, which is the required number of points. 
Let u be a point in the intersection. Then 

This shows that the vectors u(<7), Hu(Q), . . . , H2n-lxx{q), cannot form a 
basis for the 2w-dimensional vector space, for if they did, we would have 
urw(<z) = o £or a n y p 0 i n t w of the geometry and thus u would be the 
zero vector. 

Therefore there exist elements c0, Ci, . . . , c2n-i € GF(q2) such that 

(col + ClH+ ... + c2n-iH*n-i)uW = 0, 

i.e., the matrix 

p2n-i(H) = col + cxH + . . . + c2n^H2n-i 

is singular and so is 

P*ti(H) = cfl + Ci*H + . . . + c\n-XH2n-\ 

It follows that the singular matrix p(H) = p2n-i(H)pin-i(H), of even 
degree (at most 4n — 2), must be the zero matrix: if it is not, it must 
be (up to a multiplicative constant) a member of x> because pipe) has 
coefficients in GF(q). But no matrix in x is singular. 

Hencep(H) = p2n(H)s(H), wherep2n.is the minimal and characteristic 
polynomial of H. By Corollary 1, p2n(H) = rn(H)rn(

Q)(H), rn, rw<«> irre­
ducible over GF(q2); then s (H) has even degree (at most 2n — 2) and 
coefficients in GF(q). By Lemma 1, 

s(H) = sn^(H)sn.^(H). 

Therefore : 

(1) p{H) = [r,(F)r„(«(H)][s1,_1(^)5),_1«>(H)]. 

This implies that p2n-i(H) is a product of two factors, one from each 
square bracket of (1). On the other hand, sn-i(H) (and sn-i

(Q)(H) as 
well) are not singular: s(x) being of degree less than 2n, s(H) cannot be 
the zero matrix, thus s(H) £ x (up to a multiplicative constant) and it 
is not singular. 

This enables us to conclude that p2n-i(H)uiQ) = 0 implies 

rn(H)uW = 0 or rn^(H)u^ = 0. 

We have thus far shown that the intersection of 2n independent HV's 
from {x} must belong to the union of the null spaces of rn(H) and rn

(g) (H). 
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To complete the proof, we will now show that the null space of each of 
rn(H) and rn

(Q)(H) is a PG(n — 1, g2). To this end it suffices to prove 
that rn{H) and rn

{Q)(H) have nullity n. 
We will denote the rank and nullity of a matrix A by p{A) and v(A). 
We have p(rn(H)) = p(rn™(H)) and v(rn{H)) = v(rn™(H)). 
In the sequel, 6 will always stand for the number (q2n — l)/(q2 — 1). 
Consider the subfield GF{q2) of our GF(q2n), consisting of the zero 

matrix and Hie, i = 1, 2, . . . , q2 — 1 (we remind the reader that H is 
a primitive root of GF(q2n)). He is a primitive root of this GF(q2). As 
such, He satisfies g(H6) = 0, where g, of degree two in H\ is the irre­
ducible (over GF(q)) minimal polynomial of He. 

Let g(H6) = (He - aI){He - a«I), a, a* 6 GF(q2) - GF{q). 
H6 is a linear combination of / , H, . . . , H2n~l. Thus 

where /2„_i(iJ) = if9 - a/, 41 i ( /^) = H« - a"I. 
Therefore 

rw(^)^(^( /7) | / 2 n_ 1(^)^ )_ 1( / / ) . 

But rn(H) and rn^(H) are irreducible over GF(q2), hence rn(H)\t2n-i(H)y 

s a y , a n d ^ ) ( ^ ) | 4 1 i ( ^ ) . 
Thus rn(iï)ii<

ff> - 0 implies *2»-i(ff)u<«> = 0, i.e.,ff*u<*> = au«>. Like­
wise, rn

(q)(H)\iQ) = 0 implies i7^v((?) = acv(fl) and this shows that u ^ cv. 
Thus the null spaces of rn(H) and rn

iQ)(H) share no common vectors, 
which implies 

v(rn(H)) = v(rn^(H)) ^ n. 

