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Abstract

We continue the study of n-dependent groups, fields and related structures, largely motivated by the conjecture that
every n-dependent field is dependent. We provide evidence toward this conjecture by showing that every infinite n-
dependent valued field of positive characteristic is henselian, obtaining a variant of Shelah’s Henselianity Conjecture
in this case and generalizing a recent result of Johnson for dependent fields. Additionally, we prove a result on
intersections of type-definable connected components over generic sets of parameters in n-dependent groups,
generalizing Shelah’s absoluteness of �00 in dependent theories and relative absoluteness of �00 in 2-dependent
theories. In an effort to clarify the scope of this conjecture, we provide new examples of strictly 2-dependent fields
with additional structure, showing that Granger’s examples of non-degenerate bilinear forms over dependent fields
are 2-dependent. Along the way, we obtain some purely model-theoretic results of independent interest: we show
that n-dependence is witnessed by formulas with all but one variable singletons; provide a type-counting criterion
for 2-dependence and use it to deduce 2-dependence for compositions of dependent relations with arbitrary binary
functions (the Composition Lemma); and show that an expansion of a geometric theory T by a generic predicate is
dependent if and only if it is n-dependent for some n, if and only if the algebraic closure in T is disintegrated. An
appendix by Martin Bays provides an explicit isomorphism in the Kaplan-Scanlon-Wagner theorem.

1. Introduction

A classical line of research in model theory, both pure and applied, aims to determine properties of
algebraic structures, such as groups and fields, that satisfy certain model-theoretic tameness assumptions.
This is analogous to the study of algebraic or Lie groups in algebraic or differential geometry, but
instead of considering groups definable in a specific structure like C or R, one typically considers
groups definable in a class of first-order structures with some restrictions on the complexity of their
definable subsets. Some of the most striking applications of model theory are based on a detailed
understanding of definable groups in certain specific contexts of this kind (e.g. Hrushovski’s proof of
the Mordell-Lang conjecture for function fields [24] is based on the theory of stable groups, applied to
groups definable in differentially closed and in separably closed fields). But even if one is only interested
in abstract classification of first-order structures, the study of definable groups unavoidably enters the
picture (e.g. through Zilber’s work on totally categorical structures [47] or Hrushovski’s theorem on
unidimensional theories [23]). In the case of model-theoretically tame fields, one often expects not
only to deduce some of their general properties, but in fact to obtain an explicit algebraic classification.
Probably the first result of this type is Macintyre’s proof that all ℵ0-stable fields (roughly speaking,
fields admitting a Zariski-like notion of dimension on their definable subsets) are algebraically closed
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[33], generalized by Cherlin-Shelah to the larger class of superstable fields [9]. Some of the longest-
standing conjectures in model theory that played a fundamental role in the development of the area are
asking for characterizations of this type, such as Podewski’s conjecture whether all minimal fields are
algebraically closed [37], or the stable field conjecture asking if all stable fields are separably closed
(see e.g. [29]), and we discuss some further examples below.

In this article, we continue the study of groups, fields and related structures satisfying a model-
theoretic tameness condition called =-dependence, for = ∈ N, initiated in [22] and continued in [11].
The class of =-dependent theories was introduced by Shelah in [40], with the 1-dependent (or just
dependent) case corresponding to the class of NIP theories that has attracted a lot of attention recently
(see e.g. [42] for an introduction to the area). Basic properties of =-dependent theories are investigated
in [14]. Roughly speaking, =-dependence of a theory guarantees that the edge relation of an infinite
generic (= + 1)-hypergraph is not definable in its models (see Definition 2.1). For = ≥ 2, we say that a
theory is strictly =-dependent if it is =-dependent but not (= − 1)-dependent.

This paper is largely, but not exclusively, motivated by the following conjecture.

Conjecture 1.1. There are no strictly =-dependent fields for = ≥ 2 (in the pure ring language).

We expect that the same should hold for fields expanded with some natural operators such as,
for example, derivations or valuations. We also expect a generalization to type-definable fields: every
field type-definable in an =-dependent structure is isomorphic to a field type-definable in a dependent
structure. Some initial evidence toward Conjecture 1.1 is given by the results in [22]: every infinite
=-dependent field is Artin-Schreier closed (generalizing [31] for = = 1); every non-separable PAC
(i.e. pseudo-algebraically closed) field is not =-dependent for any = (generalizing [19]). In particular, for
fields with (super-)simple theories, our Conjecture 1.1 follows from the well-known conjecture that all
such fields are (bounded) PAC (see e.g. [36]). On the other hand, combined with Shelah’s conjectures
on dependent fields discussed below, Conjecture 1.1 leads to a complete classification of =-dependent
fields.

In this paper, we obtain some new results about =-dependent groups and fields, in part providing
further evidence for Conjecture 1.1 and clarifying its scope, and in part generalizing the known results
about dependent or 2-dependent structures. First, we prove Shelah’s Henselianity Conjecture for =-
dependent valued fields of positive characteristic in Section 3 (this generalizes Johnson [27] for = = 1
and, toward Conjecture 1.1, demonstrates that a known property of dependent fields also holds for all
=-dependent fields). Additionally, we establish a result on intersections of type-definable connected
components over generic sets of parameters in =-dependent groups in Section 4, generalizing Shelah’s
theorems on absoluteness of�00 in dependent theories and relative absoluteness of�00 for 2-dependent
theories. While we do not have any direct application of this result toward Conjecture 1.1 at the moment,
the = = 1 case is a fundamental property of dependent groups and is used extensively in Johnson’s
classification of dependent fields of finite dp-rank [27, 28], so we expect it to be useful in the future
study of Conjecture 1.1 and its aforementioned generalization to type-definable fields in =-dependent
structures. Second, we provide new examples of strictly 2-dependent fields with additional structure by
showing that Granger’s examples of non-degenerate bilinear forms over dependent fields are strictly 2-
dependent in Section 6 (demonstrating in particular the necessity of the pure ring language assumption
in Conjecture 1.1). Our proof of this relies on establishing some general results on =-dependent theories,
possibly of independent interest: a reduction of the =-dependence of a theory to formulas with all but one
of its variables singletons (Section 2), a type-counting criterion for 2-dependence and the Composition
Lemma showing 2-dependence of compositions of dependent relations with binary functions (Section
5). And third, we show in Section 7 that an expansion of a geometric theory ) by a generic predicate
is dependent if and only if it is =-dependent for some =, if and only if the algebraic closure in ) is
disintegrated (generalizing the = = 1 case from [6]). While not directly related to Conjecture 1.1, this
gives an example of a class of structures (expansions of geometric structures by a generic predicate) for
which =-dependence is equivalent to dependence, the behavior predicted for fields by Conjecture 1.1,
and the authors hope that some of the arguments might be useful in the future for the original question.
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In the rest of the introduction, we discuss these results in further detail and overview the structure of
the paper.

One of the results in [14] gives a characterization of =-dependence in terms of generalized in-
discernibles (indexed by ordered random partite =-hypergraphs) and demonstrates, using this charac-
terization, that in order to verify =-dependence of a theory it is enough to check that every formula
i(G; H1, . . . , H=) with at least one of the tuples of variables G, H1, . . . , H= singleton is =-dependent (gener-
alizing the well-known theorem of Shelah for dependent theories). In Section 2, we refine and generalize
some of these results allowing indexing structures of larger cardinalities and obtaining a better reduction
to singletons: a theory ) is =-dependent if and only if every formula i(G, H1, . . . , H=) such that all but
at most one of the tuples G, H1, . . . , H= are singletons is =-dependent (Theorem 2.12).

In Section 3 (which is self-contained except for the results in Appendix A), we obtain further evidence
toward Conjecture 1.1 in the case of valued fields. The question of classifying dependent (valued) fields
is currently an active area of research motivated by various versions of Shelah’s Conjecture, which in
particular predicts that every infinite dependent valued field is henselian. A recent result of Johnson
[27, 28] confirms this for valued fields of positive characteristic. In Theorem 3.1, we generalize this
by showing that every =-dependent valued field of positive characteristic is henselian, for arbitrary
=. As in Johnson’s proof, the theorem is deduced by showing that any two valuations on an infinite
=-dependent field of positive characteristic must be comparable. In the case of = = 1, this lemma
can be quickly obtained using Artin-Schreier closedness of dependent fields and absoluteness of the
connected component �00 (in fact, an application of Baldwin-Saxl is sufficient). However, replacing
the absolute connected component with a weaker condition for intersections of uniformly definable
families of subgroups available in =-dependent theories (Proposition 3.9) requires a detailed analysis
of the effect that the isomorphism for special linear groups from Kaplan-Scanlon-Wagner [31] has on
multiple valuations. We are able to carry it out, relying in particular on the explicit description of this
isomorphism given by Bays in Appendix A. Concerning the (open) case of characteristic 0, in Section
3.5 we observe that the model completions of multi-ordered and multi-valued fields with at least two
orders (respectively, valuations) as studied in [45, 30] are not =-dependent for any =.

Given a definable group � and a small set of parameters � (see Section 2.1 for the definitions of
‘small’, ‘saturated’, etc.), we denote by�00

�
the intersection of all subgroups of� of bounded index type-

definable over � (see Section 4.1 for more details). A crucial fact about definable groups in dependent
theories, due to Shelah, is that for every small set �, one has �00

�
= �00

∅
[39]. This can be viewed as

an infinitary analog of the Baldwin-Saxl condition on intersections of uniformly definable families of
subgroups in dependent theories [2]. In [41], Shelah established the following result for groups definable
in 2-dependent theories: let M be a sufficiently saturated model, and let 1 be a finite tuple inM (and not
contained in M in the case of interest); then �00

M∪1
= �00

M
∩�00

�1
for some small set � ⊆ M. In Section

4 (which is self-contained), we generalize this result from 2-dependent groups to =-dependent groups.
Specifically, we show that if ) is =-dependent and � = � (M) is a type-definable group (over ∅), then
for any small model " and finite tuples 11, . . . , 1=−1 sufficiently independent over " in an appropriate
sense, we have that

�00
M∪11∪···∪1=−1

=

⋂
8=1,...,=−1

�00
M∪11∪...∪18−1∪18+1∪...∪1=−1

∩ �00
�∪11∪···∪1=−1

for some � ⊆ M of absolutely bounded size (Theorem 4.9 and Corollary 4.10). In other words,
the intersection of all subgroups of � of bounded index type-definable over M ∪ 11 ∪ · · · ∪ 1=−1 is
already given by the intersection of a (potentially) smaller collection of subgroups containing only
boundedly many groups whose definitions involve all = − 1 of the parameters 11, . . . , 1=−1 at the same
time. Our independence assumption on the parameters holds trivially in the cases = = 1, 2 giving the
aforementioned results for dependent and 2-dependent groups, and in general can be achieved assuming
that the 18’s appear as the vertices of an amalgamation diagram with respect to the independence relation
of being a ^-coheir (see Definition 4.8 for the precise definition of our independence assumption). While
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this result has no direct applications to Conjecture 1.1 at the moment (in our proof of Theorem 3.1 we
only needed a chain condition for uniformly definable families of subgroups from Proposition 3.9), we
expect that it will be useful in the future, in particular for the aforementioned variant of Conjecture 1.1
for type-definable fields.

Next, we consider the limitations of Conjecture 1.1 (in terms of the additional structure allowed on
the field) and try to place it in a more general model-theoretic setting. In [22], it was observed that the
theory of a bilinear form on an infinite dimensional vector space over a finite field is strictly 2-dependent.
In fact, all of the previously known ‘algebraic’ examples of strictly =-dependent theories with = ≥ 2
tend to look like multi-linear forms over finite fields. For example, smoothly approximable structures
are 2-dependent and coordinatizable via bilinear forms over finite fields [8]; and the strictly =-dependent
pure groups constructed in [11] using Mekler’s construction are essentially of this form as well, using
Baudisch’s interpretation of Mekler’s construction in alternating bilinear maps [3]. In Section 6, we show
that one can replace finite fields by arbitrary dependent fields in these examples. Namely, we investigate
=-dependence for theories of bilinear forms on vector spaces with a separate sort for the field, in the sense
of Granger [21]. We show that all such theories are 2-dependent assuming that the field is dependent,
and that the assumption of dependence is necessary (see Theorem 6.3). Combined with the fact that
the intersection conditions on the connected components discussed above resemble modular behavior
in the 2-dependent case, this leads one to speculate that =-dependence of a theory might imply some
form of ‘linearity relative to the dependent part’. While formulating this precisely appears difficult at the
moment, we view Conjecture 1.1 as a specific instance of this general principle. Our proof of Theorem
6.3 relies on the criterion for =-dependence in terms of generalized indiscernibles from Section 2, and
on some additional purely model-theoretic results contained in Section 5 that we now describe.

In [14], a generalization of the Sauer-Shelah lemma to =-dependent formulas is given, in particular
demonstrating that a formula i(G; H1, . . . , H=) is =-dependent if and only if the number of i-types
over an arbitrary large finite set � of parameters is bounded by 2 |� |

=−Y
for some Y = Y(i) ∈ R>0.

Concerning the number of types over infinite sets of parameters, a well-known theorem of Shelah [38,
Theorem II.4.11] shows that if i(G, H) is dependent, then the number of i-types over an infinite set of
parameters of size ^ is at most ded(^), where ded(^) is the supremum over the number of Dedekind
cuts in a linear order of cardinality ^. In Section 5.1, we show that a theory is 2-dependent if and
only if the following type-counting criterion is satisfied. Let 2 be a finite tuple and � an indiscernible
sequence of size ^. Then the number of types over �2 that are realized cofinally in a sequence mutually
indiscernible to � is bounded by ded(^) (see Proposition 5.6 for details). In Section 5.2, this criterion
is combined with set-theoretic absoluteness to obtain a more general version of the following finitary
combinatorial statement of independent interest, the ‘Composition Lemma’. Let ' ⊆ "3 be a ternary
relation definable in a dependent structure, and let 5 : "2 → " be an arbitrary (not necessarily
definable) function. Then the ternary relation '′(G, H, I) = '( 5 (G, H), 5 (G, I), 5 (H, I)) is 2-dependent
(Theorem 5.12). It is interesting to compare this to a line of results around Hilbert’s 13th problem
demonstrating that a function of arbitrary arity can be expressed as a finite composition of binary
functions (in the category of all functions, or of continuous functions on R— a celebrated theorem of
Kolmogorov and Arnold [1]). Our result can be viewed as saying that in such presentations, the outer
relation is necessarily ‘fractal-like’. It is worth mentioning that some other connections of =-dependence
to finitary hypergraph combinatorics are considered in [44] (in connection to hypergraph growth) and
in [17] (which establishes a strong regularity lemma for =-dependent hypergraphs demonstrating that
every =-dependent relation of arbitrarily high arity can be approximated by relations of arity = up to
measure 0). The Composition Lemma is applied in the proof of Theorem 6.3 to conclude 2-dependence
of certain basic atomic formulas involving the ‘generic’ binary function given by the bilinear form.

Finally, in Section 7 (which only depends on Section 2), we consider =-dependence for expansions
of geometric theories by generic predicates and relations of higher arity. In particular, we show that an
expansion of a geometric theory ) by a generic predicate is dependent if and only if it is =-dependent
for some =, if and only if the algebraic closure in ) is disintegrated (Corollary 7.13). This generalizes
the corresponding result for dependence in [6]. In Remark 7.8, we give an example showing that
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geometricity of ) (or some other additional assumption) is necessary even for = = 1. Our proof for
relations of higher arity relies on an infinitary generalization of Hrushovski’s observation [25] that the
random =-ary hypergraph is not a finite Boolean combination of relations of arity = − 1.

2. Preliminaries and some general lemmas on =-dependence

2.1. Notation

We will be following standard model-theoretic notation; refer to, for example, [43, 34] for an intro-
duction to model theory. Usually ) will denote a complete first-order theory in a language L (possibly
multisorted), and M,N will be first-order L-structures. We recall that, given an infinite cardinal ^, a
first-order structure M is ^-saturated when for every set of formulas with parameters from a subset of M
of size < ^ in a fixed finite tuple of variables for which every finite subset of these formulas is satisfied
by a tuple in M, the whole set is satisfied by a tuple in M. Given a tuple 0 of elements in M and a
subset � of M, we denote by tp(0/�) the complete type of 0 over 1 (i.e. the collection of all formulas
with parameters in � satisfied by 0). We write 0 ≡� 0′ when tp(0/�) = tp(0′/�). A structure M is
^-homogeneous if for any two finite tuples 0, 0′ and a set of parameters � in M with |� | < ^ for which
0 ≡� 0

′, there exists an automorphism f ∈ Aut(M/�) of M fixing � pointwise and sending 0 to 0′.
We letM |= ) be a monster model of ) : that is, a ^-saturated and ^-homogeneous model of ) for some
sufficiently large strongly inaccessible cardinal ^ = ^(M). Once M is fixed, as usual we will say that a
subset ofM (or just an arbitrary set/structure) is small if it has cardinality smaller than ^(M). Given an
L-structure M |= ) and a single variable (of a prescribed sort of the language L), we write MG to denote
the corresponding sort of M. If G = (G1, . . . , G=) is a finite tuple of variables, we let MG :=

∏=
8=1 MG8 .

2.2. #-dependent formulas and their basic properties

We begin with the definition of =-dependent theories and some of the basic properties of =-dependent
formulas and theories.

Definition 2.1. A partitioned formula i (G; H1, . . . , H=) has the =-independence property (with respect
to a theory )) if, in some model of ) , there is a sequence of tuples

(
01,8 , . . . , 0=,8

)
8∈l

such that for every
B ⊆ l=, there is a tuple 1B with the following property:

|= i
(
1B; 01,81 , . . . , 0=,8=

)
⇔ (81, . . . , 8=) ∈ B.

Otherwise, we say that i (G, H1, . . . , H=) is =-dependent. A theory is =-dependent if it implies that every
formula is =-dependent.

We simply say that a theory is dependent if it is 1-dependent. A structure M is =-dependent if Th(M)
is =-dependent.

Fact 2.2 [14, Proposition 6.5].

1. Let i(G, H1, . . . , H=) and k(G, H1, . . . , H=) be =-dependent formulas. Then ¬i, i ∧ k and i ∨ k are

=-dependent.

2. Let i(G, H1, . . . , H=) be a formula. Suppose that (F, I1, . . . , I=) is any permutation of the tu-

ple (G, H1, . . . , H=). Then k(F, I1, . . . , I=) := i(G, H1, . . . , H=) is =-dependent if and only if

i(G, H1, . . . , H=) is =-dependent.

3. A theory ) is =-dependent if and only if every formula i(G, H1, . . . , H=) with |G | = 1 is =-dependent

(see also Section 2.4).

2.3. Generalized indiscernibles

We will often use a characterization of =-dependence from [14] in terms of generalized indiscernibles.

Definition 2.3. Fix a language L=opg = {'= (G1, . . . , G=), <, %1 (G), . . . , %= (G)}. An ordered =-partite

hypergraph is an L=opg-structure A = (�;<, '=, %1, . . . , %=) such that:
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1. � is the disjoint union %A

1 ⊔ . . . ⊔ %
A
= .

2. 'A
= is a symmetric relation such that if (01, . . . , 0=) ∈ '

A
= then %A

8 ∩ {01, . . . , 0=} is a singleton for
every 1 ≤ 8 ≤ =.

3. <A is a linear ordering on � with %A

1 < . . . < %A
= .

Fact 2.4.

1. [14, Proposition A.5] Let K be the class of all finite ordered =-partite hypergraphs. Then K is a

Fraïssé class, and its limit is called the generic ordered =-partite hypergraph, denoted by �=,? .

2. [14, Remark 4.5] An ordered =-partite hypergraph A is a model of Th(�=,?) if and only if:

◦ (%A

8 , <) is a dense linear order without endpoints for each 1 ≤ 8 ≤ =.
◦ For every 1 ≤ 9 ≤ =, finite disjoint sets �0, �1 ⊂

∏
1≤8≤=,8≠ 9 %

A

8 and 10 < 11 ∈ %
A

9 , there is

some 1 ∈ %A

9 such that 10 < 1 < 11 and: '= (1, 0̄) holds for every 0̄ ∈ �0 and ¬'= (1, 0̄) holds

for every 0̄ ∈ �1.

We denote by $=,? the reduct of �=,? to the language L=op = {<, %1 (G), . . . , %= (G)}.

Remark 2.5. It is easy to see from the axiomatization in Fact 2.4(2) that given�=,? and any non-empty
intervals �C ⊆ %C for C = 1, . . . , =, the set �1 × . . . × �= contains an induced copy of �=,? .

Definition 2.6. Let ) be a theory in a language L, and letM be a monster model of ) .

1. Let � be a structure in the languageL0. We say that 0̄ = (08)8∈� , with 08 a tuple inM, is �-indiscernible

over a set of parameters � ⊆ M if for all = ∈ l and all 80, . . . , 8= and 90, . . . , 9= from �, we have

qftpL0
(80, . . . , 8=) = qftpL0

( 90, . . . , 9=) ⇒

tpL
(
080 , . . . , 08=/�

)
= tpL

(
0 90 , . . . , 0 9=/�

)
.

2. For L0-structures � and �, we say that (18)8∈� is based on (08)8∈� over a set of parameters � ⊆ M
if for any finite set Δ of L(�)-formulas, and for any finite tuple ( 90, . . . , 9=) from �, there is a tuple
(80, . . . , 8=) from � such that:
◦ qftpL0

( 90, . . . , 9=) = qftpL0
(80, . . . , 8=) and

◦ tpΔ
(
1 90 , . . . , 1 9=

)
= tpΔ

(
080 , . . . , 08=

)
.

The following general fact is used to find �=,?-indiscernibles.

Fact 2.7 [14, Corollary 4.8]. Let � ⊆ M be a small set of parameters.

1. For any = ∈ l and 0̄ =
(
06

)
6∈$=,?

, there is some
(
16

)
6∈$=,?

that is $=,?-indiscernible over � and

based on 0̄ over �.

2. For any = ∈ l and 0̄ =
(
06

)
6∈�=,?

, there is some
(
16

)
6∈�=,?

that is �=,?-indiscernible over � and

based on 0̄ over �.

Using this, we can characterize =-dependence of a formula as follows.

Proposition 2.8. The following are equivalent, in any theory ) .

1. i(G; H1, . . . , H=) is not =-dependent.

2. There are tuples 1 and (06)6∈�=,?
such that

(a) (06)6∈�=,?
is $=,?-indiscernible over ∅ and �=,?-indiscernible over 1;

(b) |= i(1; 061 , . . . , 06= ) ⇐⇒ �=,? |= '= (61, . . . , 6=), for all 68 ∈ %8 .

3. (2) holds for any small � ′=,? ≡ �=,? in the place of �=,? .

Proof. The equivalence of (1) and (2) is the equivalence of (a) and (c) in [14, Lemma 6.2], and (3)
implies (2) is obvious. Given a witness to (2), we can find a witness to (3) by compactness as every
finite substructure of � ′=,? appears as a finite substructure of �=,? . �

https://doi.org/10.1017/fms.2021.35 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.35


Forum of Mathematics, Sigma 7

Additionally, we have the following ‘formula-free’ characterization of =-dependence of a theory.

Proposition 2.9. Let ) be a complete theory, and let M |= ) be a monster model. Then for any = ∈ N,

the following are equivalent:

1. ) is =-dependent.

2. For any
(
06

)
6∈�=,?

and 1 with 06, 1 finite tuples in M, if
(
06

)
6∈�=,?

is �=,?-indiscernible over 1

and $=,?-indiscernible (over ∅), then it is $=,?-indiscernible over 1.

3. For any small � ′=,? ≡ �=,? ,
(
06

)
6∈�′=,?

and 1, if
(
06

)
6∈�′=,?

is � ′=,?-indiscernible over 1 and

$ ′=,?-indiscernible, then it is $ ′=,?-indiscernible over 1 (where $ ′=,? is the L=op-reduct of � ′=,?).

Proof. The equivalence of (1) and (2) is [14, Proposition 6.3], (3) implies (2) is obvious, and we show
that (2) implies (3). Assume that (3) fails: that is, there exist some� ′=,? ≡ �=,? ,

(
06

)
6∈�′=,?

and 1 small

tuples such that
(
06

)
6∈�′=,?

is$ ′=,?-indiscernible,� ′=,?-indiscernible over 1, but not$ ′=,?-indiscernible

over 1. By definition, this is witnessed by some finite set of formulas and some finite set of indices from
� ′=,? . Restricting all of the 06’s and 1 to the corresponding subtuples appearing in those formulas, we
may assume that (3) fails with all of 1 and 06 finite. Moreover, we can choose a countable elementary
submodel of � ′=,? containing all of the indices witnessing failure of indiscernibility. It is isomorphic to
�=,? by ℵ0-categoricity of Th(�=,?), hence restricting (06)6∈�′=,? to the corresponding set of indices
we get a failure of (2). �

2.4. Improved reduction to singletons

In this section, we will improve Fact 2.2(3) by showing that) is =-dependent if and only if every formula
in which all but at most one of its variables are singletons is =-dependent (as opposed to ‘at least one of
the variables is a singleton’ as in Fact 2.2(3)).

To do so, we need some auxiliary results. First we refine the equivalence of (1) and (2) in Proposition
2.9, making explicit the correspondence between the variables of a formula that is not =-dependent and
the sorts of the tuples in a generalized indiscernible witnessing it. In the proof below, we are following
the proof in [14, Proposition 6.3] with some modifications.

Proposition 2.10. Fix = ≥ 1, and let G, H1, . . . , H=−1 be some fixed finite tuples of variables. The

following are equivalent:

1. There exists some (06)6∈�=,?
with 06 ∈ MH8 for all 6 ∈ %8 , 1 ≤ 8 ≤ = − 1 and 06 ∈ MH′= for some

finite tuple of variables H′= and all 6 ∈ %=, and 1 ∈ MG such that (06)6∈�=,?
is �=,?-indiscernible

over 1 and $=,?-indiscernible over ∅ but is not $=,?-indiscernible over 1.

2. There exists some formula i(G, H1, . . . , H=−1, H
′′
= ) that is not =-dependent, with H′′= some finite tuple

of variables.

Proof. We obtain immediately that (2) implies (1) by the implication (1) ⇒ (2) in Proposition 2.8,
with H′= = H

′′
= .

To prove (1) implies (2), let (06)6∈�=,?
and 1 be as given by (1). We define 0′6 := 06 for all

6 ∈
⋃

1≤8≤=−1 %8 and 0′6 := 061 for all 6 ∈ %=. We have that (0′6)6∈�=,?
is not $=,?-indiscernible

but is �=,?-indiscernible (over ∅), from the corresponding properties of (06)6∈�=,?
over 1. Namely,

by assumption, there are some finite subsets +,, ⊆ �=,? with the Lop-isomorphic induced structures
such that (06)6∈+ .1 (06)6∈, . Then taking some ℎ ∈ %= above all of the elements of + ∪, with
respect to the order on %=, we have that +ℎ �Lop ,ℎ. However, since the tuple 0′

ℎ
contains 1, we have

(0′6)6∈+ ℎ . (0
′
6)6∈,ℎ .

Then by [14, Proposition 5.8], there are an Lopg-substructure � ′ ⊆ �=,? , a finite set + ⊂ �=,? and
a formula k(H1, . . . , H=−1, H̃=, I) ∈ L such that H̃= = H′=G, I is a finite tuple of variables corresponding
to a fixed enumeration (06)6∈+ of + , and
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1. � ′ �Lopg �=,? .
2. �=,? |= '= (61, . . . , 6=) if and only if |= k(0′61

, . . . , 0′6= , (0
′
6)6∈+ ), for every 68 ∈ %8 (� ′).

3. For every finite,,, ′ ⊆ � ′, we have,+ �Lop , ′+ whenever, �Lop , ′.

Let i(G, H1, . . . , H=−1, H
′′
= ) be the formula k(H1, . . . , H=−1, H

′
=G, I) with H′′= := H′=I, and let 0′′6 := 0′6 = 06

for 6 ∈ %8 (� ′), 1 ≤ 8 ≤ = − 1, and let 0′′6 := 06 (0ℎ)ℎ∈+ for 6 ∈ %= (� ′). Then (0′′6 )6∈�′ is Lop-
indiscernible (by Lop-indiscernibility of (0′6)6∈�=,?

and the choice of +), and i(1, 0′′61
, . . . , 0′′6= ) holds

if and only if '= (61, . . . , 6=) does, for all 68 ∈ %8 (� ′). Then i is not =-dependent by (2)⇒(1) in
Proposition 2.8. �

Lemma 2.11. Let H1, . . . , H=−1 be some fixed finite tuples of variables. If the condition (1) in Proposition

2.10 holds for some finite tuple of variables G, then it already holds with G a single variable.

Proof. We assume that (1) fails for |G | = 1 and prove that then it fails for any tuple of variables G by
induction on |G |. So let 1 ∈ MG with |1 | > 1 be given, say 1 = 1112 for some tuples 1 ≤ |11 |, |12 | < =.
And assume that (06)6∈�=,?

with 06 ∈ MH8 for 6 ∈ %8 , 1 ≤ 8 ≤ = − 1 is such that (06)6∈�=,?
is

�=,?-indiscernible over 1 and $=,?-indiscernible over ∅. We need to show that (06)6∈�=,?
is $=,?-

indiscernible over 1.
In particular, (06)6∈�=,?

is �=,?-indiscernible over 12; hence it is also $=,?-indiscernible over 12

by the inductive assumption. Let 0′6 := 06 for 6 ∈ %8 , 1 ≤ 8 ≤ = − 1, and let 0′6 := 0612 for 6 ∈ %=.
Note that (0′6)6∈�=,?

is �=,?-indiscernible over 11, and is $=,?-indiscernible over ∅ by the previous
sentence. Applying the inductive assumption again, we conclude that (0′6)6∈�=,?

is $=,?-indiscernible
over 11; hence (06)6∈�=,?

is $=,?-indiscernible over 1 = 1112. �

Using this, we can finally strengthen Fact 2.2(3).

Theorem 2.12.

1. Assume that the formula i(G, H1, . . . , H=) is not =-dependent. Then there is a formula

i′(G ′, H1, . . . , H=−1, H
′
=) that is not =-dependent, and such that G ′ is a single variable and H′= is some

finite tuple of variables extending H=.

2. A theory ) is =-dependent if and only if every formula i(G, H1, . . . , H=) such that all but at most one

of the tuples G, H1, . . . , H= are singletons is =-dependent.

Proof.

(1) By Lemma 2.11 and the equivalence of (1) and (2) in Proposition 2.10.
(2) Assume that some formula i(G, H1, . . . , H=) is not =-dependent. Applying (1), we find some

formula i′(G ′, H1, . . . , H=−1, H
1
=) that is not =-dependent, G ′ is a singleton, and H1

= is a tuple of
variables extending H=. Exchanging the roles of G ′ and H1 by Fact 2.2, we thus obtain a formula
i1 (H1, H

′
1, H2, . . . , H=−1, H

1
=) that is not =-dependent and |H′1 | = 1. Repeating the same procedure recur-

sively with H8 in the role of H1, for 1 ≤ 8 ≤ = − 1, we find formulas

i8 (H8 , H
′
1, . . . , H

′
8 , H8+1, . . . , H=−1, H

8
=)

that are not =-dependent, |H′9 | = 1 for 1 ≤ 9 ≤ 8 and H
9+1
= extending H

9
=. Finally, taking

i=−1 (H=−1, H
′
1, . . . , H

′
=−1, H

=−1
= ) and applying (1) one more time, we obtain the desired formula with

all but the last variable singletons. �

3. #-dependent valued fields

The main result of this section is the following theorem generalizing a recent result of Johnson [27]
from = = 1 to all = ∈ N.

Theorem 3.1. If ( ,O) is an infinite valued field of positive characteristic and Th( ) is =-dependent

for some = ∈ N, then  is henselian.

https://doi.org/10.1017/fms.2021.35 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.35


Forum of Mathematics, Sigma 9

From now on, let  be an infinite field of characteristic ? > 0 and O8 a valuation ring on  for
8 = 1, 2. We additionally fix the following notation:

◦ For 8 = 1, 2, let m8 be the maximal ideal of O8 .
◦ Let � := m1 ∩m2.

Fact 3.2 [27, Remark 2.1]. Assume O1 and O2 are incomparable (i.e. none of them is contained in the

other). Then

(0 +m1) ∩ (1 +m2) ≠ ∅

for any 0 ∈ O1 and 1 ∈ O2.

Definition 3.3. We say that 1 ∈  is an Artin-Schreier root of 0 ∈  if 0 = 1? − 1. We call  
Artin-Schreier closed if every element of  has an Artin-Schreier root in  .

Recall the following.

Fact 3.4 ([31] for = = 1, [22] for arbitrary = ∈ N). Let  be an infinite field of positive characteristic,

such that Th( ) is =-dependent. Then  is Artin-Schreier closed.

Our main contribution is the following result.

Proposition 3.5. Suppose that ( ,O1,O2) is =-dependent and char( ) = ? > 0. Then every element

in � has an Artin-Schreier root in �.

Being able to find an Artin-Schreier root in both maximal ideals simultaneously forces the corre-
sponding valuations to be comparable:

Corollary 3.6. If the structure ( ,O1,O2) is =-dependent and char( ) = ? > 0, then O1 and O2 are

comparable.

Proof. Assume not; then by Fact 3.2 with 0 = 0 and 1 = 1, there exists some F ∈ m1 ∩ (1 +m2). Let
H := F? − F. Now, as val1(F) > 0, we have that

val1(H) = val1(F) > 0.

Secondly, let I ∈ m2 — that is, val2 (I) > 0 – be such that F = 1 + I. Then

val2(H) = val2(F
? − F) = val2 ((1 + I)

? − (1 + I)) = val2(I
? − I) = val2(I) > 0.

Thus H ∈ �. However, the Artin-Schreier roots of H are exactly F, F + 1, . . . , F + ? − 1, none of which
can lie in m1 ∩m2 = �. This contradicts Proposition 3.5. �

Then Theorem 3.1 follows from Corollary 3.6 exactly as in the proof of [27, Theorem 2.8] using that
=-dependence is preserved under interpretations. Our proof of Proposition 3.5 is given in Section 3.4,
but before presenting it we have to develop the following three main ingredients:

◦ A chain condition for intersections in uniformly definable families of subgroups in =-dependent
theories, discussed in Section 3.1

◦ An explicit version of the isomorphism for special linear groups from Kaplan-Scanlon-Wagner [31]
(see Section 3.2 for a discussion and Appendix A by Martin Bays for the proofs)

◦ A detailed analysis of what happens to the valuations of certain elements in the field when this
special isomorphism is applied (carried out in Section 3.3)

3.1. A ‘chain condition’ for intersections of definable subgroups in =-dependent theories

Recall the ‘chain condition’ for definable families of subgroups in =-dependent theories.
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Fact 3.7 [22, Proposition 4.1]. Let� be a definable group, and letk(G; H0, . . . , H=−1) be an =-dependent

formula such that k(�; 10, . . . , 1=−1) is a subgroup of � for any parameters 10, . . . , 1=−1. Then there

exists some <k ∈ l such that for any 3 ≥ <k and any array of parameters (18, 9 : 8 < =, 9 ≤ 3), there

is some a ∈ 3= such that ⋂
[∈3=

�[ =

⋂
[∈3= ,[≠a

�[ ,

where �[ := k(�; 10,80 , . . . , 1=−1,8=−1 ) for [ = (80, . . . , 8=−1).

We generalize it to simultaneous intersections of several definable families of subgroups. Before we
do so, let us recall the partite version of Ramsey’s theorem.

Fact 3.8.

1. (Infinitary version) For every <, = ∈ l and any function 5 : l= → <, there exist some infinite sets

B0, . . . , B=−1 ⊆ l such that 5 ↾B0×...×B=−1 is constant.

2. (Finitary version) For every ;, <, = ∈ l, there is some ' = '(;, <, =) ∈ l such that for any

function 5 : '= → <, there are some sets B0, . . . , B=−1 ⊆ ' with |B0 |, . . . , |B=−1 | ≥ ; and such that

5 ↾B0×...×B=−1 is constant.

Proposition 3.9. Let � be a definable group, and for C < : let kC (G; H0, . . . , H=−1) be an =-dependent

formula such thatkC (�; 10, . . . , 1=−1) is a subgroup of� for any C < : and any parameters 10, . . . , 1=−1.

Then there exists some < = <(k0, . . . , k:−1) ∈ l such that for any 3 ≥ < and any array of parameters

(18, 9 : 8 < =, 9 ≤ 3), there is a single a ∈ 3= such that for all C < : ,

⋂
[∈3=

�C[ =

⋂
[∈3= ,[≠a

�C[ ,

where �C[ := kC (�; 10,80 , . . . , 1=−1,8=−1 ) for [ = (80, . . . , 8=−1).

Proof. We argue by induction on : , the base case : = 1 given by Fact 3.7. Let <1 := <(k0) and
<2 := <(k1, . . . , k:−1) be given by the inductive hypothesis. Let ' := '(<2, <

=
1 , =) be given by Fact

3.8(2). We take < = <(k0, . . . , k:−1) := '<1.
Let an array � = (18, 9 : 8 < =, 9 ≤ <) be given. For each W = (W0, . . . , W=−1) ∈ '

=, consider the
subarray

�W =
(
10,W0<1+[0 , . . . , 1=−1,W=−1<1+[=−1 : [ = ([0, . . . , [=−1) ∈ <

=
1

)
.

By the choice of <1, for each W ∈ '=, there is some aW ∈ <=1 such that

⋂
[∈<=

1

�0
(W0<1+[0 ,...,W=−1<1+[=−1)

=

⋂
[∈<=

1 ,[≠aW

�0
(W0<1+[0 ,...,W=−1<1+[=−1)

. (∗)

By the choice of ', there are some sets B0, . . . , B=−1 ⊆ ' with |B0 | = . . . = |B=−1 | = <2 such that aW
is equal to some fixed a′ = (a′0, . . . , a

′
=−1) ∈ <

=
1 , for all W ∈ B0 × . . . × B=−1. Consider the array

�′ = (10,W0<1+a
′
0
, . . . , 1=−1,W=−1<1+a

′
=−1

: W ∈ B1 × . . . × B=−1).

By the choice of <2, there is some W′ ∈ B1 × . . . × B=−1 such that⋂
W∈B0×...×B=−1

�C
(W0<1+a

′
0 ,...,W=−1<1+a

′
=−1)

=

⋂
W∈B0×...×B=−1 ,W≠W′

�C
(W0<1+a

′
0 ,...,W=−1<1+a

′
=−1)

for all 1 ≤ C < :. (∗∗)
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Let a := (W′0<1 + a
′
0, . . . , W

′
=−1<1 + a

′
=−1). By (∗) and (∗∗), we have

⋂
[∈<=

�C[ =

⋂
[∈<= ,[≠a

�C[ for all 0 ≤ C < :,

as desired. �

3.2. Special vector groups and their explicit isomorphisms

Let  be a field of characteristic ? > 0. We let K be the algebraic closure of  , K a perfect subfield of
 , and let ℘(G) be the additive homomorphism G ↦→ G? − G on K. We consider the following algebraic
subgroups of (K, +)=:

Definition 3.10. For a singleton 0 inK, we let�0 be equal to (K, +), and for a tuple 0̄ = (00, . . . , 0=−1) ∈

K= with = > 1, we define:

� 0̄ = {(G0, . . . , G=−1) ∈ K
= : 00 · ℘(G0) = 08 · ℘(G8) for 0 ≤ 8 < =} .

Recall that for an algebraic group �, we denote by �0 the connected component of the unit element
of � (in the Zariski topology). Note that if � is definable over some parameter set �, its connected
component �0 coincides with the smallest �-definable subgroup of � of finite index (in K). We have
the following sufficient condition for connectedness of � 0̄.

Fact 3.11 [22, Lemma 5.3]. Let 0̄ = (00, . . . , 0=−1) be a tuple in K× for which the set
{

1
00
, . . . , 1

0=−1

}
is linearly F?-independent. Then � 0̄ is connected.

Moreover, under the same assumption on 0̄, these groups are isomorphic to the additive group of the
field:

Fact 3.12 [22, Corollary 5.4]. Let K be a perfect subfield of an algebraically closed field K, and let

0̄ ∈ K= be such that the set
{

1
00
, . . . , 1

0=−1

}
is linearly F?-independent. Then � 0̄ is (algebraically)

isomorphic to (K, +) over K. In particular, for any field  with K ≤  ≤ K, the group � 0̄ ( ) is

isomorphic to ( , +).

In Appendix A, Bays provides an explicit description of such an isomorphism that we now describe
to set up the notation.

Given arbitrary < ∈ N and G1, . . . , G< ∈  , the corresponding Moore matrix is the < × < matrix

" (G1, . . . , G<) =

©­­­­«

G1 . . . G<
G
?

1
. . . G

?
<

...
...

G
?<−1

1
. . . G

?<−1

<

ª®®®®¬
,

and the Moore determinant is Δ (G1, . . . , G<) := det" (G1, . . . , G<). By Fact A.1, the set {G1, . . . , G<}

is linearly independent over F? if and only if Δ (G1, . . . , G<) ≠ 0.

Now, fix 0̄ = (00, . . . , 0<) ∈ K
<+1 such that the set

{
1
00
, . . . , 1

0<

}
is F?-linearly independent, and let

� := "

(
0
− 1

?<

0
, . . . , 0

− 1
?<

<

)
.

Note that

{
0
− 1

?<

0
, . . . , 0

− 1
?<

<

}
is still an F?-linearly independent subset of K; hence � is invertible by
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Fact A.1. We define

Ū =

©­­­­«

U0

...

U<−1

U<

ª®®®®¬
:= �−1

©­­­­«

0
...

0

1

ª®®®®¬
,

that is, U8 = (�−1)8,< ∈ K for 0 ≤ 8 ≤ <. One still has that (U0, . . . , U<) are linearly F?-independent
(see Claim A.2); hence " (U0, . . . , U<) is invertible. Let V8, 9 ∈ K be the entries of the inverse matrix
of " (U0, . . . , U<). Then we have:

Fact 3.13. The map 50̄ : � 0̄ (K) → (K, +) given by

50̄ (G0, . . . , G<) :=

<∑
9=0

U 9G 9

is a group isomorphism, and 5 −1
0̄ : (K, +) → � 0̄ (K) given by

5 −1
0̄ (C) :=

©­«
<∑
9=0

V8, 9 C
? 9

: 0 ≤ 8 ≤ <
ª®¬

is its inverse.

3.3. The effect of the isomorphism 50̄ on the valuation

For the rest of this subsection, we assume that O is a valuation ring on  , m is its maximal ideal, and

val is the corresponding valuation, and we fix some 00, . . . , 0< ∈ K such that val(08) ≠ val(0 9 ) for all

0 ≤ 8 ≠ 9 ≤ <.