On the other hand, by Sylvester's law of nullity [1, p. 221], we have 

v{rn{H)) +v(rnW(H)) ^ 2n 

and we conclude that 

v{rn{H)) = v{rn^(H)) = p(rn(H)) = p(rn™(H)) = n 

and the proof is finished. 

We shall henceforth denote by IIi and n 2 the two disjoint PG(n — 1, q2) 
that appear in the above lemma. 

u £ n i <^> rn(H)u<Q) = 0 and v £ n 2 <=> rn<«> (H)\^ = 0. 

Le tu € IIi. Then 

rn(H)(HTuyv = rn(H)HuM = Hrn(H)u™ = 0, 

i.e., HTu Ç IIi and therefore HT%u £ IIi for any integer i. But we have 
seen before that: 

(2) Heu^ = au<*>, i.e., f F ' u = a*u 
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and this shows that IIi consists of the 6 distinct points HTlu, i = 0, 
1 , . . . , 0 - 1. 

Likewise, if v G n2, we have: 

(3) i ? V « = a«v<«> and HT'\ = a\ 

hence ÏI2 consists of the 6 distinct points HTt\, i = 0, 1 , . . . , 0 — 1. 
At this point we need the following fact which becomes crucial in the 

sequel: the line joining two points on a HV {H\ is completely contained 
in {H} if and only if the two points are conjugate with respect to {H} 
[2, p. 1176]. 

LEMMA 5. Given a Hermitian matrix Hj £ x> there is a one to one 
correspondence between the points of IIi (or II2) and the (n — 2)-dimen­
sional sub spaces of ÏI2 {or IIi), in which each such subspace is conjugate 
with the corresponding point, with respect to all WW's {Hi+ke}, k = 1, 
2, . . . , g2 - 1. 

Proof. First, if u G IIi and v G n2 are conjugate with respect to {Hj\, 
they are also conjugate with respect to {Hj+ke\ for any k, because of 
(2) and (3). 

Second, all points in II2 that are conjugate withu £ IIi with respect to 
{Hj} form a subspace, call it S, of II2. Furthermore, 2 ^ II2: iîuTHj\(Q) 

= 0 for any v £ II2, then the PG(n, q2) containingu and II2 is completely 
included in {Hj\. But [2, p. 1176] a nondegenerate HV in a PG(2n — 1, 
q2) cannot contain subspaces of higher dimension than n — 1. 

On the other hand, any line in II2 contains at least one point that is 
conjugate withu: ifv,w g II2 withu THWq) = r ^0Ju

THjw^) = s ^ 0, 
thenuTHjx(Q) = 0, where x = v — (r/s)Qw. 

Now, since the only proper subspaces of II2 that intersect all its lines 
are the subgeometries PG(n — 2,q2), we conclude that S is such a 
subgeometry. The point u cannot be conjugate with any other sub-
geometry of II2, or it would be conjugate with the whole of II2, a con­
tradiction. 

Assume now that y G Hi is also conjugate with 2, with respect to 
{Hj} ; y and S determine a PG(n — 1, q2), denote it 2 ' . The w-dimen-
sional geometry determined by u and S' is contained in {Hj}, a con­
tradiction, and this completes the proof. 

Given u Ç IIi and Hj £ %> the conjugate subspace of u consists precisely 
of those points v G n2 that satisfy vTHju{Q) = 0. Thus, if u is conjugate 
with v with respect to {Hj}, then HTlu is conjugate with HT "*v, with 
respect to the same {Hj\. Therefore, given any (n — 2)-dimensional 
subspace of II2, say 2, the subspaces HTlyL, i = O , l , . . . , 0 — 1, are all 
the (n — 2)-dimensional subspaces of II2. Here HTt2 means multiplica­
tion of each point of S by HTl. 
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We next note that given any point u £ III and any (n — 2)-dimen­
sional subspace 2 of n2 , there is a unique number j modulo 6 such t h a t u 
is conjugate with 2, with respect to all HV's {Hi+ke}, k = 1, 2, . . . , 
q2 — 1: u is conjugate with respect to {/}, with an (n — 2)-dimensional 
subspace 2. But 2 = # T î 2 for some fixed i 6 {0, 1, . . . , 0 — 1}, hence 
the sought j is simply — z (mod 6). 