This implies in particular that
{

1
00
, . . . , 1

0<

}
are F?-linearly independent (as the valuation of any F?-

linear combination is ≠ ∞). Throughout this section, we let 5 := 50̄ =
∑<
9=0 U 9G 9 be the isomorphism

� 0̄ (K) → (K, +) given by Fact 3.13. Let U0, . . . , U< ∈ K be as defined in Subsection 3.2. We
will prove several technical lemmas that allow us to control val( 5 (G1, . . . , G<)) in terms of the tuple
(val(G1), . . . , val(G<)), and vice versa. To motivate this analysis, the reader might prefer to check how it
is used in the proof of Proposition 3.5 in the next section before going into the details of the calculations
here.

Remark 3.14. Assume (G0, . . . , G<) ∈ � 0̄; then

val(08) + val(G
?

8
− G8) = val(0 9 ) + val(G

?

9
− G 9 )

for all 0 ≤ 8, 9 ≤ <.
Additionally note that

val(G
?

8
− G8) =

{
val(G8) if val(G8) > 0

? val(G8) if val(G8) < 0

and

val(G
?

8
− G8) ≥ 0 if val(G8) = 0.

Lemma 3.15. Suppose that 0 < val(00) < · · · < val(0<). Then the sequence (val(U8) : 8 ∈ {0, . . . , <})

is strictly increasing.
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In fact, for any 0 ≤ 8 ≤ <, we have

val(U8) =
1

?<−8
val(08) +

<−1∑
9=8

? − 1

?<− 9
val(0 9+1) > 0.

Proof. Recall that, by linear algebra, for each 0 ≤ 8 ≤ <, we have

U8 =
(
�−1

)
8,<

=
1

det(�)
�<,8 ,

where �<,8 is the corresponding cofactor of �. That is,

U8 =

(−1)<+8Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

8−1
, 0
− 1

?<

8+1
, . . . , 0

− 1
?<

<

)

Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

<

) .

Now, we compute the valuation of the numerator and denominator separately. First,

Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

<

)
=

∑
c∈Sym( {0,...,<})

sign(c)

(
0
− 1

?<

c (0)

) ?0

· . . . ·

(
0
− 1

?<

c (<)

) ?<
.

Let 8 < 9 ; then

val
(
08
− 1

?<

)
= −

1

?<
val(08) > −

1

?<
val(0 9 ) = val

(
0 9
− 1

?<

)
.

Thus
(
val

(
08
− 1

?<

)
: 0 ≤ 8 ≤ <

)
is strictly decreasing. Using this, we see that

val

((
0
− 1

?<

0

) ?0

· . . . ·

(
0
− 1

?<

<

) ?< )
< val

((
0
− 1

?<

c (0)

) ?0

· . . . ·

(
0
− 1

?<

c (<)

) ?< )

for every non-identity permutation c ∈ Sym ({0, . . . , <}). Thus

val

(
Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

<

))
= val

((
0
− 1

?<

0

) ?0

· . . . ·

(
0
− 1

?<

<

) ?< )

= −

<∑
9=0

1

?<− 9
val(0 9 ).

Now we turn to the numerator:

Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

8−1
, 0
− 1

?<

8+1
, . . . , 0

− 1
?<

<

)
=

∑
c∈Sym( {0,...,8−1,8+1,...,<})

sign(c)
∏

0≤ 9≤8−1

(
0
− 1

?<

c ( 9)

) ? 9

·
∏

8+1≤ 9≤<

(
0
− 1

?<

c ( 9)

) ? 9−1

.
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Again,

val
©­«

∏
0≤ 9≤8−1

(
0
− 1

?<

9

) ? 9

·
∏

8+1≤ 9≤<

(
0
− 1

?<

9

) ? 9−1ª®¬
< val

©­«
∏

0≤ 9≤8−1

(
0
− 1

?<

c ( 9)

) ? 9

·
∏

8+1≤ 9≤<

(
0
− 1

?<

c ( 9)

) ? 9−1ª®¬
for every non-identity permutation c ∈ Sym ({0, . . . , <}). Thus

val

(
Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

8−1
, 0
− 1

?<

8+1
, . . . , 0

− 1
?<

<

))
=

val
©­«

∏
0≤ 9≤8−1

(
0
− 1

?<

9

) ? 9

·
∏

8+1≤ 9≤<

(
0
− 1

?<

9

) ? 9−1ª®¬
=

−

8−1∑
9=0

1

?<− 9
val(0 9 ) −

<∑
9=8+1

1

?<− 9+1
val(0 9 ).

Combining, we get

val(U8) = val

(
Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

8−1
, 0
− 1

?<

8+1
, . . . , 0

− 1
?<

<

))
− val

(
Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

<

))

= −

8−1∑
9=0

1

?<− 9
val(0 9 ) −

<∑
9=8+1

1

?<− 9+1
val(0 9 ) −

©­«
−

<∑
9=0

1

?<− 9
val(0 9 )

ª®¬
= −

<∑
9=8+1

1

?<− 9+1
val(0 9 ) +

1

?<−8
val(08) +

<∑
9=8+1

1

?<− 9
val(0 9 )

=
1

?<−8
val(08) +

<∑
9=8+1

(
1

?<− 9
−

1

?<− 9+1

)
val(0 9 )

=
1

?<−8
val(08) +

<∑
9=8+1

? − 1

?<− 9+1
val(0 9 )

=
1

?<−8
val(08) +

<−1∑
9=8

? − 1

?<− 9
val(0 9+1).

�

Remark 3.16. Let f ∈ Sym ({0, 1, . . . , <}) be an arbitrary permutation, and let 0̄′ :=(
0f (0) , . . . , 0f (<)

)
. Let Ū′ :=

(
U′

0
, . . . , U′<

)
be the tuple given in Fact 3.13 with respect to the tuple 0̄′,

so that the map 50̄′ : � 0̄′ (K) → (K, +) given by 50̄′ (G0, . . . , G<) :=
∑<
9=0 U

′
9G 9 is a group isomorphism.

Then val
(
U′8

)
= val

(
Uf (8)

)
for all 0 ≤ 8 ≤ <.
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Proof. As in the proof of Lemma 3.15, for any 0 ≤ 8 ≤ <, we have

val(U′8 ) = val

©­­­­«

Δ

(
0
− 1

?<

f (0)
, . . . , 0

− 1
?<

f (8−1)
, 0
− 1

?<

f (8+1)
, . . . , 0

− 1
?<

f (<)

)

Δ

(
0
− 1

?<

f (0)
, . . . , 0

− 1
?<

f (<)

)
ª®®®®¬

= val

©­­­­«

(−1)sign(f′)Δ

(
0
− 1

?<

0
, 0
− 1

?<

1
, . . . , 0

− 1
?<

f (8)−1
, 0
− 1

?<

f (8)+1
, . . . , 0

− 1
?<

<

)

(−1)sign(f)Δ

(
0
− 1

?<

0
, . . . , 0

− 1
?<

<

)
ª®®®®¬

= val
(
Uf (8)

)
,

where f′ := f ↾ {0, . . . , f(8) − 1, f(8) + 1, . . . , <}. �

Corollary 3.17. Let 0 ≤ ; ≤ < be arbitrary. Suppose that val(0B) < val(0;) for all 0 ≤ B ≠ ; ≤ <;

then val(U;) = val(0;) and val(UB) < val(0;) for all 0 ≤ B ≤ <, B ≠ ;.

Proof. Since all of the 08’s have different valuations by assumption, reordering and using Remark 3.16
we may assume that 0 < val(00) < · · · < val(0<) and ; = <. Then using Lemma 3.15, we immediately
obtain the result. �

Lemma 3.18. Suppose that 0 < val(00) < · · · < val(0<), and let H ∈  be such that val(0<) < val(H).

Let (G0, . . . , G<) ∈ � 0̄ ( ) be such that 5 −1(H) = (G0, . . . , G<). Then val(G<) = val(H) − val(0<). In

particular, val(G<) > 0.

Proof. By the formula for 5 −1 in Subsection 3.2, we have that

G< =

<∑
9=0

V<, 9 H
? 9

, (∗)

where V<, 9 is the (<, 9)-entry of the inverse of the matrix

� :=
(
U
?8

9

)
8, 9
, 0 ≤ 8, 9 ≤ <.

So V<, 9 =
1

det�
� 9 ,<, where � 9 ,< is the ( 9 , <)-cofactor of �. We determine the valuation of each of the

summands in (∗) separately. Fix 0 ≤ 9 ≤ <; then

val(V<, 9 H
? 9

) = val(V<, 9 ) + ?
9 val(H),

and

val(V<, 9 ) = val(� 9 ,<) − val(det�).

Again let us compute the valuations on the right hand side of the above equation separately. First,

val(det�) = val
©­«

∑
c∈Sym( {0,...,<})

sign(c)

<∏
8=0

U
?8

c (8)

ª®¬
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As val(U8) is strictly increasing with 8 by Lemma 3.15, note that val
(∏<

8=0 U
?8

c (8)

)
is strictly minimal if

c maps 8 to < − 8 for all 0 ≤ 8 ≤ <. So

val(det�) = val

(
<∏
8=0

U
?8

<−8

)
=

<∑
8=0

?8 val(U<−8).

Similarly,

val(� 9 ,<) =
∑

c∈Sym( {0,...,<−1})

sign(c)

9−1∏
8=0

U
?8

c (8)
·

<∏
8= 9+1

U
?8

c (8−1)
.

Again, as val(U8) is strictly increasing with 8, we conclude that

val
©­«
9−1∏
8=0

U
?8

c (8)
·

<∏
8= 9+1

U
?8

c (8−1)

ª®¬
is strictly minimal if c(8) = (< − 1) − 8 for all 0 ≤ 8 ≤ < − 1. Hence

val(� 9 ,<) = val
©­«
9−1∏
8=0

U
?8

<−1−8
·

<∏
8= 9+1

U
?8

<−8

ª®¬
=

9−1∑
8=0

?8 val (U<−1−8) +

<∑
8= 9+1

?8 val(U<−8).

Thus

val(V<, 9 ) = val(� 9 ,<) − val(det�)

=

9−1∑
8=0

?8 val (U<−1−8) +

<∑
8= 9+1

?8 val(U<−8) −

<∑
8=0

?8 val(U<−8)

=

9−1∑
8=0

?8 val (U<−1−8) −

(
val(U<) +

9∑
8=1

?8 val(U<−1)

)

=

9−1∑
8=0

?8 val (U<−1−8) − val(U<) −

9−1∑
8=0

?8+1 val(U<−1−8)

= − val(U<) −

9−1∑
8=0

(
?8+1 − ?8

)
val(U<−1−8)

= − val(U<) −

9∑
8=1

?8−1 (? − 1) val(U<−8).
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Note that for any 1 ≤ 9 ≤ <, we have

val(V<, 9−1H
? 9−1
) = val(V<, 9−1) + ?

9−1 val(H)

= val(V<, 9 ) + ?
9−1 (? − 1) val(U<− 9 ) + ?

9−1 val(H)

< val(V<, 9 ) + ?
9 val(H)

= val(V<, 9 H
? 9

).

Thus val(V<,0H) is strictly minimal amongst them, so

val(G<) = val(V<,0H) = − val(U<) + val(H) = − val(0<) + val(H)

using Lemma 3.15. �

Lemma 3.19. Let (G0, . . . , G<) ∈ � 0̄ ( ) be arbitrary.

1. Assume that for a fixed 0 ≤ ; ≤ <, we have that val(0;) > val(0B) for all 0 ≤ B ≠ ; ≤ < and

val(G;) ≥ 0. Then for any 0 ≤ B ≠ ; ≤ <, if val(GB) > 0, we obtain val(UBGB) > val(U;G;).

2. Suppose that 0 ≤ B ≠ C ≤ < are such that val(0B) < val(0C ), val(GB) = 0 and val(GC ) ≥ 0. Then

val(UBGB) < val(UCGC ).

Proof. Reordering the 08’s if necessary (relying on Remark 3.16), we may assume that 0 < val(00) <

· · · < val(0<), so in particular ; = <, B < C and val(G<) ≥ 0 by assumption.

1. By Remark 3.14 and assumption val(GB) > 0, we have

val(GB) = val(0<) − val(0B) + val(G
?
< − G<). (†)

Moreover, in general we have

1

?<−B
+

∑
B+1≤ 9≤<

? − 1

?<+1− 9
= 1. (∗)

Then

val(UBGB) = val(UB) + val(GB)

3.15
=
(†)

1

?<−B
val(0B) +

<∑
9=B+1

? − 1

?<+1− 9
val(0 9 ) + val(0<) − val(0B) + val(G

?
< − G<)

3.17
=
(∗)

val(U<) + val(G
?
< − G<)︸          ︷︷          ︸

≥val(G<)

+

<∑
9=B+1

? − 1

?<+1− 9
(val(0 9 ) − val(0B))

︸                                     ︷︷                                     ︸
>0

> val(U<) + val(G<)

= val(U<G<).

2. By Lemma 3.15 the sequence val(U8)’s is strictly increasing. Thus, if val(GB) = 0, then

val(UBGB) = val(UB)

3.15+ass.

< val(UC ) + val(GC )

= val(UCGC ).

�
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Lemma 3.20. Let H ∈  be such that val(0 9 ) < val(H) for all 0 ≤ 9 ≤ <. Now let (G0, . . . , G<) ∈ � 0̄ ( )

be equal to 5 −1(H). Then val(G 9 ) > 0 for all 0 ≤ 9 ≤ <.

Proof. Up to reordering the 0 9 ’s (using Remark 3.16), we may assume that 0 < val(00) < · · · < val(0<).
Then, val(G<) > 0 by Lemma 3.18, and (val(U 9 ) : 0 ≤ 9 ≤ <) is strictly increasing by Lemma 3.15.
For any 0 ≤ 9 ≤ <, by Remark 3.14, we have

val(G
?

9
− G 9 ) = val(0<) − val(0 9 ) + val(G

?
< − G<) > 0,

and thus val(G 9 ) ≥ 0.
If val(G 9 ) > 0 for all 9 , we are done. Otherwise, let � = {1 ≤ 9 ≤ < : val(G 9 ) = 0} ≠ ∅, and let

9∗ := min{�}.

Claim 1. val(U 9∗G 9∗ ) is strictly minimal in
{
val(U 9G 9 ) : 1 ≤ 9 ≤ <

}
.

Proof. Assume first 9 ∈ � \ { 9∗}; then val(G 9 ) = 0 and 9 > 9∗. Hence

val(U 9∗G 9∗ ) = val(U 9∗ ) < val(U 9 ) = val(U 9G 9 ).

Otherwise 9 ∉ � — that is, val(G 9 ) > 0. Then

val(U 9G 9 )
3.19(1)
> val(U<G<)

3.19(2)
> val(U 9∗G 9∗ ).

�

Thus val(H) = val
(∑<

9=0 U 9G 9

)
= val(U 9∗G 9∗ ) = val(U 9∗ )

3.17
< val(0<) < val(H), which yields a

contradiction. Hence val(G 9 ) > 0 for all 0 ≤ 9 ≤ <. �

3.4. Proof of Proposition 3.5

We may assume that ( ,O1,O2) is ℵ0-saturated. Let K be the algebraic closure of  , and let K :=⋂
=∈N  

1
?= be the largest perfect subfield of  . Let ℓ be the natural number given by Proposition 3.9 for

the uniformly defined subgroups G0 · . . . · G=−1 · ℘( ) and G0 · . . . · G=−1 · ℘(�) of ( , +).
Let H ∈ � be arbitrary. We will show that it has an Artin-Schreier root in �. We stress that this element

H will be fixed until the end of the proof, and several additional parameters depending on this H will be
chosen in the course of the proof.

Claim 3.21. There exists an infinite sequence (38)8∈N of elements of K such that 0 < : · valC (38+1) <

valC (38) < valC (H) holds for all 8, : ∈ N and both C ∈ {1, 2} simultaneously.

Proof. Let 40 := H, and we define the elements 4: ∈ � by induction on : ∈ N≥1 as follows. Assume 4:
for : ∈ N is given. As the field  is Artin-Schreier closed by Fact 3.4, we let 4 ∈  be an Artin-Schreier
root of 1

4:
— that is, 1

4:
= 4? − 4. For any C ∈ {1, 2}, we have valC (4: ) > 0 by assumption, hence

valC

(
1
4:

)
< 0. Consequently valC (4

? − 4) < 0 as well as valC (4) < 0, and so valC (4
? − 4) = ? valC (4).

Hence, letting 4:+1 := 1
4
, we obtain that

valC (4: ) = − valC

(
1

4:

)
= −? valC (4) = ? valC

(
1

4

)
= ? valC (4:+1) .

It follows from the construction that for every : ∈ N≥1 the elements 4: ∈  satisfy 0 < valC (4: ) =
1
?:

valC (H) < valC (H) for both C ∈ {1, 2} simultaneously. Let now <, : ∈ N be arbitrary, and we define
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38 := 4
?<

8:+<
for 8 ∈ N. Note that

valC (38) = valC (4
?<

8:+<
) = ?< valC (48:+<) = ?

< 1

?8:+<
valC (H)

=
?:

?:
?<

1

?8:+<
valC (H) = ?

: ?<
1

? (8+1):+<
valC (H)

= ?: ?< valC (4 (8+1):+<) = ?
: valC (4

?<

(8+1):+<
)

= ?: valC (38+1)

and ?:−1 valC (38) =
?:−1

?8:
valC (H) < valC (H) for all 8 ∈ N . Then:

◦ 38 ∈  
1

?< for all 8 ∈ N.
◦ For each C ∈ {1, 2} and all 8 ∈ N, we have 0 < ?:−1 · valC (38+1) < valC (38) < valC (H).

As<, : were arbitrary andK is type-definable over ∅, the claim follows by saturation of ( ,O1,O2). �

Now let (38)8∈N be a sequence in K given by Claim 3.21. Then we can choose from it elements
{1 9 ,; : 9 < =, ; < ℓ} in K such that for all 9 < =, ; < ℓ, we have

◦ valC (1=−1,;) < valC (10,;+1)

◦ 0 < ( 9 + 1) · valC (1 9 ,;) < valC (1 9 ,;+1)

◦ = · valC (1=−1,ℓ−1) < valC (H)

for both C ∈ {1, 2} simultaneously. For each (;0, . . . , ;=−1) ∈ ℓ
=, we define

1;0 ,...,;=−1 :=

=−1∏
9=0

1 9 ,; 9 ∈ K.

Claim 3.22. For each C ∈ {1, 2}, we have:

◦ 0 < valC (1;0 ,...,;=−1 ) < valC (H) for all (;0, . . . , ;=−1) ∈ ℓ
=

◦ valC (1;0 ,...,;=−1 ) < valC (1?0 ,..., ?=−1 ) if and only if (;=−1, . . . , ;0) <lex (?=−1, . . . , ?0)

Proof. The first item is clear by the choice of 1 9 ,; , and we check the second one. Assume
(;=−1, . . . , ;0) <lex (?=−1, . . . , ?0), and let 0 ≤ 9∗ < = be maximal such that ; 9∗ < ? 9∗ . Then by
the choice of 1 9 ,; , we have

valC (1;0 ,...,;=−1 ) =

=−1∑
9=0

valC (1 9 ,; 9 ) =

9∗∑
9=0

valC (1 9 ,; 9 ) +

=−1∑
9= 9∗+1

valC (1 9 , ? 9
)

≤ ( 9∗ + 1) · valC (1 9∗ ,; 9∗ ) +

=−1∑
9= 9∗+1

valC (1 9 , ? 9
) < valC (1 9∗ , ? 9∗

) +

=−1∑
9= 9∗+1

valC (1 9 , ? 9
)

≤

=−1∑
9=0

valC (1 9 , ? 9
) = valC (1?0 ,..., ?=−1 ).

�

By the choice of ℓ and Proposition 3.9, there must exist some (;∗
0
, . . . , ;∗

=−1
) ∈ ℓ= such that

⋂
(;0 ,...,;=−1) ∈ℓ=

1;0 ,...,;=−1 · ℘(�) =
⋂

(;0 ,...,;=−1) ∈ℓ=\{(;
∗
0 ,...,;

∗
=−1) }

1;0 ,...,;=−1 · ℘(�),
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⋂
(;0 ,...,;=−1) ∈ℓ=

1;0 ,...,;=−1 · ℘( ) =
⋂

(;0 ,...,;=−1) ∈ℓ=\{(;
∗
0 ,...,;

∗
=−1) }

1;0 ,...,;=−1 · ℘( ).

Let now < := ℓ= − 1. The following is straightforward:

Claim 3.23. There exists a tuple (0 9 : 0 ≤ 9 ≤ <) enumerating the set{
1;0 ,...,;=−1 : (;0, . . . , ;=−1) ∈ ℓ

=
}

so that the following holds:

1.
⋂<
9=0 0 9℘(�) =

⋂<−1
9=0 0 9℘(�);

2.
⋂<
9=0 0 9℘( ) =

⋂<−1
9=0 0 9℘( );

3. 0 < valC (00) < · · · < valC (0<−1) and
(
valC (0 9 )

)
0≤ 9≤<

are pairwise distinct, for both C ∈ {1, 2}.

We fix such a tuple (0 9 : 0 ≤ 9 ≤ <) for the rest of the proof. Note that we still have 0 9 ∈ K

and 0 < valC (0 9 ) < valC (H) for any 0 ≤ 9 ≤ < and C ∈ {1, 2} by the choice of the elements 1;0 ,...,;=−1

and Claim 3.22. Let 0̄ := (00, . . . , 0<) and 0̄′ := (00, . . . , 0<−1); both tuples satisfy the assumption of
Subsection 3.3. Then the following diagram is commutative

� 0̄ (K)
c

//

≃50̄

��

� 0̄′ (K)

≃50̄′

��

(K, +)
d

// (K, +)

(K, +),

≃`

OO

d′
::
t
t
t
t
t
t
t
t
t

where c is the natural projection (G0, . . . , G<) ↦→ (G0, . . . , G<−1); the maps

50̄ : � 0̄ (K) → (K, +), Ḡ = (G0, . . . , G<) ↦→

<∑
9=0

U 9G 9 , and

50̄′ : � 0̄′ (K) → (K, +), Ḡ = (G0, . . . , G<−1) ↦→

<−1∑
9=0

U′9G 9

with Ū = (U 9 : 0 ≤ 9 ≤ <), Ū′ = (U′9 : 0 ≤ 9 ≤ < − 1) in K are the isomorphisms given by Fact 3.13
for 0̄ and 0̄′ respectively; d is the algebraic morphism over K that makes the rectangle commute; and
`, d′ : (K, +) → (K, +) is given by

`(C) := U< · C, d′(C) := d(U<C).

Note that all these groups and morphisms are defined over K ⊆  ; hence the diagram still commutes
with K replaced by  .

We recall the following general fact about additive polynomials.

Fact 3.24 [31, Remark 4.2]. Let � be an algebraically closed fields, and 6 : � → � an additive

polynomial (i.e. 6(C + C ′) = 6(C) + 6(C ′) for all C, C ′ ∈ �) with ker(6) = F? . Then 6 = 2 · (C ? − C) ?
:

for

some : ∈ N and 2 ∈ �.

Using it, as in the proof of [31, Theorem 4.3], we get the following explicit expression for d′ (we
include a proof for completeness).
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Claim 3.25. d′(C) = 2(C ? − C) for some 2 ∈ K.

Proof. We have c ↾�0̄ ( ) is onto � 0̄′ ( ) by Claim 3.22(1); hence d ↾ is onto as well. From
the diagram, we have | ker(d) | = | ker(c) | = ?, and d is an algebraic group morphism of (K, +);
hence an additive polynomial. Note that 0 ≠ U< ∈ ker(d) as 5 −1

0̄ (U<) = (0, . . . , 0, 1) ∈  
<+1, and

c ((0, . . . , 0, 1)) = (0, . . . , 0) ∈  <. It follows that d′ : K → K is also an additive polynomial, with
ker(d′) = F? . By Fact 3.24 we have d′(C) = 2 · (C ? − C) ?

:

for some some 2 ∈ K and : ∈ N. In fact, 2 ∈ K
as U< ∈ K and d is over K. Finally, we must have : = 0 as the degree of c as an algebraic morphism is
?; hence the degree of d′ is also ? as the vertical arrows 50̄, 50̄′ , ` are algebraic isomorphisms. �

We fix 2 ∈ K given by Claim 3.25 for the rest of the proof. The following is a crucial claim relying
on the analysis of the effect of the special isomorphisms 50̄ on the valuation in Section 3.3.

Claim 3.26. Let D ∈  be arbitrary with valC (D) > max{valC (0<−1), valC (0<)} for both C ∈ {1, 2}.

Then there exists some F ∈ � with valC (F) < valC (D) for both C ∈ {1, 2} and such that d′(F) = D.

Proof. Let (G0, . . . , G<−1) := ( 50̄′)
−1(D) ∈ � 0̄′ ( ). Note that

0 < valC (00) < . . . < valC (0<−1) < valC (D)

for both C ∈ {1, 2} by Claim 3.23(3) and assumption, hence by Lemma 3.20 we have that valC (G 9 ) > 0

for all C ∈ {1, 2} and 0 ≤ 9 ≤ < − 1. Whence G 9 ∈ � for all 0 ≤ 9 ≤ < − 1. By Claim 3.23(1) there
is some G< ∈ � such that 0< (G

?
< − G<) = 0 9 (G

?

9
− G 9 ) for all 0 ≤ 9 < <. So there is a preimage of

(G0, . . . , G<−1) under c, namely (G0, . . . , G<−1, G<), which lies in �<+1. Now let

F := U−1
< 5 (G0, . . . , G<−1, G<) = U

−1
<

<∑
9=0

U 9G 9 ,

thus F is a preimage of D under d′. Then for each C ∈ {1, 2}, we have

valC (F) = valC
©­«
U−1
<

<∑
9=0

U 9G 9
ª®¬

= − valC (U<) + valC
©­«
<∑
9=0

U 9G 9
ª®¬

3.19(1)
=

{
− valC (U<) + valC (U<) + valC (G<) if valC (0<−1) < valC (0<)

− valC (U<) + valC (U<−1) + valC (G<−1) if valC (0<) < valC (0<−1)

> 0,

where the last inequality is by Remark 3.16, Lemma 3.15 and Lemma 3.18. Also, by Lemma 3.18 with
respect to 0̄′, we have valC (G<−1) = valC (D) − valC (0<−1); hence

valC (D) = valC (0<−1) + valC (G<−1)
3.14
= valC (0<) + valC (G<).

If valC (0<−1) < valC (0<), then we have

valC (D) = valC (0<) + valC (G<)
3.17
= valC (U<) + valC (G<)

> − valC (U<) + valC (U<) + valC (G<) = valC (F).
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If valC (0<) < valC (0<−1), then we have

valC (D) = valC (0<−1) + valC (G<−1)
3.17
= valC (U<−1) + valC (G<−1)

> − valC (U<) + valC (U<−1) + valC (G<−1) = valC (F).

In either case, we obtain valC (D) > valC (F). �

Let now F be as given by Claim 3.26 for D := H. Then for both C ∈ {1, 2}, we have

valC (2) = valC (H) − valC (F
? − F) = valC (H) − valC (F) > 0.

Then valC (2H) > max{valC (0<−1), valC (0<)}. Let F′ ∈ � be as given by Claim 3.26 applied to D := 2H;
then

2H = d′(F′) = 2((F′) ? − F′),

that is, H = (F′) ? − F′. Thus F′ is an Artin-Schreier root of H in �. As H ∈ � was arbitrary, this finishes
the proof of Proposition 3.5.

3.5. Generic multi-ordered/multi-valued fields

An analog of Corollary 3.6 for valued fields of characteristic 0 currently appears out of reach. In this
section, we at least provide some evidence toward it by demonstrating that the model-companion of the
theory of fields with several valuations and orderings introduced by van den Dries [45, Chapter III] is
not =-dependent for any =. We use Johnson’s PhD thesis [30, Chapter 11] as our reference.

Fix : ∈ N. For each 1 ≤ 8 ≤ : , let )8 be one of the theories ACVF (Algebraically Closed Valued
Fields), RCF (Real Closed Fields), or pCF (?-adically Closed Fields), and let L8 denote the language
of )8 and L8 ∩ L 9 = Lrings (i.e. L8 additionally contains a binary predicate G <8 H if )8 is RCF, or
val8 (G) < val8 (H) if )8 is ACVF or pCF). Let L :=

⋃:
8=1 L8 , and let )0 :=

⋃:
8=1 ()8)∀.

Fact 3.27 [30, Theorem 11.2.3]. The theory)0 has a model companion) , and  |= )0 is a model of) if:

1.  is existentially closed with respect to finite extensions: that is, if ! is a finite algebraic extension

of  and ! |= )0, then ! =  .

2. For any <, let+ be an <-dimensional absolutely irreducible variety over  . For 1 ≤ 8 ≤ : , let i8 (G)

be a +-dense quantifier-free L8-formula with parameters from  . Then
⋂:
8=1 i8 ( ) ≠ ∅.

(Where ‘+-dense’ means that i8 ( ) is Zariski-dense in + ( alg); see [30, Section 11.1.1].)

We use the following result established in the proof of [30, Claim 11.5.2].

Fact 3.28. Let  |= ) . For each 8, let j8 (H) be the formula

1. H >8 0 if )8 is RCF.

2. val8 (H −
1
4
) > 0 if )8 is ACVF or pCF.

Let j(H) :=
∧:
8=1 j8 (H). Then j( ) is infinite, and there exists some L-formula k(G, H) such that for

any < ∈ N, any 01, . . . , 0< ∈ j( ) pairwise distinct and any � ⊆ {1, . . . , <}, there exists some 1 such

that |= k(1, 0 9 ) ⇐⇒ 9 ∈ �.

This immediately implies that ) is not dependent, and we show that the argument can be generalized
to show that ) is not =-dependent for any = as follows.

Proposition 3.29. ) is not =-dependent for any = ≥ 1.

Proof. Let  |= ) be a saturated model. Fix = ∈ N. Note that it is enough to find some sequences
(21
U1
, . . . , 2=U= : U1, . . . , U= ∈ l) of elements in  and 4 ∈  such that all elements in the set
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{21
U1
· . . . · 2=U= + 4 : U1, . . . , U= ∈ l} are pairwise distinct and satisfy j(H), as then the formula

k ′(G; H1, . . . , H=) = k(G; H1 · . . . · H= + 4) with k given by Fact 3.28 is not =-dependent.
Since the formulas val8 (

1
4
−G) > 0 and G >8 0 are+-dense for+ = A1, by Fact 3.27(2) we can choose

4 ∈  such that 0 < val8 (
1
4
− 4) < ∞ for all 1 ≤ 8 ≤ : for which )8 is ACVF or pCF, and 4 >8 0 for all 8

for which )8 is RCF. Let W8 := val8 (
1
4
− 4).

By induction on 1 ≤ C ≤ =, we choose, using saturation of  , sequences (2CU : U ∈ l) in  such that
the following holds for each 1 ≤ 8 ≤ ::

1. If )8 is ACVF or pCF:
(a) val8 (2

C
U+1
) > = · val8 (2

C
U) > W8 for all 1 ≤ C ≤ = and U ∈ l.

(b) val8 (2
C+1
U ) > val8 (2

C
V
) for all 1 ≤ C ≤ = − 1 and U, V ∈ l.

2. If )8 is RCF:
(a) 2C

U+1
>8 (2

C
U)
= > 0 and for all 1 ≤ C ≤ = and U, V ∈ l.

(b) 2C+1U >8 2
C
V

for all 1 ≤ C ≤ = − 1 and U, V ∈ l.

To choose an element 2CU ∈  , we only need to satisfy finitely many quantifier-free formulas with
parameters from {2B

V
: B < C ∨ (B = C ∧ V < U)} ⊆  . All of these are implied by a single condition of

the form val8 (G) > val8 (2) or G >8 2 for each 8 and some 2 ∈  . Thus they can be satisfied in  by Fact
3.27(2) since these formulas are +-dense for + = A1.

Assume first that )8 is ACVF or pCF for some 1 ≤ 8 ≤ : . Note that in this case, for any
(U1, . . . , U=) ∈ l

=, we have val8
(∏=

C=1 2
C
UC

)
=

∑=
C=1 val8 (2

C
UC
) > W8 = val8 (

1
4
− 4) by 1(a). Then

val8

( (∏=
C=1 2

C
UC
+ 4

)
− 1

4

)
= val8

(∏=
C=1 2

C
UC
− ( 1

4
− 4)

)
= val8

(
1
4
− 4

)
= W8 > 0, and therefore

|= j8
(∏=

C=1 2
C
UC
+ 4

)
.

As in the proof of Claim 3.22, we get that (U1, . . . , U=) < (V1, . . . , V=) in the lexicographic ordering
on l= if and only if

val8

(
=∏
C=1

2CUC

)
< val8

(
=∏
C=1

2CUC

)
,

so in particular
∏=
C=1 2

C
UC
+ 4 ≠

∏=
C=1 2

C
VC
+ 4; hence all these elements are pairwise distinct.

Otherwise )8 must be RCF for all 1 ≤ 8 ≤ : . Then a similar calculation using 2(a) and 2(b) shows
that

∏=
C=1 2

C
UC
+ 4 |= j8 and that all these elements are pairwise distinct. �

4. Connected components of =-dependent groups

4.1. Connected components of (type-)definable groups

We begin by recalling some facts about model-theoretic connected components of (type-)definable
groups and state the main theorem of the section.

Definition 4.1. Let ) be an arbitrary theory, � = � (M) an ∅-definable group and � ⊆ M a small set
of parameters. Then �0

�
is the intersection of all �-definable subgroups of � of finite index, and �00

�
is

the intersection of all subgroups of � that are type-definable over � and of bounded index.

As � is small, �0
�

and �00
�

are type-definable subgroups of � of bounded index. In fact, we have the
following standard results (see e.g. [20, Remark 3.5(2) and Lemma 2.2]).

Fact 4.2. If � is a type-definable subgroup of � = � (M) of bounded index, then it can be written as an

intersection of subgroups of � of bounded index, each of which is defined by a partial type consisting

of countably many formulas.

Fact 4.3. Let � = � (M) be a type-definable group, and let � be a subgroup of � of bounded index that

is type-definable over a small set of parameters �. Then [� : �] ≤ 2 |) |+ |� | .
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A fundamental fact about dependent groups is the absoluteness of their connected components:

Fact 4.4. [39] Let ) be dependent. Then �00
�
= �00

∅
for every small set �. In particular, the intersection

of all subgroups of � that are type-definable over a small set of parameters and of bounded index is a

normal subgroup type-definable over ∅ and of index ≤ 2 |) | .

This does not remain true for 2-dependent groups:

Example 4.5. Let � be the group F(l)
2

, where F2 is the finite field with 2 elements. Let M :=

(�, F2, 0, +, ·) be the structure with + the addition in � and · the bilinear form (08) · (18) =
∑
8 0818

from �2 to F2. Then Th(M) is simple and 2-dependent, and �00
�

= {6 ∈ � : 6 · 0 = 0 for all 0 ∈ �}
(see [22, Section 3]), so the group �00

�
gets smaller as � grows.

However, in this example, for any small sets �, �, we have �00
��

= �00
�
∩ �00

�
. The following theorem

of Shelah shows that, up to a ‘small’ error, this holds in an arbitrary 2-dependent group:

Fact 4.6 [41]. Let ) be 2-dependent,� = � (M) an �-type-definable group, ^ := i2(|�| + |) |)
+, M ⊇ �

a ^-saturated model, and 1̄ an arbitrary finite tuple inM. Then

�00

M1̄
= �00

M
∩ �00

�1̄

for some � ⊆ M with |� | < ^.

In this section, we generalize this result to =-dependent groups for arbitrary =. In order to state our
generalization, we need to introduce an appropriate notion of independence.

Definition 4.7. (^-coheirs) For any cardinal ^, any model M, and any tuple 0, we write

0 |⌣
D,^

M
�

if for any set � ⊂ � ∪M of size < ^, tp(0/�) is realized in M.

When ^ = ℵ0, we get 0 |⌣
D,ℵ0

M
� if and only if tp(0/�M) is finitely satisfiable in M. In this case, we

simply write 0 |⌣
D

M
� (the usual notation for coheir independence).

Recall that for an infinite cardinal ^ and = ∈ l, the cardinal i= (^) is defined inductively by i0(^) = ^

and i=+1 (^) = 2i= (^) . Then the Erdős-Rado theorem says that (iA (^))
+ → (^+)A+1^ for all infinite ^

and A ∈ l.

Definition 4.8. (Generic position) Let M be a small model, � a subset of M and 1̄1, . . . , 1̄=−1 finite
tuples in M. We say that (M, �, 1̄1, . . . , 1̄=−1) are in a generic position if there exist regular cardinals
^1 < ^2 < . . . < ^=−1 and models M0 � M1 � . . . � M=−1 = M such that � ⊆ M0, i2(|M8 |)

+ ≤ ^8+1
for 8 = 0, . . . , = − 2 and

1̄8 |⌣
D,^8
M8

1̄<8M=−1

for all 1 ≤ 8 ≤ = − 1.

One general method to find elements in a generic position is given in Remark 4.14. But first let us
state the main result of the section.

Theorem 4.9. Let = ≥ 1, ) an =-dependent theory, � ⊆ M |= ) a small parameter set and � = � (M)

a type-definable group in ) over � be given. Let M ⊇ � be a small model and 1̄1, . . . , 1̄=−1 finite tuples

inM such that (M, �, 1̄1, . . . , 1̄=−1) are in a generic position.
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Let (�U : U ∈ �) be any family of subgroups of � of bounded index, with each �U type-definable

over M1̄1 . . . 1̄=−1. Then there is some � ⊆ � with |� | ≤ i2(|) | + |�|) such that⋂
U∈�

�U ∩
⋂

8=1,...,=−1

�00

M∪1̄1∪...∪1̄8−1∪1̄8+1∪...∪1̄=−1
=

⋂
U∈�

�U ∩
⋂

8=1,...,=−1

�00

M∪1̄1∪...∪1̄8−1∪1̄8+1∪...∪1̄=−1
.

Before we prove Theorem 4.9, let us observe the following corollary for the connected components
of =-dependent groups.

Corollary 4.10. Let ) be a =-dependent theory, � ⊆ M |= ) a small parameter set and � = � (M) a

type-definable group in ) over � be given. Let M ⊇ � be a small model and 1̄1, . . . , 1̄=−1 finite tuples

inM in a generic position. Then there is some � ⊆ M with |� | ≤ i2(|) | + |�|) such that

�00

M∪1̄1∪···∪1̄=−1
=

⋂
8=1,...,=−1

�00

M∪1̄1∪...∪1̄8−1∪1̄8+1∪...∪1̄=−1
∩ �00

�∪1̄1∪···∪1̄=−1
.

Proof. By Fact 4.2, we have

�00

M∪1̄1∪···∪1̄=−1
=⋂

8=1,...,=−1

�00

M∪1̄1∪...∪1̄8−1∪1̄8+1∪...∪1̄=−1
∩

⋂ {
�00

�∪1̄1∪···∪1̄=−1
: � ⊆ M countable

}
.

By Theorem 4.9, it is already given by some sub-intersection of size at most i2(|) | + |�|). Letting
� ⊆ M be the set containing all of the sets � appearing in this sub-intersection gives the desired
result. �

Remark 4.11. Some variant of Corollary 4.10 is alluded to in [41, Discussion 2.14(2)], but we are not
aware of any follow-up.

Remark 4.12.

1. For = = 1, the assumptions of Corollary 4.10 are trivially satisfied by any sufficiently large model
M = M0, and the conclusion gives �00

M
= �00

�
for some small subset � of M (since the first

intersection on the right-hand side is over the empty set). This easily implies absoluteness of �00.
2. For = = 2, the assumption 1̄1 |⌣

D,^1

M1
M1 is clearly satisfied by any ^1-saturated modelM1 ⊇ � (taking

� ⊆ M0 � M1 arbitrary), and the conclusion gives�00

M1 1̄1
= �00

M1
∩�00

1̄1�
— hence Fact 4.6 follows.

Problem 4.13. In order for our proof of Theorem 4.9 to work, we had to assume that the tuples

11, . . . , 1=−1 are in a generic position (which we think of intuitively as ‘sufficiently independent from

each other over M’). On the other hand, in the extreme opposite case when one of the tuples is in the

algebraic closure of the other ones, the result holds trivially. Thus we ask if any hypothesis on the tuples

11, . . . , 1=−1 is needed for the result to hold.

The following remark provides a general method for finding tuples in a generic position.

Remark 4.14. Let ) be an arbitrary L-theory, � a small subset of M and � = � (M) a group type-
definable over �. Let ) ′ := )Sk be a Skolemization of ) in a language L′ ⊇ L, |L′ | = |L|. Let
^0 := |�| + |L| and ^8+1 := i2 (^8)

+, a regular cardinal, for 8 = 1, . . . , = − 2. Next, choose mutually
L′(�)-indiscernible sequences �1 = (1̄1, 9 : 9 ∈ ^1 + 1), . . . , �=−1 = (1̄=, 9 : 9 ∈ ^= + 1) in some monster
model M′ of ) ′. Then for 8 = 1, . . . , = − 1, let �8 = (1̄8, 9 : 9 ∈ ^8), 1̄8 = 1̄8,^8+1 (i.e. the last element in
the sequence �8), and M8 := Sk(��1 . . . �8) (where Sk is the operation of taking the Skolem hull). Thus
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� ⊆ M0 � M1 � . . . � M=−1 and |M8 | = |� ∪
⋃

1≤B≤8 �B | + |L
′ | = ^8; hence i2 ( |M8 |)

+ ≤ ^8+1 holds
for all 0 ≤ 8 ≤ = − 2.

We claim that 1̄8 |⌣
D,^8
M8

1̄<8M=−1 for every 1 ≤ 8 ≤ = − 1. To see this, fix 8, and let � ⊆ M=−1

with |� | < ^8 be arbitrary. By construction, there exist some (8 ⊆ ^8 with |(8 | < ^8 such that
� ⊆ dclL′

(
�(11, 9 ) 9∈(1

. . . (1=−1, 9 ) 9∈(=−1

)
. As ^8 > |(8 | is regular, there exists some 9∗ > (8 in ^8 . But

then by mutual L′(�)-indiscernibility of �1, . . . , �=−1, we have that

1̄8, 9∗ ≡�(11, 9 ) 9∈(1
...(1=−1, 9 ) 9∈(=−1

1̄<8
1̄8 ,

hence 1̄8, 9∗ ≡�1̄<8 1̄8 and 1̄8, 9∗ is in M8 .
Thus (�,M=−1, 1̄1, . . . , 1̄=−1) are in a generic position (both in the sense of ) and ) ′).

4.2. Proof of Theorem 4.9

We are ready to prove the main theorem.