At this point, in order to establish Lemma 6, we need James Singer's 
Theorem [4]. Let x be a primitive root of a GF(qn). Then x* = a0 + 
«ix + • • • + aw_ixw_1, af 6 GF(q). There are gn — 1 different powers x\ 
or, if we do not distinguish between xi and cx\ c £ GF(q), there are 
(gn — l)/(tf — 1) different powers x\ 

Consider the GF(qn) as an n-dimensional vector space V, the vectors 
being v = (a0, aif . . . , a^-i) ; again, we do not distinguish between v 
and cv, c Ç GF(q). We nowT set up a one to one correspondence between 
the set of numbers {1, 2, . . . , (qn — l)/(q — 1)} and the vectors v, as 
follows: i <-> v if the coefficients of 1, x, . . . , x*"1 in the expression of xl 

are the components of v. 
What Singer's Theorem essentially says is the following: consider any 

(n — 1)-dimensional subspace of V, consisting, of course, of {qn~l — 1) / 
(q — 1) vectors. The (qn~l — 1)/(<Z — 1) numbers i that correspond to 
these vectors form a (v, k, X)-difference set, where 

v = (qn - l)/(q - 1), k = (ç^ 1 ~ l ) / (g - 1), 

X = ( g w ^ - \)/{q~ 1). 

Now we are prepared for the next lemma, which together with Lemma 
2 shows that the intersection of any 2n — 1 independent HV's from {%! 
is the same as the intersection of a special family of 2n — 1 independent 
HV's, and this simplifies the problem, as will be seen later (Lemma 8 
and Corollary 2). 

LEMMA 6. Given any 2n — 1 independent Hermitian matrices in x> the 
vector space they span has a basis 

{Hf\ Hl\ H^+e, . . . , Rl--\ Hin-i+e}, ir je is mod 6 for r ^ 5. 

Proof. By Singer's Theorem, the exponents of H in the (q2n~l — 1)/ 
(q — 1) linear combinations over GF(q), of any 2n — 1 independent 
Hermitian matrices in x> form a (v, k, X)-difference set D, where 

v = (g2" - l ) / (g - 1), fe = (g2"-1 - l ) / (g - 1), 

X = (g*-* - i ) / (g - 1). 

In the difference set D, the difference 0 appears X times, just like any 
other. Let i, i + 0 G D. This implies that i + j'0 G D for all 7 = 0, 
1, . . . , q, because given H\ Hi+e Ç %» the exponents of all their linear 
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combinations must be in D, but all their linear combinations are of form 
cHi+jd, c Ç GF(q), this last fact being so because H6 is a primitive root 
of the subfield GF(q2). These q + 1 numbers i + jd account for q + 1 
differences 0. Therefore there must be in D, X/(g + 1) = (q2n~2 — 1)/ 
(ç2 — 1) such cycles of length q + 1. 

The number (g2w_2 — l)/(q2 — 1) will be denoted r in the sequel. 
We have thus shown that all the X differences 6 appear within the 

following subsets of D: 

Dr = {ir, ir + 6, . . . , iT + qd}} r = 1, 2, . . . , r. 

Let Hx = Hl^\ H2 = H^+kd. The exponents of H in aH1 + bH2 and 
in aHeHi + bHeH2 differ by 6 and this shows that the subset x C x 
defined as 

x' = {^:j€ U2?r} 

is a subspace of x; since its cardinality is (q2n~2 — l)/(q — 1), x must 
have dimension 2w — 2. 

We now want to prove that after a possible renumbering of the ZVs, 
the matrices Hil, Hil+d, . . . , Hin~\ Hin~1+9 constitute a basis for %'• To 
this end, if we regard the GF(q2n) as a GF((q2)n), we can express any 
i7J Ç x' as a linear combination of I, H} . . . , Hn~l, with coefficients in 
GF(q2), these coefficients being matrices of form ai + 6i70, a, 6 Ç GF(q). 
In this setting no distinction is being made between /J77" and Hir+je. Thus 
x' reduces to the vector space (over GF(q2)) x' — [Hil, Hi2, . . . , Hlr)m 

Because r = {q2n~2 — l)/(q2 — 1), x" has dimension n — 1 (over 
GF(q2)). Let, without loss of generality, a basis of x" be ji^'1, . . . , 
H*»-*}. Now {^i, Jyril+0, . . . , H*»-\ H*»-^9} is a basis of x ' , for if not, 
one could find w — 1 matrices of the form 

Cs = a J + bsH
e, s = 1, 2, . . . , n - 1, a,, 6, G GF(q), Cs G G^fe2), 

such that 

E c^- = o 
and this is not possible. 

Extend now this basis of x to a basis of x to complete the proof. 

LEMMA 7. Given two disjoint sub geometries PG(n — 1, q2) of a 
PG(2n — 1, q2), the lines that intersect both sub geometries contain among 
themselves all the points of the geometry and no two such lines meet outside 
the two sub geometries. 

Proof. Let the two subgeometries be Xi = . . . = xn = 0 and xn+i = 
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. . . = %2,i = 0. Any point of PG(2n — 1, q2) is evidently contained in a 
line that intersects both subgeometries. 

There are (q2n — l)2/(q2 — l ) 2 such lines, hence containing (q2n — l ) 2 / 
(q2 — 1) points outside the two subgeometries. But this is the total 
number of points outside said subgeometries and as such no two lines 
intersect outside them. 

We shall denote by A the collection of lines that intersect IIi and n2 : 

A = {L: \LC\ Ui\ = \LC\ n2 | = 1}. 

LEMMA 8. Let Pk = \H^) C\ {H^+9} C\ . . . H {H**} H {H***6}, the 2k 
HV5 being independent, 1 ^ k ^ n — 1. Then Pk is a union of 6 in — k)-
dimensional sub spaces that are mutually disjoint outside II i U ÏI2. 

Proof. By Lemma 3, Pk contains \Pk\ = m2k = (q2n - \){q2n-2k + 1) / 
(q2 — 1) points. 

Le tu Ç IIi. By Lemma 5, one finds k (n — 2)-dimensional subspaces 
of n2 , namely Si, . . . , S*, such t ha tu is conjugate with S r, with respect 
to {H**} and {H***}, r = 1, . . . , k. 

S r consists precisely of those points v G n 2 that satisfy 

YTHiruiQ) = Q 

Then Hr=iS r has dimension at least n — k — 1, because a homogeneous 
system of n + k equations with 2n unknowns has at least n — k nontrivial 
solutions. 

Let S C P)r=iSr have dimension n — k — 1. For any v Ç S, the line 
[u,v] is contained in all HV's {Hir}y {Hir+e}, r = 1, . . . , k, and hence 
so are all lines [HTiu, HTd~iy]J i = 0, 1, . . . , 6 — 1. Thus Pk contains 6 
(n — k)-dimensional subspaces, which are also mutually disjoint outside 
IIi ^ n2 , by Lemma 7. A straightforward counting argument shows that 
these 6 subspaces contain m2k points among themselves, i.e., Pk consists 
precisely of these subspaces and S = Pir=iSr. 

COROLLARY 2. Let {H^}, {H^+6}, . . . , {H1—^, {H**-^6} be indepen­
dent WW s from \x\- Their intersection consists of 6 mutually disjoint lines 

[HTiu, HT9-'V] e A, HTiu e Uu HTd-ly £ U2,i = 0, 1, . . . , 6 - 1. 