Proof (Proof of Theorem 4.9). Assume that the conclusion fails, and let � ⊆ M0 � M1 � . . . �

M=−1 = Mwitness the generic position as in Definition 4.8. Then, using Fact 4.2, we can find inductively
a sequence of (M=−1 ∪ 1̄1 ∪ · · · ∪ 1̄=−1)-type-definable subgroups �U, U < ^ := i2(|) | + |�|)

+ of � of
bounded index such that �U =

⋂
<<l k

U
< (�; 2̄U, 1̄1, . . . , 1̄=−1) for some countable 2̄U from M=−1, and

elements (3U)U<^ in � such that

1. 3U ∈
⋂
8=1,...,=−1�

00

M=−1∪1̄1∪...∪1̄8−1∪1̄8+1∪...∪1̄=−1
∩

⋂
V<U �V ,

2. 3U ∉ �U.

Using compactness, and possibly replacing each kU< by a finite conjunction of kU
8

’s, we may assume
additionally that the following hold:

3. |= ¬kU
0
(3U; 2̄U, 1̄1, . . . , 1̄=−1),

4. For all < ∈ l, we have{
kU<+1 (G; 2̄U, 1̄1, . . . , 1̄=−1), k

U
<+1(H; 2̄U, 1̄1, . . . , 1̄=−1)

}
⊢

kU<(G · H; 2̄U, 1̄1, . . . , 1̄=−1) ∧ kU< (G
−1; 2̄U, 1̄1, . . . , 1̄=−1) ∧

kU< (G · H
−1; 2̄U, 1̄1, . . . , 1̄=−1).

As there are only |) |<ℵ0 many formulas and cf (^) > |) |ℵ0 , by the pigeonhole principle and after
dropping some of the �U’s, we can find (k<)<∈l such that for all U < ^,

kU< = k<.

Claim 4.15. In addition to (1)–(4), we may assume that for all 8, 9 ∈ l, we have that

38 ∈ � 9 ⇔ 8 ≠ 9 .

Proof. By Fact 4.3, for each V < ^, there is a partition {6V,a�V : a < \V} of �, where \V = [� :

�V] ≤ 2ℵ0 . Therefore, considering 3U for some U < ^, there is aU,V < \V such that

3U ∈ 6V,aU,V�V .

As ^ = i2(|) | + |�|)
+ by assumption, by Erdős-Rado we can find an infinite subset � of ^ and a < 2ℵ0 ,

such that for all U < V in �, we have that

3U ∈ 6V,a�V .
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We may assume that � = l. Now let 8 < 9 < < ∈ l. Then by the above we have that

38 ∈ 6<,a�< and 3 9 ∈ 6<,a�<,

or in other words

38 = 6<,aℎ8 and 3 9 = 6<,aℎ 9

for some ℎ8 , ℎ 9 ∈ �<. Thus

3−1
8 3 9 = ℎ

−1
8 6
−1
<,a6<,aℎ 9 = ℎ

−1
8 ℎ 9 ∈ �<. (∗)

Now for 8 ∈ l, let

48 = 3
−1
28 328+1,  8 = �28 , i< = k<+1, and 5̄8 = 2̄28 .

Then, after replacing 38 by 48 , �8 by  8 , k8 by i8 , and 28 by 58 , (1) and (4) are still satisfied. To show
that condition (3) remains true, assume the opposite — that is, |= i0 (48; 5̄8 , 1̄1, . . . , 1̄=−1), which is
equivalent to |= k1 (48; 2̄28 , 1̄1, . . . , 1̄=−1). By (1), we know that |= k1(328+1; 2̄28 , 1̄1, . . . , 1̄=−1). Now,
using that 328 = 328+14

−1
8 and (4), we can conclude that |= k0(328; 2̄28 , 1̄1, . . . , 1̄=−1) — contradicting

(3) for the original sequence. Finally,

◦ If 8 ≠ 9 , then

48 = 3
−1
28 328+1

by(1) if 9<8
∈

by(∗) if 8< 9
�2 9 =  9 .

◦ If 8 = 9 , then by (1) and (2), we have that 328 ∉ �28 but 328+1 ∈ �28 , so 48 ∉ �28 =  8 . This also
shows that condition (2) is still satisfied.

This finishes the proof of the claim. �claim

Let c̄ := (2̄8 : 8 ∈ l).

Claim 4.16. There are sequences (1̄1,W : W < l), (1̄2,W : W < l), . . . , (1̄=−1,W : W < l) in M=−1 and

elements (38,W1 ,...,W=−1
: (8, W1, . . . , W=−1) ∈ l

=) in � such that

38,W1 ,...,W=−1
∈ � 9 , X1 ,..., X=−1

:=
⋂
<<l

k<(�; 2̄ 9 , 1̄1, X1
, . . . , 1̄=−1, X=−1

)

⇔ (8, W1, . . . , W=−1) ≠ ( 9 , X1, . . . , X=−1)

⇔ |= k=−1 (38,W1 ,...,W=−1
; 2̄ 9 , 1̄1, X1

, . . . , 1̄=−1, X=−1
).

Proof. We will prove the following claim by reverse induction on ; = 1, . . . , =.

There are sequences (1̄;,W : W < l), (1̄;+1,W : W < l), . . . , (1̄=−1,W : W < l) in M=−1 and elements(
38,W; ,...,W=−1

: (8, W; , . . . , W=−1) ∈ l
=−;+1

)
in � such that (†1)–(†4) below hold:

38,W; ,...,W=−1
∈ � 9 , X; ,..., X=−1

:=
⋂
<<l

k<(�; 2̄ 9 , 1̄1, . . . , 1̄;−1, 1̄;, X; , . . . , 1̄=−1, X=−1
)

⇔ (8, W; , . . . , W=−1) ≠ ( 9 , X; , . . . , X=−1) (†1)

⇔ |= k=−; (38,W; ,...,W=−1
; 2̄ 9 , 1̄1, . . . , 1̄;−1, 1̄;, X; , . . . , 1̄=−1, X=−1

) (†2)

and

38,W; ,...,W=−1
∈

⋂
C=1,...,;−1;

(X; ,..., X=−1) ∈l=−;

�00

M;−1 c̄ 1̄1...1̄C−1 1̄C+1...1̄;−1 1̄;, X; ...1̄=−1, X=−1

(†3)

https://doi.org/10.1017/fms.2021.35 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.35


28 Artem Chernikov and Nadja Hempel

for all W; , . . . , W=−1, X; , . . . , X=−1, 8, 9 ∈ l (where M0 � · · · � M=−1 are given by the assumption), and

k<+1(G; 2̄8 , 1̄1, . . . , 1̄;−1, 1̄;,W; , . . . , 1̄=−1,W=−1
) ∧

k<+1(H; 2̄8 , 1̄1, . . . , 1̄;−1, 1̄;,W; , . . . , 1̄=−1,W=−1
)

⊢ k<(G · H; 2̄8 , 1̄1, . . . , 1̄;−2, 1̄;−1,W;−1
, . . . , 1̄=−1,W=−1

) ∧

k< (G
−1; 2̄8 , 1̄1, . . . , 1̄;−1, 1̄;,W; , . . . , 1̄=−1,W=−1

) ∧

k< (G · H
−1; 2̄8 , 1̄1, . . . , 1̄;−1, 1̄;,W; , . . . , 1̄=−1,W=−1

) for all 8, < ∈ l.




(†4)

For ; = 1, this completes the proof of Claim 4.16.
For ; = =, this is Claim 4.15 together with (1), (3) and (4).
Now suppose the claim is true for 1 < ; < =, and we want to prove the claim for ; − 1. First, as

1̄;−1 |⌣
D,^;−1

M;−1
1̄<;−1M=−1, we can choose sequences (1̄;−1,W : W < ^;−1) in M;−1 and (38,W;−1 ,...,W=−1

:

(8, W;−1, . . . , W=−1) ∈ l × ^;−1 × l
=−;) in � such that for any W < ^;−1:(

1̄;−1,W , 38,W,W; ...,W=−1
: (8, W; , . . . , W=−1) ∈ l

=−;+1
)

has the same type as(
1̄;−1, 38,W; ...,W=−1

: (8, W; , . . . , W=−1) ∈ l
=−;+1

)
over

M;−2, c̄, 1̄1, . . . , 1̄;−2 ∪ {1;−1, X : X < W} ∪ {1̄ 9 , X : 9 = ;, . . . , = − 1, X < l}.




(★)

Then

5. By (†3) for C = ; − 1 and (★), using that 1̄;−1,W ∈ M;−1 for all W < ^;−1, we obtain

38,W;−1 ,...,W=−1
∈

⋂ {
� 9 , X;−1 ,..., X=−1

: ( 9 , X; , . . . , X=−1) ∈ l
=−;+1, X;−1 < W;−1

}
for all 8 ∈ l.

6. By (†1) and (★)

38,W;−1 ,W; ,...,W=−1
∈

⋂ {
� 9 ,W;−1 , X; ..., X=−1) : (8, W; , . . . , W=−1) ≠ ( 9 , X; , . . . , X=−1)

}
.

7. By (†1) and (★)

38,W;−1 ,...,W=−1
∉ �8,W;−1 ,...,W=−1

,

in particular by (†2) and (★)

|= ¬k=−; (38,W;−1 ,...,W=−1
; 2̄8 , 1̄1, . . . , 1̄;−2, 1̄;−1,W;−1

, . . . , 1̄=−1,W=−1
);

8. By (†4) and (★) the formula

k<+1(G; 2̄8 , 1̄1, . . . , 1̄;−2, 1̄;−1,W;−1
, . . . , 1̄=−1,W=−1

)∧

k<+1(H; 2̄8 , 1̄1, . . . , 1̄;−2, 1̄;−1,W;−1
, . . . , 1̄=−1,W=−1

)

implies the formula

k< (G · H; 2̄8 , 1̄1, . . . , 1̄;−2, 1̄;−1,W;−1
, . . . , 1̄=−1,W=−1

)∧

k< (G
−1; 2̄8 , 1̄1, . . . , 1̄;−2, 1̄;−1,W;−1

, . . . , 1̄=−1,W=−1
)∧

k<(G · H
−1; 2̄8 , 1̄1, . . . , 1̄;−2, 1̄;−1,W;−1

, . . . , 1̄=−1,W=−1
);
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9. By (†3) and (★), and as 1̄;−1, X;−1
are all in M;−1,

38,W;−1 ,...,W=−1
∈

⋂
C=1,...,;−2;

X;−1≤W;−1 , (X; ,..., X=−1) ∈l=−;

�00

M;−2 c̄ 1̄1...1̄C−1 1̄C+1...1̄;−2 1̄;−1, X;−1
...1̄=−1, X=−1

.

Consider the sequence of countable tuples(
1̄;−1,W , (38,W,W; ...,W=−1

: (8, W; , . . . , W=−1) ∈ l
=−;+1)

)
W∈^;−1

.

Note that for any X < ^;−1, the group

 X := �00

M;−2 c̄1̄1...1̄;−2 1̄;−1, X{1̄;, X; ...1̄=−1, X=−1
:(X; ,..., X=−1) ∈l=−;}

is type-definable over a set of size |M;−2 | + ℵ0 = |M;−2 | and has bounded index in �; hence by Fact 4.3,
its index is at most 2 |M;−2 | . Let (6X,a : a < 2 |M;−2 |) be a set of representatives of its cosets in �. For
each W < X < ^;−1, consider a countable tuple

āW, X :=
(
a
W, X

8, X; ,..., X=−1
: 8, X; , . . . , X=−1 ∈ l

)

listing cosets of the elements
(
38,W,W; ...,W=−1

: (8, W; , . . . , W=−1) ∈ l
=−;+1

)
with respect to the group  X .

There are at most
(
2 |M;−2 |

)ℵ0
= 2 |M;−2 | possible choices for this tuple. As ^;−1 ≥ i2(|M;−2 |)

+ by
assumption, applying Erdős-Rado, there is an infinite subsequence such that āW, X is constant for all
W < X from this subsequence. As in the proof of Claim 4.15, restricting to this subsequence, we have
that (5)–(9) still hold, and for any fixed (8, W; , . . . , W=−1) ∈ l

=−;+1, we have

3−1
8,W′,W; ,...,W=−1

38,W,W; ...,W=−1
∈ �00

M;−2 c̄1̄1...1̄;−2 1̄;−1, X{1̄;, X; ...1̄=−1, X=−1
: (X; ,..., X=−1) ∈l=−;}

(††)

for all W < W′ < X < l.

Next, for (8, W; , . . . , W=−1) ∈ l
=−;+1 and W;−1 < ^;−1, let

48,W;−1 ,...,W=−1
= 3−1

8,2W;−1 ,W; ...,W=−1
38,2W;−1+1,W; ...,W=−1

,

5̄;−1,W;−1
= 1̄;−1,2W;−1

,

 8,W;−1 ,W; ...,W=−1
= �8,2W;−1 ,W; ...,W=−1

.

We will show that replacing

◦ 38,W;−1 ,...,W=−1
by 48,W;−1 ,...,W=−1

, 1̄;−1,W;−1
by 5̄;−1,W;−1

,
◦ �8,W;−1 ,...,W=−1

by  8,W;−1 ,...,W=−1
,

and restricting to the first countably many elements gives the desired sequences for ; − 1.
Note first that

48,W;−1 ,...,W=−1
∈

⋂
C=1,...,;−2;

X;−1≤W;−1 , (X; ,..., X=−1) ∈l=−;

�00

M;−2 c̄ 1̄1...1̄C−1 1̄C+1...1̄;−2 1̄;−1,2X;−1
,1̄;, X; ...1̄=−1, X=−1

(∗∗)

by (9).
Now let ( 9 , W;−1, . . . , W=−1) ≠ (8, X;−1, . . . , X=−1). We consider two cases:

Case 1: W;−1 = X;−1.
In this case, ( 9 , W; , . . . , W=−1) ≠ (8, X; , . . . , X=−1). Thus

38,2W;−1 ,W; ,...,W=−1
∈ � 9 ,2W;−1 , X; ,..., X=−1

by (6)
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and

38,2W;−1+1,W; ,...,W=−1
∈ � 9 ,2W;−1 , X; ,..., X=−1

by (5).

So

10. 48,W;−1 ,...,W=−1
= 3−1

8,2W;−1 ,W; ,...,W=−1
38,2W;−1+1,W; ...,W=−1

∈ � 9 ,2W;−1 , X; ,..., X=−1
=  9 , X;−1 , X; ,..., X=−1

,

and in particular

11. |= k=−;+1
(
48,W;−1 ,...,W=−1

; 2̄ 9 , 5̄;−1, X;−1
, 1;, X; . . . , 1̄=−1, X=−1

)
.

Case 2: W;−1 ≠ X;−1.
If X;−1 < W;−1, then 48,W;−1 ,...,W=−1

= 3−1
8,2W;−1 ,W; ,...,W=−1

38,2W;−1+1,W; ...,W=−1
∈ � 9 ,2X;−1 , X; ,..., X=−1

by (5). So
without loss of generality W;−1 < X;−1. Then (††) implies in particular that

48,W;−1 ,...,W=−1
= 3−1

8,2W;−1+1,W; ,...,W=−1
38,2W;−1 ,W; ...,W=−1

∈ � 9 ,2X;−1 , X; ,..., X=−1

and

48,W;−1 ,...,W=−1
∈

⋂
C=1,...,;−2;

X;−1>W;−1 , (X; ,..., X=−1) ∈l=−;

�00

M;−2 c̄ 1̄1...1̄C−1 1̄C+1...1̄;−2 1̄;−1,2X;−1
1̄;, X;−1

...1̄=−1, X=−1

.

Together with (∗∗), this gives

12. 48,W;−1 ,...,W=−1
∈

⋂
C=1,...,;−2;

(X;−1 ,..., X=−1) ∈l×l=−;

�00

M;−2 c̄ 1̄1...1̄C−1 1̄C+1...1̄;−2 5̄;−1, X;−1
1̄;, X;−1

...1̄=−1, X=−1

.

On the other hand, for given ( 9 , W;−1, . . . , W=−1) ∈ l
=−;+2, by (7) we have

38,2W;−1 ,W; ...,W=−1
∉ �8,2W;−1 ,W; ...,W=−1

,

and by (5) we have

38,2W;+1,W; ...,W=−1
∈ �8,2W;−1 ,W; ,...,W=−1

.

Hence

13. 48,W;−1 ,...,W=−1
= 3−1

8,2W;−1 ,W; ...,W=−1
38,2W;−1+1,W; ...,W=−1

∉ �8,2W;−1 ,W; ...,W=−1
=  8,W;−1 ,...,W=−1

.

Suppose toward a contradiction that

|= k=−;+1 (48,W;−1 ,...,W=−1
; 2̄8 , 5̄;−1,W;−1

, 1;,W; . . . , 1̄=−1,W=−1
).

By (5), we also have that

|= k=−;+1 (38,2W;−1+1,W; ,...,W=−1+1; 2̄8 , 5̄;−1,W;−1
, 1̄;,W; . . . , 1̄=−1,W=−1

).

Since 38,2W;−1 ,...,W=−1
= 38,2W;−1+1,W; ...,W=−1

4−1
8,W;−1 ,...,W=−1

, using (8), we conclude that

|= k=−; (38,2W;−1 ,W; ...,W=−1
; 2̄8 , 5̄;−1,W;−1

, 1̄;,W; . . . , 1̄=−1,W=−1
)

= k=−; (38,2W;−1 ,W; ...,W=−1
; 2̄8 , 1̄;−1,2W;−1

, . . . , 1̄=−1,W=−1
),

contradicting (7). Thus

14. 6 |= k=−;+1 (48,W;−1 ,...,W=−1
; 2̄8 , 5̄;−1,W;−1

, 1;,W; . . . , 1̄=−1,W=−1
).

Now, for ; − 1, we obtain (†1) from (10) and (13), (†2) from (11) and (14), (†3) from (12), and
(†4) from (8) by replacing 48,W;−1 ,...,W=−1

by 38,W;−1 ,...,W=−1
, 5̄;−1,W;−1

by 1̄;−1,W;−1
, and  8,W;−1 ,...,W=−1

by
�8,W;−1 ,...,W=−1

. This finishes the proof of the claim. �claim
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Claim 4.17. For any � ⊂ (l)=, there is some 3 ∈ � such that

|= k=+1 (3; 2̄8 , 11,W1
, . . . , 1̄=−1,W=−1

)

if and only if (8, W1, . . . , W=−1) ∉ �.

Proof. Suppose first that � is finite, and let ((8; , W1,; , . . . , W=−1,;) : ; ≤ B) be an enumeration of the
elements in �. Define 3 = 380 ,W1,0 ,...,W=−1,0

· . . . · 38B ,W1,B ,...,W=−1,B
.

If ( 9 , X1, . . . , X=−1) ∉ �, then 38; ,W1,; ,...,W=−1,;
∈ � 9 , X1 ,..., X=−1

for all ; ≤ B by Claim 4.16, and hence
3 ∈ � 9 , X1 ,..., X=−1

and in particular |= k=+1 (3; 2̄ 9 , 1̄1, X1
, . . . , 1̄=−1, X=−1

).
On the other hand, consider (8; , W1,; , . . . , W=−1,;) ∈ �. Let

41 = 380 ,W1,0 ,...,W=−1,0
· . . . · 38;−1 ,W1,;−1 ,...,W=−1,;−1

and

42 = 38; ,W1,;+1 ,...,W=−1,;+1
· . . . · 38B ,W1,B ,...,W=−1,B

.

Then 38; ,W1,; ,...,W=−1,;
= 4−1

1
34−1

2
. Observe that

|= ¬k=−1 (38; ,W1,; ,...,W=−1,;
, 2̄8; , 11,W1,;

, . . . , 1̄=−1,W=−1,;
),

|= k= (4
−1
2 , 2̄8; , 11,W1,;

, . . . , 1̄=−1,W=−1,;
) and

|= k=+1 (4
−1
1 , 2̄8; , 11,W1,;

, . . . , 1̄=−1,W=−1,;
)

by Claim 4.16. Using (8), we conclude that

|= ¬k=−1 (38; ,W1,; ,...,W=−1,;
, 2̄8; , 11,W1,;

, . . . , 1̄=−1,W=−1,;
)

→ |= ¬k= (4
−1
1 3, 2̄8; , 11,W1,;

, . . . , 1̄=−1,W=−1,;
)

→ |= ¬k=+1 (3, 2̄8; , 11,W1,;
, . . . , 1̄=−1,W=−1,;

).

The claim follows by compactness. �claim

Finally, Claim 4.17 contradicts =-dependence of k=+1, which finishes the proof. �

5. 2-dependence for compositions of dependent relations and binary functions

The aim of this section is prove the following Composition Lemma (Theorem 5.12 below): a composition
of a relation (of any arity) definable in a model of a dependent theory with arbitrary binary functions is
2-dependent. This result is crucial in our proof of 2-dependence of non-degenerate bilinear forms over
dependent fields in Section 6. Toward this purpose, we first develop a general type-counting criterion
for 2-dependent theories in Section 5.1 and then apply it along with the set-theoretic absoluteness to
deduce the Composition Lemma in Section 5.2.

5.1. Characterization of 2-dependence by a type-counting criterion

We first recall a type-counting criterion characterizing dependent theories. For the following two facts;
see for example [16] or [13, Section 6] and references there. We recall that for an infinite ^, ded ^ is the
supremum of the number of Dedekind cuts among all linear orders of cardinality ^.

Fact 5.1 (Shelah). Let ) be a theory in a countable language, and for an infinite cardinal ^, let

5) (^) := sup{|(1 (") | : |" | = ^, " |= )}.

1. If ) is dependent, then 5) (^) ≤ (ded ^)ℵ0 for all infinite cardinals ^.

2. If ) is not dependent, then 5) (^) = 2^ for all infinite cardinals ^.
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In a model of ZFC satisfying the Generalized Continuum Hypothesis, ded ^ = 2^ for all infinite
cardinals ^. However, there are models of ZFC in which these two functions are different:

Fact 5.2 (Mitchell [35]). For every cardinal ^ of uncountable cofinality, there exists a cardinal pre-

serving Cohen extension such that (ded ^)ℵ0 < 2^ .

The combination of Facts 5.1 and 5.2 tells us that it is possible to detect whether a theory is dependent
by counting types using that dependence of a formula is a set-theoretically absolute property.

We want to provide a formula-free characterization of =-dependence of a theory that does not include
any assumption of indiscernibility of the witnessing sequence over the additional parameters (unlike
the characterization in Proposition 2.9, where additional indiscernibility over the parameter needs to be
assumed). We achieve it here for 2-dependence by providing an analog of Fact 5.1 in this case (which
characterizes 2-dependence of a theory when working in a model of ZFC with ded(^) < 2^ for some
cardinal ^ ≥ |) |).

Given a set - and a family F of subsets of - and . ⊆ - , one says that . is shattered by F if for
every / ⊆ . , there exists some ( ∈ F such that / = . ∩ (. In what follows, ) is a complete theory in a
language L, and we work in a monster modelM |= ) .

Lemma 5.3. Let i (G; H1, H2) ∈ L be 2-dependent. Then there is some = ∈ N such that for any 2 ∈ MG ,

any � ⊆ MH1
, � ⊆ MH2

endless mutually indiscernible sequences, and any � ⊆ � of size > =, there is

some 1� ∈ � such that � cannot be shattered by the family {i (2, H1, 1) : 1 ∈ �, 1 > 1�}.

Proof. Assume that �, � are endless mutually indiscernible sequences and 2 is such that the conclusion
is not satisfied for any = ∈ l. Let � ⊆ � × � be any finite set. Let 01 < . . . < 0= and 11 < . . . < 1< list
the projections of � on � and �, respectively. By assumption, there is some � ⊆ � of size = such that for
any 1′ ∈ �, � is shattered by the family {i (2, H1, 1) : 1 ∈ �, 1 > 1′}. List � as 0′

1
< . . . < 0′=. Then we

can choose some 1′
1
< . . . < 1′< ∈ � such that |= i

(
2, 0′8 , 1

′
9

)
⇐⇒

(
08 , 1 9

)
∈ �. As �, � are mutually

indiscernible, taking an automorphism ofM sending 0′8 to 08 and 1′9 to 1 9 , for all 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <,

2 is sent to some 2� such that |= i
(
2� , 08 , 1 9

)
⇐⇒

(
08 , 1 9

)
∈ �. This implies that i (G; H1, H2) is

not 2-dependent, a contradiction. Hence the conclusion holds for 2, �, � for some =.
By compactness, we conclude that = can be chosen depending only on i (and not on �, �, 2). �

We will need the following fact (originally due to Shelah, with simplifications by Adler and Casanovas;
see e.g. [10, Lemma 2.7.1]).

Fact 5.4. If ^ is an infinite cardinal, F ⊆ 2^ and |F | > ded ^, then for each = ∈ l, there is some ( ⊆ ^

such that |( | = = and F ↾ ( = 2( .

Definition 5.5. Given sets � ⊆ MG , � ⊆ MH and a formula i (G, H) ∈ L, we denote by (i,� (�) the set
of all i-types over � realized in �, where by a i-type over �, we mean a maximal consistent collection
of formulas of the form i(G, 0),¬i(G, 0) with 0 ∈ �. And (� (�) denotes the set of all complete types
over � realized in �.

Proposition 5.6. Let ) be 2-dependent, let ^ ≥ |) | be an infinite cardinal, and let _ > ^ be a regular

cardinal. Then for any mutually indiscernible sequences � = (08 : 8 ∈ ^) , � =
(
1 9 : 9 ∈ _

)
of finite

tuples and a finite tuple 2, there is some V ∈ _ such that

��(�>V
(� × {2})

�� ≤ (ded ^) |) | .

Proof. Let �, � and 2 be given. We will show that for each i (G; H1, H2) ∈ L, there is some Vi ∈ _ such

that
���(i,�>Vi

(� × {2})

��� ≤ ded ^. This is enough, as then we can take any V ∈ _ with V > Vi for all

i ∈ L (possible as _ = cof (_) > |) |), and
��(�>V

(� × {2})
�� ≤ ���∏i∈L (i,�>Vi

(� × {2})

��� ≤ (ded ^) |) | .
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So let i(G; H1, H2) ∈ L be fixed, and assume that for any V ∈ _,��(i,�>V
(� × {2})

�� > ded ^.

Then by Fact 5.4, considering F =
{
5? : ? ∈ (i,�>V

(� × {2})
}

(where 5? ∈ 2^ is given by 5? (U) =

1 ⇐⇒ i (G; 0U, 2) ∈ ?, for all U ∈ ^), for any = ∈ l, there is some ( ⊆ �, |( | = = such that ( is
shattered by the family

{
i

(
1 9 ; H1, 2

)
: 9 ∈ _, 9 > V

}
. Using regularity of _, by transfinite induction we

can choose a strictly increasing sequence (VU : U ∈ _) with VU ∈ _ such that for each U ∈ _, there is
some (U ⊆ �, |(U | = = shattered by the family

{
i

(
1 9 ; H1, 2

)
: 9 ∈ _, VU < 9 < VU+1

}
. As _ > ^ = ^=

is regular, passing to a subsequence, we may assume that there is some ( ⊆ �, |( | = = such that (U = (

for all U ∈ _ — that is, this set ( can be shattered arbitrarily far into the sequence. Now, by Lemma 5.3,
this contradicts 2-dependence of i if we take = large enough. �

Lemma 5.7. For any cardinal ^ and any regular cardinal _ ≥ 2^ , there is a bipartite graph G^,_ =

(^, _, �) (where its parts are identified with the cardinals ^ and _, and � ⊆ ^ × _ is the edge relation)

satisfying the following: for any sets �, �′ ⊆ ^ with � ∩ �′ = ∅ and any 1 ∈ _, there is some 1∗ ∈ _,

1∗ > 1 satisfying
∧
0∈� � (0, 1

∗) ∧
∧
0′∈�′ � (0

′, 1∗).

Proof. Let _ ≥ 2^ be any regular cardinal. Let

� := {(�, �′, 1) : �, �′ ⊆ ^, � ∩ �′ = ∅, 1 ∈ _} .

Then |� | ≤ _ by assumption; we enumerate it as
( (
�U, �

′
U, 1U

)
: U < _

)
. We define �U ⊆ ^ × _ by

transfinite induction on U < _. On step U, we choose some 2U ∈ _ such that 2U >
{
1V , 2V : V < U

}
—

possible by regularity of _ — and we take �U := {(0, 2U) : 0 ∈ �U}. Let � :=
⊔
U<_ �U — it satisfies

the requirement by construction. �

Proposition 5.8. Assume that i(G, H, I) is not 2-dependent. Then for every regular _ > 2^ , there exist

mutually indiscernible sequences � = (08 : 8 < ^) inMH , (1 9 : 9 < _) inMG and 2 ∈ MI such that for

every V < _, we have |(i,�>V
(� × {2}) | = 2^ .

Proof. By assumption, for any ^, _, we can find some mutually indiscernible sequences �, � such that the
family {i (G, H, 2) : 2 ∈ MI} shatters �× �. In particular, we can find 2 such thatM |= i

(
1 9 , 08 , 2

)
⇐⇒

G^,_ |= �
(
08 , 1 9

)
, and we can conclude by Lemma 5.7. �

Propositions 5.6 and 5.8 together provide an analog of Fact 5.1 for 2-dependent theories that will be
used in the proof of the Composition Lemma in Section 5.1. We conclude this subsection with a brief
discussion of some questions arising in connection to this criterion (and not used in the rest of the paper).

Definition 5.9. We say that a theory ) is globally 2-dependent if there are a cardinal ^ and a regular
cardinal _ ≥ 2^ such that for 2 and G^,_ given by Lemma 5.7, the following holds: for any mutually
indiscernible sequences � = (08 : 8 ∈ ^) , � =

(
1 9 : 9 ∈ _

)
of finite tuples there are 8 ∈ ^ and 9 , 9 ′ ∈ _

such that 2081 9 ≡ 2081 9′ but � (8, 9) ∧ ¬� (8, 9 ′).

So the idea is that ) is globally 2-dependent if on mutually indiscernible sequences we cannot
distinguish the edges from the non-edges of a random graph by a complete type (as opposed to
witnessing the edges with realizations of a single formula). We have the following connection between
2-dependence and global 2-dependence.

Proposition 5.10.

1. If ) is globally 2-dependent, then it is 2-dependent.

2. Let ) be a countable 2-dependent theory, and assume that there exists a cardinal ^ such that

(ded ^)ℵ0 < 2^ . Then ) is globally 2-dependent.
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Proof.

(1) If i (G, H1, H2) is a formula witnessing failure of 2-dependence, then the proof of Proposition 5.8
shows that ) is not globally 2-dependent.

(2) Fix ^, and let _ be any regular cardinal ≥ 2^ . Let G^,_ be as given by Lemma 5.7. Moreover, let �, �
and 2 be as in Definition 5.9. By Proposition 5.6, there is some V ∈ _ such that

��(�>V
(�)

�� ≤ (ded ^)ℵ0 . On

the other hand, by definition of G^,_, we still have
��(�, {U∈_:U>V } (^)

�� = 2^ > (ded ^)ℵ0 by assumption.
Then we can find some 9 , 9 ′ ∈ _ such that tp� ( 9/^) ≠ tp� ( 9

′/^) but tp
(
1 9/�2

)
= tp

(
1 9′/�2

)
. In other

words, there is some 8 ∈ ^ such that � (8, 9) ↔ ¬� (8, 9 ′) and still 1 9082 ≡ 1 9′082, as wanted. �

Problem 5.11. Is there an analogous type-counting criterion for =-dependence, = ≥ 3? Is it true that

=-dependence implies global =-dependence (defined analogously), in ZFC, or at least consistently for

= > 2?

Concerning this problem, we remark that at least =-dependence implies global =-dependence when
) is ℵ0-categorical (since every type in finitely many variables is equivalent to a formula).

5.2. The Composition Lemma

All of the variables below are allowed to be tuples of arbitrary finite length.

Theorem 5.12 (Composition Lemma). Let M0 be a dependent structure in a language L0, and let M

be an arbitrary expansion of M in some language L ⊇ L0. Let i(G1, . . . , G3) be an L0-formula. For

each 8 ∈ {1, . . . , 3}, fix some B8 < C8 ∈ {1, 2, 3} and let 58 : "HB8
× "HC8

→ "G8 be an L-definable

binary function. Then the L-formula

k(H1; H2, H3) := i
(
51(HB1 , HC1 ), . . . , 53 (HB3 , HC3 )

)
is 2-dependent (with respect to ThL (M)).

Proof. We work in a monster model M of ) := ThL (M). Note that then the L0-reduct M0 of M is a
monster model of )0 := ThL0

(M0), and )0 is dependent. Assume that the formula k(H1; H2, H3) as in
the statement of the theorem is not 2-dependent. Let � = (0U : U < ^) with 0U ∈ "H2

, � = (1V : V < _)

with 1V ∈ "H1
and 2 ∈ "H3

be as given by Proposition 5.8 with _ > 2^ > |) |: that is, for every W < _,
we have |(k,�>W

(� × {2}) | = 2^ .
Let +1,2 := {8 ≤ 3 : (C8 , B8) = (1, 2)}, +1,3 := {8 ≤ 3 : (C8 , B8) = (1, 3)} and +2,3 := {8 ≤ 3 : (C8 , B8) =

(2, 3)}; then +1,2, +1,3, +2,3 is a partition of {1, . . . , 3}. Let 5 (1V , 0U) := ( 58 (1V , 0U) : 8 ∈ +1,2),

5 (1V , 2) = ( 58 (2, 1V) : 8 ∈ +1,3) and 5 (0U, 2) := ( 58 (0U, 1V) : 8 ∈ +2,3). Then we have

|= k(1V; 0U, 2) ⇐⇒ |= i
′( 5 (1V , 0U), 5 (1V , 2), 5 (0U, 2)),

where i′ ∈ L0 is obtained from i by regrouping the variables accordingly.
Let � := { 5 (0U, 2) : U < ^}. Consider the rectangular array ( 5 (1V , 0U) : U < ^, V < _). It is an

indiscernible array by mutual indiscernibility of the sequences (0U) and (1V). In particular, the sequence
of rows (( 5 (1V , 0U) : U < ^) : V < _) is ∅-indiscernible. As )0 is dependent, |�| ≤ ^ and _ > (|) | + ^)
is regular, there is some W < _ such that the sequence of columns (( 5 (1V , 0U) : U < ^) : W < V < _) is
L0-indiscernible over �.

Fix W < V < _. For any tuple 4 ∈ "(G8 :8∈+1,3) , let

(
V
4 := {U < ^ :|= i′( 5 (1V , 0U), 4, 5 (0U, 2))} ⊆ ^,

and let FV := {(
V
4 : 4 ∈ "(G8 :8∈+1,3) } be the collection of all such subsets of ^ that can be realized by

some tuple.
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We then have that FV = FV′ for any W < V, V′ < _. Indeed, by the L0-indiscernibility observed
above, there is some f ∈ Aut(M0/�) sending ( 5 (1V , 0U) : U < ^) to ( 5 (1′

V
, 0U) : U < ^). But then for

any 4, we have that (V4 = (
V′

f (4)
(recalling that 5 (0U, 2) ∈ � for all U < ^); hence FV ⊆ FV′ , and vice

versa, exchanging the roles of V and V′. So let F := FV for some (equivalently, any) V > W. Note that (V4
is determined by the L0-type tpi′ (4/( 5 (1V , 0U) : U < ^)�). As | 5 (1V , 0U) : U < ^)�| ≤ ^ and i′ is
dependent, we get that |F | ≤ ded(^) by Fact 5.1.

Now we estimate |(k,�>W
(�×{2}) | (see Definition 5.5). Given W < V < _, we have that tpk (1V/�×{2})

is determined by the set

(
V

5 (1V ,2)
= {U < ^ :|= i′( 5 (1V , 0U), 5 (1V , 2), 5 (0U, 2))} ∈ F.

But as |F | ≤ ded(^), there are only ded(^) choices for this set; hence |(k,�>W
(� × {2}) | ≤ ded(^).

This would imply a contradiction in a model of ZFC with ded(^) < 2^ (which exists by Fact 5.2).
But the property of a given formula k being 2-dependent is arithmetic; hence set-theoretically absolute,
so we obtain the result in ZFC. �

Example 5.13. Let 5 : C2 → C be an arbitrary function, and let ?(G, H, I) be a polynomial over C.
Consider the relation � ⊆ C3 given by

� (G, H, I) ⇐⇒ ?( 5 (G, H), 5 (G, I), 5 (H, I)) = 0.

Then there is some finite 3-partite 3-hypergraph � such that � does not contain it as an induced tripartite
hypergraph.

Remark 5.14. We will see in the proof of Theorem 6.3(3) that we cannot relax the assumption M0

is dependent to just 2-dependent. Generalizations of Theorem 5.12 for =-dependence and functions of
arbitrary arity will be investigated in [12].

6. 2-dependence of bilinear forms over dependent fields

In this section, we consider certain theories of bilinear forms on vector spaces, in a language with a
separate sort for the field. Their basic model theory was studied by Granger in [21] and, more recently, in
[15, 18] from the point of view of generalized stability theory. Here we investigate =-dependence in these
structures. As it was already mentioned in the introduction, all currently known algebraic examples of
strictly =-dependent theories for = ≥ 2 are closely related to bilinear forms over finite fields. For example,
smoothly approximable structures studied in [8] are 2-dependent and coordinatizable via bilinear forms
over finite fields (see [14, Example 2.2(4)] for a discussion of their 2-dependence); and the strictly =-
dependent pure groups constructed in [11] using Mekler’s construction can be interpreted in alternating
bilinear maps over finite fields as demonstrated in [3]. Here we show that a more general situation
is possible: every non-degenerate (symmetric or alternating) bilinear form on an infinite dimensional
vector space over an arbitrary dependent field is strictly 2-dependent (and the assumption that the
field is dependent is necessary; see Theorem 6.3). Our proof of 2-dependence relies crucially on the
Composition Lemma (Theorem 5.12) from the previous section. We view these examples as clarifying
the scope of Conjecture 1.1 (namely, how much algebraic structure is required for the collapse of the
=-dependence hierarchy) and guiding toward a correct formulation of its abstract counterpart (‘every
=-dependent theory is linear over its 1-dependent part’).

We begin by recalling some definitions and results from [21]. In this section, we consider structures
in the language L consisting of two sorts + and  , the field language on  , the vector space language
on+ , scalar multiplication function  ×+ → + and the bilinear form function [G, H] : + ×+ →  . The
language L\ is obtained from L by adding for each = ∈ l a (definable) =-ary predicate \= (G1, . . . , G=),
which holds if and only if G1, . . . , G= ∈ + are linearly independent over  . Let L 

\
be a language
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expanding L\ by relations on  =, = ∈ l definable in the language of rings such that  eliminates
quantifiers in L 

\
(e.g. we can always take Morleyzation of  ).

Definition 6.1. For  a field, � ∈ {�, (} and an arbitrary < ∈ N∪ {∞}, let
�
) < denote the L 

\
-theory

expressing that the sort corresponding to  is a field that is moreover a model of Th( ); + a  -vector
space of dimension <; [G, H] : + × + →  is a non-degenerate bilinear form of type �, where a form
of type ( is a symmetric form, and a form of type � is an alternating form; and the predicates \= define
linear independent tuples of length = over  .

Fact 6.2 [21, Theorem 9.2.3]. Let � ∈ {�, (}, and let  be an arbitrary field if � = �, or a field closed

under square roots if � = (. Let < ∈ N∪ {∞} be arbitrary if � = �, or even if < ∈ N and � = (. Then

the theory
�
) < is consistent, complete and has elimination of quantifiers in the language L 

\
.

We are ready to state the main result of this section.

Theorem 6.3. Let ) :=
�
) < be as in Fact 6.2.

1. If < < ∞, then Th( ) is =-dependent if and only if ) is =-dependent, for any = ∈ N≥1.

2. If < = ∞ and Th( ) is dependent, then ) is strictly 2-dependent.

3. If = ∈ N≥1, Th( ) is not =-dependent and < = ∞, then ) is not 2=-dependent.

Corollary 6.4.

1. The case of a finite field  corresponding to extra-special ?-groups was treated in [22, Section 3].

2. In [4], for each = ∈ N and ?, Baudisch constructs a structure � (=) in the language of groups

with = additional constant symbols, with � (1) corresponding to extra-special ?-groups. Since all

these examples are interpretable in the bilinear form with additional constant symbols, they are all

2-dependent.

The rest of the section constitutes a proof of this theorem.

6.1. Proof of Theorem 6.3(1)

If < < ∞, then  is =-dependent if and only if ) is =-dependent, for any = ≥ 1. This follows from
the fact that any model of

�
) < can be interpreted in  using the isomorphism  < � + for some

< ∈ N as follows. Interpreting the vector space structure is obvious. Now, let B = (41, . . . , 4<) be the
standard basis of  <. Then the bilinear form is completely determined by fixing :8, 9 = [48 , 4 9 ] for all
1 ≤ 8, 9 ≤ <. Let c8 :  < →  be the projection map onto the 8-th coordinate. Then for E, F ∈  <, we
have that [E, F] =

∑<
8, 9=1 c8 (E)c 9 (F):8, 9 , which is definable over {:8, 9 : 1 ≤ 8, 9 ≤ <}.

6.2. Proof of Theorem 6.3(3)

Assume that  is not =-dependent; then by Theorem 2.12, it must be witnessed by some L -formula
i(Ḡ; H1, . . . , H=) with each H8 a single variable. Then by compactness for 1 ≤ : ≤ =, we can find
sequences (2:

(8: , 9: )
: (8: , 9: ) ∈ l × l) with l × l ordered lexicographically and all 2:

8: , 9:
pairwise

distinct elements in  , such that for every � ⊆ (l × l)=, there is some 4̄� satisfying

|= i(4̄�; 21
(81 , 91)

, . . . , 2=(8= , 9=) ) ⇐⇒ ((81, 91), . . . , (8=, 9=)) ∈ �.

As< = ∞, we can choose (0:
8

: 1 ≤ : ≤ =, 8 ∈ l) a tuple consisting of linearly independent elements
in + . For each 1 ≤ : ≤ = and 9 ∈ l, let 5 :

9
: + →  be a linear function satisfying 5 :

9
(0:
8
) = 2:

(8, 9)
for

all 8 ∈ l. Since the bilinear form is non-degenerate, there exist some 1:
9
∈ + such that 5 :

9
(G) = [G, 1:

9
]

for all G ∈ + . But then, identifying (l × l)= with l2=, for any set � ⊆ l2=, we have

|= i(4̄�, [0
1
81
, 11

91
], . . . , [0=8= , 1

=
9=
]) ⇐⇒ (81, 91, . . . , 8=, 9=) ∈ �,
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hence the formula k(Ḡ; H1, H2, . . . , H2=−1, H2=) = i(Ḡ, [H1, H2], . . . , [H2=−1, H2=]) is not 2=-dependent,
witnessed by the sequences

(01
81
, 11

91
, . . . , 0=8= , 1

=
9=

: 81, 91, . . . , 8=, 9= ∈ l).