LEMMA 9. The intersection of any 2n — 1 independent HV's from {%} 
consists of 6 mutually disjoint sets of q + 1 collinear points. 

Proof. By Lemmas 2 and 6 and Corollary 2, the intersection in question 
is actually the intersection of \Hio} and 6 mutually disjoint lines [HT%u, 
H11'-'?], i = 0, 1, . . . ,6 - 1. 

We will show that each of these lines intersects {Hio} at q — 1 points 
outside IIi U II2: the equation 

(4) (u + cHTd\)TH^(u + cHTdv)^ = 0 
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reduces, by (2) and (3), to 

c(a\TH^u^) + c*(avTHW>y = 0, 

which yields q — 1 distinct nonzero values for c. Furthermore, (4) is 
equivalent to 

(HTiu + cH^-'yyW^H^u + cH^-'v)™ = 0, for any i. 

Thus the intersection of any 2n — 1 independent HV's from {%} is 
made up of 0 sets of q + 1 collinear points: 

{HTiu, H*0''?, HTiu + aHT'-'y, . . . , HTiu + c^H^^y], 

i = 0, 1, . . . , 0 - 1. 

Our next goal is to demonstrate that the intersection of 2n — 1 
independent HV's from {%} does not possess, outside IIi VJ n2, any 
three collinear points, except those that appear in Lemma 9. To this 
end we need several more lemmas. 

LEMMA 10. A line L such that \L C\ (Hi U n 2 ) | = 1 cannot have more 
than two points in common with the set 

p„_i = {H*!} n {H***6} n . . . r\ {jffi»-i} n {#*»-!+»}, 
where the 2n — 2 HV'5 are independent. 

Proof. Let Z, H (IIi U n2) = {u},u G IIi, and let w G L C\ Pn-U 

w ?* u. By Corollary 2 one can find two points x Ç IIi, y Ç ÏI2, x ^ u, 
such that W, x, y, are collinear. Let Xi, x2, . . . , xfl2_! be the remaining 
points on the line [u, x]. Then 

LC\ [y,x,] = {t,}, t3 &tk îorj^k. 

The points t , $ Pw_i for any j , by Corollary 2 and Lemma 7. 

LEMMA 11. If a line L (? A, L (^ IIi, n2, is completely contained in 
2n — 2 independent H V s from {%}, //*£w L intersects II1 or II2. 

Proo/. Let {if**}, . . . , {#**»} ç {xj b e independent (over GF{q)). 
Let A = n t i 2 {#**') contain a full line L, L C\ II1 = Z, C\ n2 = 0. 

We will show that this assumption leads to a contradiction. 
A is the union of the following q + 1 sets: 

A-X = AC\ {Hk*"-i},Ax = A r\ {Hk** - XH**»-*}, 

A ranging through GF(q). We have A t C\ A3-, = IIi U II2 for any & ^ 7. 
By [2, p. 1171], a line intersects a HV in q + 1 points, in one point, or 

lies entirely in it. Thus L cannot be contained in any one A z. Hence L 
must intersect q — 1 of the A / s at q + 1 points each and the remaining 
two, say ^4_i and A0, at one point each. Let those two points be y and z, 
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respectively; they are, of course, conjugate with respect to {Hki},i = 
1,2, . . . , 2n - 2. 

We shall now prove by contradiction that y and z are also conjugate 
with respect to {Hk2n~1} and {Hk2n\ : if they are not, we can find elements 
a G GF{q2) such that the points az + y £ {Hk2n}. To achieve this, we 
have to solve 

(az + y)THk*»(az + y)(<2) = 0. 

Because z £ {i2*2n}, this equation reduces to 

where x stands for azTHk2ny{q). The latter equation has g distinct solutions, 
all nonzero, so that unless 

ZTHk2ny(Q) = 0 ? 

L will intersect {Hk2n\ at g + 1 points, the sought contradiction. 
Likewise we obtain 

ZTHk2n_ly{q) = o 

and therefore y and z are conjugate with respect to all {Hki}, i = 
1,2, . . . , 2». 

It follows that the 2n vectors Hkiy^q) cannot form a basis of the 2n-
dimensional vector space, for if they did, we would have zrw(<z) = 0 for 
any point w of the geometry, so t ha t z would be the zero vector. 

Hence there exist 2n elements ct 6 GF(q2), not all zero, such that 

2n 

£ CiH
kyw = o, 

i.e., the matrix 

In 

M(H) = X c<nki 

is singular and so is M{Q) (H). Also, M 9e- 0. As a polynomial in H, M(H) 
has degree at most 2n — 1. The matrix M(H)M{q)(H) is singular and 
has coefficients in GF(q), thus 

M(H)MM(H) = 0 

and this enables us to write 

M(H)M^(H) = rn(H)rnW(H), 

which implies, say: 

(5) M(if) = rn{H)a(H). 
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a (H) has degree at most n — 1, therefore a (H)a(Q) (H), with coefficients 
in GF(q)} has degree at most 2n — 2 and thus a(H) is not singular. Now 
(5) shows that M(H)y{q) = 0 implies rn(H)y(Q) = 0, i.e., y G IIi and this 
final contradiction concludes the proof. 

LEMMA 12. A line L (? A, L Çj_ IIi, n2, cannot have more than two points 
in common with the intersection P of 2n — 1 independent HV's from {x}-

Proof. By Lemmas 6 and 10, we need consider only those lines that 
do not intersect III W n2. Let L be such a line and let \L C\ P\ = y ^ 2. 

By Lemma 11, no intersection of 2n — 2 independent HV's from {%} 
can contain L. As a consequence, there must be at least two HV's among 
the 2n — 1 given ones, say \Hil) and {H1'2}, none of whose linear com­
binations contains L. 

L must have z ^ y points in common with [Hil] C\ {Hi2} and exactly 
q + 1 common points with each of {H^}, {Hf* - A//*1}, X 6 GF(g). 
These q + 1 HV's span the geometry on the other hand. Thus we obtain 

(q+ l)(q + 1 -z) + z = ç2 + 1, 

yielding s = 2, hence ;y = 2. 

Proof of the theorem. By Lemma 9, the intersection P of any 2n — 1 
independent HV's from {xj can be written as a disjoint union: 

q-1 

p = iix u n2 u o*, 

where 

12, - {fF 'u + CtHT'-'v: i = 0, 1, . . . , 0 - l j . 

The fife's are 0-caps, by Lemma 12, completing the proof. 

On the other hand, UL{ttk, îor q ^ 2, is a ((?2W - l ) / (g + l ) , g - 1)-
cap, so that we also have 

COROLLARY 3. Given any two disjoint subspaces PG(n — 1, q2) of a 
PG(2n — 1, q2), q ^ 2, /fee point-set of the latter is a disjoint union of the 
former and of (q2n - l)/(q - 1) ((q2n - l)/(q + 1), q - I)-caps. 

As in [3], we introduce the following terminology: the HV's {iJ?} G {x} 
will be called large hyper planes and in general, the intersection of 
2n — m — 1 independent HV's from {%}, 0 ^ m ^ 2w — 1, will be an 
m-dimensional large sub space. The large points and the large lines form 
a PG(2n — 1, g), exactly as in [3]. 

The collineation *$ of PG(2n — 1, q2) that maps each point x onto 
HTix will map each HV {Hj\ onto the HV {Hj~2i}, as can be readily 
checked. *$ maps Ili and n2 onto themselves, of course. 
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Again as in [3], one shows that fé7 maps all large subspaces of 
PG(2n — 1, q) onto large subspaces and thus we conclude that ^ is a 
collineation of the PG(2n — 1, q) as well. 

Furthermore, it is a straightforward verification that ^ maps the caps 
tijc that appear in the proof of the theorem, onto caps of the same type. 
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