6.3. Proof of Theorem 6.3(2)

Let M |= ) be a monster model. If ) is not 2-dependent, by Proposition 2.8 there exists tuples 0̄U, 1̄V
and an L 

\
-formula i(Ḡ; H̄, Ī) without parameters such that (0̄U, 1̄V : U, V ∈ Q) is $2, ?-indiscernible

over ∅ and it is shattered by i. More precisely, for every � ⊆ Q × Q, there is some 2̄� such that

|= i(2̄�; 0̄U, 1̄V) ⇐⇒ (U, V) ∈ �.

We write Ḡ = Ḡ ⌢Ḡ+ , H̄ = H̄ ⌢ H̄+ , Ī = Ī ⌢ Ī+ for the subtuples of the variables of the correspond-
ing sorts, where Ḡ = (G 8 : 8 ∈ - ) and Ḡ+ = (G+

8
: 8 ∈ -+ ) and - ⊔-+ is a partition of {1, . . . , |Ḡ |}.

We proceed similarly for H̄ and Ī. Let 0U = 0̄ ⌢U 0̄+U , 1̄V = 1̄ ⌢
V

1̄+
V

for the corresponding subtuples in

the  -sort and the +-sort, respectively. Let 0̄+U = (0+
U,8

: 8 ∈ .+ ), 1̄+
V
= (1+

V,8
: 8 ∈ /+ ), etc.

As a first step toward obtaining a contradiction, we will show that all of the elements of the sort+ in the
configuration witnessing the failure of 2-dependence chosen above may be assumed linearly independent
over  . This is achieved by modifying the initial configuration and the formula as demonstrated in the
following four claims.

Claim 6.5. There exist a finite tuple 4̄ in + , a formula i(Ḡ, F̄, H̄, Ī) ∈ L 
\

and sequences of tuples

(0̄U, 1̄V : U, V ∈ Q) such that:

1. (0̄U, 1̄V : U, V ∈ Q) is $2, ?-indiscernible over 4̄;

2. For any U∗ ∈ Q and 8∗ ∈ .+ , we have that

0+U∗ ,8∗ ∉ Span
(
(0+U∗ ,8 : 8 ∈ .+ \ {8∗}), (0̄+U : U ∈ Q \ {U∗}), (1̄+V : V ∈ Q), 4̄

)
;

3. For any V∗ ∈ Q and 9∗ ∈ /+ , we have that

1+V∗ , 9∗ ∉ Span
(
(1+V∗ , 9 : 9 ∈ /+ \ { 9∗}), (1̄+V : V ∈ Q \ {V∗}), (0̄+U : U ∈ Q), 4̄

)
;

4. i(Ḡ, 4̄; H̄, Ī) shatters (0̄U, 1̄V : U, V ∈ Q) — that is, for every � ⊆ Q2, there is some 2̄� such that

|= i(2�, 4̄, 0̄U, 1̄V) ⇐⇒ (U, V) ∈ �.

Proof. Assume that (0̄U, 1̄V) chosen in the beginning of the proof do not satisfy (2) with 4̄ = ∅. Then
there are some U∗ ∈ Q, 8∗ ∈ .+ and finite sets �, � ⊆ Q, U∗ ∉ � such that

0+U∗ ,8∗ ∈ Span
(
(0+U∗ ,8 : 8 ∈ .+ \ {8∗}), (0̄+U )U∈� , (1̄

+
V )V∈� , 4̄

)
.

Then there is an ∅-definable function 5 and some finite tuple :̄ in  such that

0+U∗ ,8∗ = 5
(
:̄ , (0+U∗ ,8 : 8 ∈ .+ \ {8∗}), (0̄+U )U∈� , (1̄

+
V )V∈� , 4̄

)
.

We let

W+ := min{U ∈ � : U > U∗}, W− := max{U ∈ � : U < U∗}, X := max(�),

4̄′ :=
(
0̄+U

)
U∈�

⌢
(
1̄+V

)
V∈�

⌢4̄,

(0̄′)
+
U :=

(
0+U∗ ,8 : 8 ∈ .+ \ {8∗}

)
.
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Then (
0̄ ⌢U (0̄′)

+
U , 1̄V : U ∈

(
W−, W+

)
, V ∈ (X, +∞)

)
is $2, ?-indiscernible over 4̄′. As U∗ ∈ (W−, W+), it follows that for every U ∈ (W−, W+), there is some
tuple :̄U in  such that 0+

U,8∗
= 5

(
:̄U, (0̄

′)+U , 4̄
′
)
. Let

i′(Ḡ, F̄, H̄′, Ī) := i
(
Ḡ; H̄ , (H+8 )8∈.+ ,8<8∗ , 5

(
H̄ 1 , (H

+
8 )8∈.+ \{8∗ }, F̄

)
, (H+8 )8∈.+ ,8>8∗ , Ī

)
,

where H̄′ = ( H̄′) ⌢( H̄′)+ , ( H̄′) = H̄ ⌢
1

H̄ and ( H̄′)+ = (H+
8

: 8 ∈ .+ \ {8∗}). Let 0̄′U := 0̄ ⌢U (0̄′)+U
(so the tuple :⌢U 0̄

′
U corresponds to the variables H̄′).

Restricting to the set (W−, W+) × (X,∞), we may thus assume:

(a) (0̄′U, 1̄V : U, V ∈ Q) is $2, ?-indiscernible over 4̄′ (follows by the choice of W−, W+, X, definition of
0̄′U and $2, ?-indiscernibility of (0̄U, 1̄V : U, V ∈ Q)),

(b) i′(Ḡ, 4̄′; H̄′, Ī) shatters ( :̄⌢U 0̄
′
U, 1̄V : U, V ∈ Q) (as for any 2̄ and U, V ∈ Q, by the above we have

|= i(2̄, 0̄U, 1̄V) ⇐⇒ |= i
′(2̄, 4̄′, :̄⌢U 0̄

′
U, 1̄V)).

By Fact 2.7, let ( ℎ̄⌢U 0̄
′′
U, 1̄

′
V

: U, V ∈ Q) be an $2, ?-indiscernible over 4̄′, based on ( :̄⌢U 0̄
′
U, 1̄V :

U, V ∈ Q) over 4̄′. We still have that i′(Ḡ, 4̄′, H̄′, Ī) shatters ( ℎ̄⌢U 0̄
′′
U, 1̄

′
V

: U, V ∈ Q). Replacing i by i′,

4̄ by 4̄′ and the sequences (0̄U, 1̄V : U, V ∈ Q) by ( ℎ̄⌢U 0̄
′′
U, 1̄

′
V

: U, V ∈ Q), we have thus reduced the

length of the tuples 0̄+U (at the price of increasing the length of 0̄ U ). Repeating this argument for both
0̄U’s and 1̄V’s at most finitely many times (as the variables H̄ and Ī have finite length), we obtain the
conclusion of the claim. �

Claim 6.6. There exist finite tuples 4̄ in + and 2̄, a formula i(Ḡ, F̄, H̄, Ī) ∈ L 
\

and sequences of tuples

(0̄U, 1̄V : U, V ∈ Q) satisfying (1)–(3) and

(4′) |= i(2̄, 4̄, 0̄U, 1̄V) ⇐⇒ �2, ? |= '2 (U, V) for all U, V ∈ Q.

5. 2+
8
∉ Span

(
(2+
9

: 9 ≠ 8),
(
0̄+U

)
U∈Q

,
(
1̄+
V

)
V∈Q

, 4̄

)
for any 8 ∈ -+ .

Proof. We start with 4̄, i and (0̄U, 1̄V)U,V∈Q satisfying (1)–(4) of Claim 6.5. By (4), there exists a tuple
2̄ such that

|= i(2̄, 4̄, 0̄U, 1̄V) ⇐⇒ �2, ? |= '2 (U, V) for all U, V ∈ Q.

We write 2̄ = 2̄ ⌢2̄+ . Assume that there is some 8∗ ∈ -+ such that 2+
8∗

is in the span of the tuple

(2+8 : 8 ∈ -+ \ {8∗})⌢(0̄+U )U∈�
⌢(1̄+V )V∈�

⌢4̄

for some finite sets �, � ⊆ Q. Then

2+8∗ = 5
(
2̄ 1 , (2

+
8 )8∈-+ \{8∗ }, (0̄

+
U )U∈� , (1̄

+
V )V∈� , 4̄

)

for some ∅-definable function 5 and some tuple 2̄ 
1

in . LetU∗ := max(�∪�). We let 2̄′ := (2̄′) ⌢(2̄′)+ ,
where (2̄′) := 2̄ ⌢

1
2̄ and (2̄′)+ := (2+

8
: 8 ∈ -+ \{8∗}). Let 4̄′ := (0̄+U )U∈�

⌢(1̄+
V
)V∈�

⌢4̄. Restricting
to a copy of �2, ? contained in (U∗,∞) × (U∗,∞) (Remark 2.5), we thus have:

�2, ? |= '2(U, V) ⇐⇒ |= i
(
2̄, 4̄, 0̄U, 1̄V

)
⇐⇒

|= i
(
2̄ , (2̄+8 )8<8∗ , 5 (2̄

 
1 , (2̄

′)+ , 4̄′), (2̄+8 )8>8∗ , 4̄, 0̄U, 1̄V

)

⇐⇒ |= i′(2̄′, 4̄′, 0̄U, 1̄V)
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for an appropriate L 
\

-formula i′. Replacing i by i′, 4̄ by 4̄′ and 2̄ by 2̄′, this shows that (4′) is still
satisfied. And (1), (2) and (3) still hold as well (follows as 4̄ satisfies (1), (2), (3) and all the new elements
in 4̄′ are from (0̄′U, 1̄

′
V

: U, V < U∗)). We have thus reduced the length of the tuple 2̄ (at the price of
increasing the length of 4̄). Repeating this argument finitely many times if necessary, we obtain the
claim. �

Claim 6.7. There exist finite tuples 4̄ in + and 2̄, a formula i(Ḡ, F̄, H̄, Ī) ∈ L 
\

and sequences of tuples

(0̄U, 1̄V : U, V ∈ Q) satisfying (1)–(3), (4′), (5) and

6. 48 ∉ Span(4 9 : 9 ≠ 8) for any 8 ∈ |4̄ |.

Proof. Start with 4̄, i and (0̄U, 1̄V)U,V∈Q given by Claim 6.6. As in the previous two claims, if
48∗ ∈ Span(4̄8 : 8 ≠ 8∗), then 48∗ = 5 ( :̄ , (4̄8)8≠8∗) for some ∅-definable function 5 and a tuple :̄ in  .
Replacing 4̄ by (4̄8)8≠8∗ , adding :̄ to 2̄ and modifying the formula accordingly, the condition (4′) is still
satisfied. And (1), (2), (3), (5), (6) still hold as we only pass to a subtuple of 4̄. Repeating this finitely
many times, we obtain the claim. �

Let 4̄, 2̄, i(Ḡ, F̄, H̄, Ī) ∈ L 
\

and (0̄U, 1̄V : U, V ∈ Q) be as given by Claim 6.7. By (2), (3), (5), (6)
and linear algebra we get that all elements in the tuple

2̄+ ⌢
(
0̄+U

)
U∈Q

⌢
(
1̄+V

)
V∈Q

⌢4̄

are linearly independent. Hence adjoining 4̄+ to 2̄+ and regrouping the variables of i accordingly,
we get:

Claim 6.8. There is an L 
\

-formula i(Ḡ, H̄, Ī) and tuples 2̄, 0̄U, 1̄V such that:

1. (0̄U, 1̄V : U, V ∈ Q) is $2, ?-indiscernible;

2. All elements in the tuple 2̄+ ⌢
(
0̄+U

)
U∈Q

⌢
(
1̄+
V

)
V∈Q

are linearly independent;

3. |= i(2̄, 0̄U, 1̄V) ⇐⇒ �2, ? |= '2 (U, V).

By quantifier elimination (Fact 6.2), every L 
\

-formula is equivalent to a Boolean combination of
atomic L 

\
-formulas. Since 2-dependence is preserved under Boolean combinations (Fact 2.2), it is

sufficient to check 2-dependence for atomic L 
\

-formulas, which by the definition of the language L 
\

fall into one of the following three cases.
Case 1. The formula i(Ḡ, H̄, Ī) is of the form k(C1(Ḡ, H̄, Ī), . . . , C3 (Ḡ, H̄, Ī)) for some k ∈ L and some
terms C; (Ḡ, H̄, Ī) taking values in  and 1 ≤ ; ≤ 3.

In this case, for each ;, we have the following possibilities:

◦ The term C; (Ḡ, H̄, Ī) has height 1 — that is, it is one of the variables in Ḡ ⌢ H̄ ⌢ Ī ;
◦ C; (Ḡ, H̄, Ī) = C

1
;
(Ḡ, H̄, Ī) + C

2
;
(G, H̄, Ī) or C; (Ḡ, H̄, Ī) = C1; (Ḡ, H̄, Ī) · C

2
;
(Ḡ, H̄, Ī), for some terms C1

;
, C2
;

of
smaller height taking values in  ;

◦ C; (Ḡ, H̄, Ī) = [C
1
;
(Ḡ, H̄, Ī), C2

;
(Ḡ, H̄, Ī)] for some terms C1

;
, C2
;

of smaller height taking values in+ , but then:
– Either C1

;
is of height 1 — that is, it is one of the variables in Ḡ+⌢ H̄+⌢ Ī+ ;

– Or C1
;
(Ḡ, H̄, Ī) = B1

;
(Ḡ, H̄, Ī) ·+ B

2
;
(Ḡ, H̄, Ī) for some terms B1

;
, B2
;

of smaller height taking values
in  and + , respectively, in which case C; (Ḡ, H̄, Ī) = B1; (Ḡ, H̄, Ī) · [B

2
;
(Ḡ, H̄, Ī), C2

;
(Ḡ, H̄, Ī)];

– Or C1
;
(Ḡ, H̄, Ī) = B1

;
(Ḡ, H̄, Ī) ++ B

2
;
(Ḡ, H̄, Ī) for some terms B1

;
, B2
;

of smaller height taking values
in + , in which case

C; (Ḡ, H̄, Ī) = [B
1
; (Ḡ, H̄, Ī), C

2
; (Ḡ, H̄, Ī)] + [B

2
; (Ḡ, H̄, Ī), C

2
; (Ḡ, H̄, Ī)] .

And similarly for C2
;
.
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Applying this for each ; and iterating by recursion on the height of terms, we thus conclude that the
formula k(C1(Ḡ, H̄, Ī), . . . , C3 (Ḡ, H̄, Ī)) is equivalent to

(∗) k ′
(
([G+8 , H

+
9 ])8∈-+ , 9∈.+ , ([G+8 , I

+
9 ])8∈-+ , 9∈.+ , ([H+8 , I

+
9 ])8∈.+ , 9∈/+ ,

([G+8 , G
+
9 ])8, 9∈-+ , ([H+8 , H

+
9 ])8, 9∈.+ , ([I+8 , I

+
9 ])8, 9∈/+ , Ḡ , H̄ , Ī 

)

for someL -formulak ′. As Th( ) is dependent, Theorem 5.12 implies that this formula is 2-dependent.
This concludes Case 1.
Case 2. The formula i(Ḡ; H̄, Ī) is given by

\3 (C1(Ḡ, H̄, Ī), . . . , C3 (Ḡ, H̄, Ī))

for some 3 ∈ N and terms C; (Ḡ, H̄, Ī) taking values in + .
In this case, by a simple recursion on the height of the terms, we see that for 1 ≤ ; ≤ 3, the term C;

must be of the form ∑
8∈-+

C-;,8 (Ḡ, H̄, Ī)G
+
8 +

∑
9∈.+

C.;, 9 (Ḡ, H̄, Ī)H
+
9 +

∑
:∈/+

C/;,: (Ḡ, H̄, Ī)I
+
:

for some terms C-
;,8
, C.
;, 9
, C/
;,:

taking values in  .

Using linear independence of the set of elements of the tuple 2̄+⌢0̄+⌢U 1̄+
V

for anyU, V ∈ Q established
in Claim 6.8, for any U, V ∈ Q, we have

�2, ? |= '2(U, V) ⇐⇒ |= ¬\3 (C1(2̄, 0̄U, 1̄V), . . . , C3 (2̄, 0̄U, 1̄V)) ⇐⇒

|= (∃41, . . . , 43 ∈  ) (41, . . . , 43) ≠ (0, . . . , 0) ∧
∧
8∈-+

(
3∑
;=1

4; · C
-
;,8 (2̄, 0̄U, 1̄V) = 0

)
∧

∧
9∈.+

(
3∑
;=1

4; · C
.
;, 9 (2̄, 0̄U, 1̄V) = 0

)
∧

∧
:∈/+

(
3∑
;=1

4; · C
/
;,: (2̄, 0̄U, 1̄V) = 0

)
⇐⇒

|= k

((
C-;,8 (2̄, 0̄U, 1̄V)

)
1≤;≤3,8∈-+

,
(
C.;, 9 (2̄, 0̄U, 1̄V)

)
1≤;≤3, 9∈.+

,
(
C/;,: (2̄, 0̄U, 1̄V)

)
1≤;≤3,:∈/+

)

for an appropriate formula k ∈ L . But this is impossible by Case 1.
Case 3. The formula is of the form C (Ḡ, H̄, Ī) = 0 for some term.

As in the previous case, then C must be of the form∑
8∈-+

C-8 (Ḡ, H̄, Ī)G
+
8 +

∑
9∈.+

C.9 (Ḡ, H̄, Ī)H
+
9 +

∑
:∈/+

C/: (Ḡ, H̄, Ī)I
+
:

for some terms C-8 , C
.
9 , C

/
:

taking values in  . Using again linear independence of 2̄+⌢0̄+⌢U 1̄+
V

for any
U, V ∈ Q established in Claim 6.8, we have that

�2, ? |= '2 (U, V) ⇐⇒ C (2̄, 0̄U, 1̄V) = 0 ⇐⇒

∧
8∈-+

C-8 (2̄, 0̄U, 1̄V) = 0 ∧
∧
9∈.+

C.9 (2̄, 0̄U, 1̄V) = 0 ∧
∧
:∈/+

C/: (2̄, 0̄U, 1̄V) = 0

⇐⇒ k
(
(C-8 (2̄, 0̄U, 1̄V))8∈-+ , (C.9 (2̄, 0̄U, 1̄V)) 9∈.+ , (C/: (2̄, 0̄U, 1̄V)):∈/+

)
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for an appropriate L -formula k and any U, V ∈ Q— which is impossible by Case 1.
This finishes the proof of Theorem 6.3(2). �

7. Expansions by generic predicates and =-dependence

In this section, we will show that an expansion of a geometric theory) by a generic predicate, in the sense
of [6], is dependent if and only if it is =-dependent for some =, if and only if the algebraic closure in ) is
disintegrated (Corollary 7.13). In fact, we prove that any expansion of an =-dependent geometric theory
with disintegrated algebraic closure by generic relations of arity at most = is =-dependent (Proposition
7.12). While these results have no direct implication for Conjecture 1.1, the authors view it as providing
some further evidence toward it. Namely, we view it as a ‘toy example’ of a situation in which failure
of 1-dependence implies failure of =-dependence for all =, utilizing the geometric complexity (non-
disintegration) of the algebraic closure, similar to the behavior expected in fields.

We begin by recalling some basics of geometric theories and expansions by generic predicates from
[6]. A theory ) is geometric if it eliminates the ∃∞-quantifier and the algebraic closure operator acl

satisfies exchange in every model of) . In this section, we denote by dim the acl-dimension in a geometric
theory, and by |⌣ the corresponding algebraic independence relation (see e.g. [6, Section 2] for details).

Definition 7.1. Let ) be an arbitrary theory.

1. An element 0 ∈ M is non-trivial if there exist elements 1, 2 ∈ M and a small set � ⊆ M such that
0 ∈ acl(12�) \ (acl(1�) ∪ acl(2�)).

2. A theory ) is non-trivial if there exists a non-trivial element inM; otherwise we call ) trivial.

Remark 7.2. It is immediate from the definitions that a geometric theory ) is trivial if and only if it
has disintegrated algebraic closure — that is, if acl(�) =

⋃
0∈� acl(0) for any set � ⊆ M.

Let now) be an arbitraryL-theory with quantifiers elimination (for the questions considered here, we
may always assume it replacing ) by its Morleyzation) and also eliminating ∃∞. Let ( be a distinguished
L(∅)-definable set in ) . We denote by )0,( the theory in a language L% := L ∪ {%(G)} given by
) ∪ {%(G) → ((G)}. When working in an L%-structure, we will write tpL and aclL to denote the type
and the algebraic closure of a tuple in the L-reduct (as opposed to its L%-type tpL%

and its algebraic
closure aclL%

obtained using all L%-formulas).

Fact 7.3.

1. [6, Theorem 2.4] The theory )0,( has a model companion )%,( with the following axiomatization:

M |= )%,( if and only if

(a) M |= );

(b) For every L-formula \ (Ḡ, Ī) with Ḡ = (G1, . . . , G=) and every � ⊆ {1, . . . , =}, M satisfies

∀Ī

(((
∃Ḡ\ (Ḡ, Ī) ∧ (Ḡ ∩ aclL ( Ī) = ∅)

)
∧

=∧
8=1

((G8) ∧
∧

1≤8< 9≤=

G8 ≠ G 9

)

→ ∃Ḡ

(
\ (Ḡ, Ī) ∧

∧
8∈�

(G8 ∈ %) ∧
∧
8∉�

(G8 ∈ ( \ %)

))
.

2. Let M |= )%,( . Assume that 0̄, 1̄ are tuples from " and � ⊆ " is a set of parameters. Then the

following are equivalent:

(a) tpL%
(0̄/�) = tpL%

(1̄/�);

(b) There exists an �-isomorphism ofL%-structures from aclL (�, 0̄) to aclL (�, 1̄) which carries

0̄ to 1̄.

3. If M |= )%,( , 0 ∈ " and � ⊆ " , then 0 ∈ aclL (�) ⇐⇒ 0 ∈ aclL%
(�).
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One typically refers to )%,( as an expansion of ) by a generic predicate on (. If the predicate ( is
equivalent to G = G in ) , we simply write )% instead of )%,( .

Our first aim is to show that if ) is a non-trivial geometric theory, then its expansion by a generic
predicate is not =-dependent for any =. In order to produce a definable relation witnessing failure of
=-dependence for an arbitrary =, we consider certain algebraic configurations of ‘higher arity’.

Definition 7.4. [5, Definition 2.6] Let ) be a geometric theory and � ⊆ M. We say that a tuple
0̄ = (01, . . . , 0=) ∈ M

= is an algebraic =-gon over � if dim(0̄/�) = =−1, but any subset of {01, . . . , 0=}

of size = − 1 is independent over �.

Note that any tuple obtained by permuting the elements of an algebraic =-gon over � is still an
algebraic =-gon over � (by exchange of acl). Due to the following fact, starting with a non-trivial
element, we can find an algebraic =-gon for any =.

Fact 7.5 [5, Lemma 2.7]. Suppose that ) is a geometric theory and 0 ∈ M is non-trivial. Then for every

= ≥ 3, there exist some finite set � ⊆ M and an algebraic =-gon (01, . . . , 0=) over � such that 0= = 0.

Proposition 7.6. Assume that ) is a geometric theory and there exists a non-trivial element in (. Then

)%,( is not =-dependent for any = ≥ 1.

In particular, if the algebraic closure in ) is not disintegrated, then )% is not =-dependent for any

= ≥ 1.

Proof. Fix = ≥ 1, and let M be a monster model of )%,( . Note that the L-reduct of M is a monster
model of ) . By Fact 7.3(3), we have aclL%

= aclL inM, so we will just write acl in the rest of the proof.
By assumption, there exists a non-trivial 0 |= ((G) inM.

By Fact 7.5, let 01, . . . , 0=+1, 0=+2 and a finite set � be such that 0=+2 = 0 and (01, . . . , 0=+2) is an
algebraic (= + 2)-gon over �. So in particular, 0=+2 |= ((G). Naming � by constants, without loss of
generality, we may assume that � = ∅. Then {01, . . . , 0=+1} is an |⌣-independent set. Using extension,

symmetry and transitivity, we can choose inductively sequences 0̄8 = (0
9

8
: 9 ∈ l) for 1 ≤ 8 ≤ = such

that:

1. 0 9
8
|⌣ 0̄<80

< 9

8
08+1 . . . 0=+1 for all 1 ≤ 8 ≤ = and all 9 ∈ l;

2. 0 9
8
≡0̄1...0̄8−108+1...0=+1 08 for all 1 ≤ 8 ≤ = and all 9 ∈ l.

In particular, by basic properties of |⌣ and exchange, (1) implies that

(3) {0 9
8

: 1 ≤ 8 ≤ =, 9 ∈ l} ∪ {0=+1} is an |⌣-independent set,

and (2) implies that

(4) 0 91
1
. . . 0

9=
= 0=+1 ≡ 01 . . . 0=0=+1 for all 91, . . . , 9= ∈ l.

By assumption, we have 0=+2 ∈ ((M) ∩ acl(01 . . . 0=+1). Then we can choose a formula
i(G1, . . . , G=+2) ∈ L and 1 ≤ : ∈ l such that:

(5) i(0′
1
, . . . , 0′

=+1
, G=+2) → ((G=+2) for any 0′

1
, . . . , 0′

=+1
∈ M;

(6) i(01, . . . , 0=+1, G=+2) isolates tpL (0=+2/01 . . . 0=+1);
(7) |i(01, . . . , 0=+1,M) | = : and |i(0′

1
, . . . , 0′

=+1
,M) | ∈ {0, :} for any 0′

1
, . . . , 0′

=+1
∈ M.

Claim 7.7. The following holds:

(8) For any ( 91, . . . , 9=) ∈ l
=, we have

|i(0
91
1
, . . . , 0

9=
= , 0=+1,M) | = : and i(0

91
1
, . . . , 0

9=
= , 0=+1,M) ∩ acl(0̄1 . . . 0̄=) = ∅;

(9) For any ( 91, . . . , 9=) ≠ ( 9
′
1
, . . . , 9 ′=) ∈ l

=, we have

i
(
0
91
1
, . . . , 0

9=
= , 0=+1,M

)
∩ i

(
0
9′
1

1
, . . . , 0

9′=
= , 0=+1,M

)
= ∅.
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Proof. Proof of (8). Let ( 91, . . . , 9=) ∈ l= be arbitrary. By the first item in (7), let 1̄ be the tuple
listing all :-realizations of i(01, . . . , 0=+1, G=+2). By (4), we can choose some tuple 1̄′ in M such that
0
91
1
. . . 0

9=
= 0=+11̄

′ ≡ 01 . . . 0=0=+1 1̄. Then each of the : pairwise-distinct elements in 1̄′ is a realization

of i(0 91
1
, . . . , 0

9=
= , 0=+1, G=+2), and these are all possible realizations by the second item in (7).

Assume now that 1 ∈ i(0 91
1
, . . . , 0

9=
= , 0=+1,M) is arbitrary. By (3) and basic properties of algebraic

independence, we have 0=+1 |⌣0
91
1
...0

9=
=
0
≠ 91
1

. . . 0
≠ 9=
= . Hence if 1 ∈ acl(0̄1 . . . 0̄=), then already 1 ∈

acl(0
91
1
. . . 0

9=
= ). But 0 91

1
. . . 0

9=
= 0=+11 ≡ 01 . . . 0=0=+10=+2 by (4) and (6), and 0=+2 ∉ acl(01 . . . 0=)

since (01, . . . , 0=+2) is an algebraic (= + 2)-gon — a contradiction.

Proof of (9) Let ( 91, . . . , 9=) ≠ ( 9 ′1, . . . , 9
′
=) in l= be given, and let � := {1 ≤ C ≤ = : 9C = 9 ′C }. Thus

|� | < =. By (3) and basic properties of algebraic independence, we have(
0
9C
C : C ∉ �

)
|⌣0=+1

(
0
9C
C :C ∈�

) (
0
9′C
C : C ∉ �

)
.

Using this and the second item in (7), if

1 ∈ i(0
91
1
, . . . , 0

9=
= , 0=+1,M) ∩ i(0

9′
1

1
, . . . , 0

9′=
= , 0=+1,M),

then

1 ∈ acl
(
(0
9C
C : C ∈ �)0=+1)

)
.

Additionally, by (4) and (6), we have 0 91
1
. . . 0

9=
= 0=+11 ≡ 01 . . . 0=0=+10=+2; hence 0=+2 ∈ acl((0C : C ∈

�)0=+1). This is a contradiction since (01, . . . , 0=+2) is an (= + 2)-gon and |� | < = and concludes the
proof of the claim. �

Now, consider the formula

k(G1, . . . , G=+1) := ∃G=+2 ∈ %i(G1, . . . , G=+1, G=+2).

We will show that k is not =-dependent. For this, we show that for an arbitrary < ∈ l, k shatters
(0
9

8
: 1 ≤ 8 ≤ =, 9 ∈ <). Toward this, let � ⊆ <= be fixed. Set 0̄ := (0

9

8
: 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <), with

0
9

8
as chosen in the beginning of the proof, and consider the L-formula

\ (Ḡ, 0̄) = \
(
(GC
9̄

: 9̄ ∈ <=, 1 ≤ C ≤ :), 0̄
)

:=

∃G=+1

∧
9̄∈<=

∧
1≤C≤:

i
(
0
91
1
, . . . , 0

9=
= , G=+1, G

C
( 91 ,..., 9=)

)
∧ d

(
(GC
9̄

: 9̄ ∈ <=, 1 ≤ C ≤ :)
)
,

where d is a formula expressing that all of the elements of the tuple (GC
9̄

: 9̄ ∈ <=, 1 ≤ C ≤ :) are pairwise-

distinct. By the first item in (8), for each 9̄ ∈ <=, we let 1̄ 9̄ = (1
C

9̄
: 1 ≤ C ≤ :) be a tuple of length :

enumerating the set i(0 91
1
, . . . , 0

9=
= , 0=+1,M) in an arbitrary order, and let 1̄ := (1C

9̄
: 9̄ ∈ <=, 1 ≤ C ≤ :).

Then we have:

◦ 1̄ ⊆ (, by (5).
◦ All elements of the tuple 1̄ are pairwise-distinct, by (9).
◦ 1̄ ∩ acl(0̄) = ∅, by the second item in (8).
◦ |= \ (1̄, 0̄), with ∃G=+1 realized by 0=+1 by the choice of 1̄.

Hence, applying Fact 7.3, there exists some 2̄ =
(
2C
9̄

: 9̄ ∈ <=, 1 ≤ C ≤ :
)
⊆ ( such that

https://doi.org/10.1017/fms.2021.35 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.35


44 Artem Chernikov and Nadja Hempel

◦ |= \ (2̄, 0̄);

◦ 2̄ 9̄ :=
(
2C
9̄

: 1 ≤ C ≤ :
)
⊆ % for every 9̄ ∈ �;

◦ 2̄ 9̄ ∩ % = ∅ for every 9̄ ∈ <= \ �.

As |= \ (2̄, 0̄), all elements of 2̄ are pairwise distinct as it realizes d, and there exists some 0�
=+1
∈ M

such that

|=
∧
9̄∈<=

∧
1≤C≤:

i
(
0
91
1
, . . . , 0

9=
= , 0

�
=+1, 2

C
( 91 ,..., 9=)

)
.

In particular, for every 9̄ = ( 91, . . . , 9=) ∈ <
=, every element of the tuple 2̄ 9̄ of length : is in the set

i
(
0
91
1
, . . . , 0

9=
= , 0

�
=+1
,M

)
. Hence, by the second item in (7), the tuple 2̄ 9̄ lists all of the elements of the

set i
(
0
91
1
, . . . , 0

9=
= , 0

�
=+1
,M

)
. By the choice of 2̄, it follows that for every 9̄ ∈ <=,

|= k
(
0
91
1
, . . . , 0

9=
= , 0

�
=+1

)
⇐⇒ 8 ∈ � .

As < and � were arbitrary, we conclude that k is not =-dependent by compactness.
Finally, the ‘in particular’ part of the proposition is immediate by Remark 7.2. �

Remark 7.8. The case of = = 1 of Proposition 7.6 is claimed in [6, Proposition 2.10] without the
assumption that ) is geometric. However, their proof contains a gap, and the claim is false as witnessed
by the following example. Let ) be the theory of the infinite branching tree — that is, the theory of an
infinite graph (�, ') such that

1. For every vertex 0 ∈ �, there are infinitely many 1 such that 0'1,
2. There are no cycles.

It is not hard to see by back-and-forth that ) is complete and admits quantifier elimination after adding
distance predicates (which are definable in the graph language using quantifiers). Then )% is stable, for
example, since by [26, Theorem 1.4], every expansion of a planar graph by unary predicates is stable.
However, acl is not disintegrated (for any 0 ∈ � and two elements 1, 2 connected to it, we have that
0 ∈ dcl(12), but 0 ∉ acl(1) ∪ acl(2). Note that acl doesn’t satisfy exchange in this example since
1 ∉ acl(02).

Remark 7.9. In a recent erratum [7] to [6], it is observed that )%,( is not dependent assuming the
following stronger variant of the failure of disintegration of acl in) : there exist a small model" ≺ M |= )
and tuples 0, 1 such that acl(", 0, 1) ∩ ( ( acl(", 0) ∪ acl(", 1), and moreover tp(0/"1) is finitely
satisfiable in " .

Next we will show a converse to Proposition 7.6: if the algebraic closure in a geometric theory
is disintegrated, then =-dependence is preserved after adding a generic predicate. More generally, we
consider expansions by ‘generic’ relations of arity at most =.

The following is an analog of Fact 7.3 in this more general setting. It is essentially from [46], though
we refer to [32] here. Namely, let ) be a complete theory in a language L with a distinguished L(∅)-
definable set ((G), and let L′ ⊇ L be a language such that L′ \L = {'8 : 8 ∈ �} only contains relational
symbols. Then we let L0 := L∪{(∗(G)}, where (∗(G) is a new unary predicate symbol, and let )0 be the
(complete) L0-theory axiomatized by ) ∪ {((G) ↔ (∗ (G)}. Let )∩ be the reduct of )0 to the language
L∩ := {(∗(G)} (so a complete theory of a unary predicate). And for 8 ∈ �, we let L8 := {(∗(G)} ∪ {'8},
and let )8 be the model companion of the L8-theory {∀G1 . . .∀G='8 (G1, . . . , G=) →

∧
1≤ 9≤= (

∗(G 9 )}

(which exists by [46, Theorem 5] or by [6, Remark 2.12.2]). In the next fact, the existence of a model
companion ) ′ of the theory )∪ :=

⋃
8∈� )8 is given by [32, Theorem 5.50], the description of types in ) ′

by [32, Proposition 6.11] and the description of the algebraic closure acl) ′ = acl) by [32, Theorem 6.3]).
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Fact 7.10. Let) be a theory in the languageL eliminating quantifiers and ∃∞, and fix anL(∅)-definable

predicate (. Let L′ ⊇ L be a language such that L′ \L only contains relational symbols, and consider

the L′-theory

) ′0 := ) ∪

{
'(G1, . . . , G=) →

∧
1≤8≤=

((G8) : ' ∈ L′ \ L

}
.

Then ) ′
0

admits a model companion ) ′, and working in a monster model of ) ′, we have the following:

for any tuples 0̄, 1̄ and a subset �,

(†) tpL′ (0̄/�) = tpL′ (1̄/�) if and only if there exists an �-isomorphism of L′-structures from

aclL (�, 0̄) to aclL (�, 1̄) which carries 0̄ to 1̄.

We sometimes refer to ) ′ as the expansion of ) by generic relations in L′ \ L.
In [25, Lemma 2.1], Hrushovski observes that the random =-ary hypergraph is not a finite Boolean

combination of relations of arity = − 1. In order to demonstrate preservation of =-dependence in
expansions of disintegrated theories by generic =-ary relations, we will use the following infinitary
generalization of this fact.

Proposition 7.11. For each = ∈ l, = ≥ 1 and an infinite cardinal ^, there exists some cardinal _ ≥ ^

satisfying the following: let � ′=,? be a _-saturated model of Th(�=,?), let L̃ be an arbitrary relational

language with |L̃| ≤ ^ containing only relations of arity at most = − 1, and let $̃ ′=,? be an expansion of

$ ′=,? obtained by adding arbitrary interpretations for all the relations in L̃. Then the following holds:

there are 68 , ℎ8 ∈ %
�′=,?
8

, 1 ≤ 8 ≤ =, such that

qftp
L̃
(61, . . . , 6=) = qftp

L̃
(ℎ1, . . . , ℎ=)

and � ′=,? |= '= (61, . . . , 6=) ∧ ¬'= (ℎ1, . . . , ℎ=).

Proof. We show this result by induction on = (the base case = = 1 obviously holds with _ := ^). Now
fix = ≥ 2 and a cardinal ^. Let _ = _=−1 satisfy the proposition for = − 1 and ^. We will show that
_ = _= := i=−2

(
2_=−1

)+
satisfies the proposition for =.

Toward a contradiction, assume that some _=-saturated � ′=,? ≡ �=,? , some language |L̃| ≤ ^ and

some expansion $̃ ′=,? do not satisfy the proposition — that is, for all 68 , ℎ8 ∈ %
�′=,?
8

, 1 ≤ 8 ≤ =,

(∗) If qftp
L̃
(61, . . . , 6=) = qftp

L̃
(ℎ1, . . . , ℎ=) ∧ �

′
=,? |= '= (61, . . . , 6=), then � ′=,? |= '= (ℎ1, . . . , ℎ=).

By the choice of _= and Erdős-Rado, we have _= →
( (

2_=−1
)+)=−1

2_=−1
; hence we can find some sets

�8 ⊆ %
�′=,?
8

, 1 ≤ 8 ≤ = − 1 such that |�8 | ≥
(
2_=−1

)+
and qftp

L̃
(61, . . . , 6=−1) = qftp

L̃
(ℎ1, . . . , ℎ=−1)

for all 68 , ℎ8 ∈ �8 , 1 ≤ 8 ≤ = − 1. Next, we can find a _=−1-saturated structure � ′
=−1, ?

≡ �=−1, ? with

|� ′
=−1, ?

| ≤ 2_=−1 and such that %
�′

=−1, ?

8
⊆ �8 , 1 ≤ 8 ≤ =− 1. As � ′=,? is _=-saturated and _= > 2_=−1 , by

the axioms of Th(�=,?), there exists some 2 ∈ %
�′=,?
= such that for all 68 ∈ %

�′
=−1, ?

8
, 1 ≤ 8 ≤ = − 1, we

have

� ′=−1, ? |= '=−1 (61, . . . , 6=−1) ⇐⇒ � ′=,? |= '= (61, . . . , 6=−1, 2).

Without loss of generality, we may assume that all relations in L̃ are of arity exactly =−1. We consider the
language L̃=−1 containing, for each � ∈ L̃ and Υ ∈ P({1, . . . , =−1}) \ ∅, an (=−1− |Υ|)-ary relational
symbol �Υ. We define an expansion $̃ ′

=−1, ?
of $ ′

=−1, ?
in which we interpret each such �Υ ∈ L̃=−1

as � with each of the variables G8 , 8 ∈ Υ fixed by 2 and restricted to the universe of � ′
=−1, ?

(e.g. if

Υ = {2, = − 1}, then �Υ is interpreted as � (G1, 2, G3, . . . , G=−2, 2) ∩
∏
8∈{1,2,...,=−1}\Υ %

�′
=−1, ?

8
). Hence
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|L̃=−1 | ≤ ^, and all relations in L̃=−1 have arity at most =−2. Note that by the choice of �8 , 1 ≤ 8 ≤ =−1,

we automatically have that for any � ∈ L̃ and any 68 , ℎ8 ∈ %
�′

=−1, ?

8
, 1 ≤ 8 ≤ = − 1,

$̃ ′=,? |= � (61, . . . , 6=−1) ⇐⇒ $̃ ′=,? |= � (ℎ1, . . . , ℎ=−1).

By the choice of the �Υ’s, we have that for any 68 , ℎ8 ∈ %
�′

=−1, ?

8
, 1 ≤ 8 ≤ = − 1,

qftp
L̃=−1
(61, . . . , 6=−1) = qftp

L̃=−1
(ℎ1, . . . , ℎ=−1) =⇒

qftp
L̃
(61, . . . , 6=−1, 2) = qftp

L̃
(ℎ1, . . . , ℎ=−1, 2).

Since (∗) holds for $̃ ′=,? , by the choice of 2 this implies

qftp
L̃=−1
(61, . . . , 6=−1) = qftp

L̃=−1
(ℎ1, . . . , ℎ=−1) ∧ �

′
=−1, ? |= '=−1 (61, . . . , 6=−1) =⇒

� ′=−1, ? |= '=−1 (ℎ1, . . . , ℎ=−1).

That is, $̃ ′
=−1, ?

and L̃=−1 satisfy (∗) for = − 1 — contradicting the induction hypothesis. �

Using Proposition 7.11, we can prove preservation of =-dependence.

Proposition 7.12. Let ) be a theory in the language L eliminating ∃∞ (not necessarily geometric),

and assume that all elements in ( are trivial. Fix = ≥ 1, and let ) ′ be a generic expansion of ) in a

language L′ such that L′ \L only contains relational symbols of arity at most = living on (. Then ) ′ is

=-dependent if and only if ) is =-dependent.

Proof. Assume that the theory ) is =-dependent, but there is some L′-formula i(G; H1, . . . , H=) that is
not =-dependent in ) ′. Let )Sk be a Skolemization of ) ′ with a distinguished constant symbol 0, in the
language LSk ⊇ L′, |LSk | = |L′ |. Let ^ := |L′ |, and let _ be as given by Proposition 7.11 for = and ^.

Let � ′=,? be a _-saturated model of Th(�=,?). Working in a monster model M of )Sk (which we
may assume to be |� ′=,? |

+-saturated in particular), i(G; H1, . . . , H=) is still not =-dependent; hence by
Proposition 2.8(3), there exist tuples (06)6∈�′=,? and 1 such that:

1. (06)6∈�′=,? is $ ′=,?-indiscernible over ∅ and � ′=,?-indiscernible over 1, both in the sense of )Sk;
2. |= i(1; 061

, . . . , 06= ) ⇐⇒ � ′=,? |= '= (61, . . . , 6=), for all 68 ∈ %8 .

First we would like to replace each 06 and 1 by their algebraic closures. In order to preserve
indiscernibility, we have to enumerate these algebraic closures in a coherent manner, which can be done
as follows. Let ( 5U ( H̄U) : U ∈ ^) be an arbitrary enumeration of all LSk (∅)-definable functions. Given
an arbitrary tuple 2 = (2 9 ) 9∈� inM, we let �2 := ^× �<l be ordered lexicographically with respect to the
ordering on the ordinal ^ and the ordering on �. Then we consider the tuple Sk(2) =

(
Sk 9 (2) : 9 ∈ �2

)
,

where for 9 = (U, V) ∈ ^ × �<l , Sk 9 (2) is 5U ((2C : C ∈ V)) (or 0 if the sort of the parameter doesn’t fit
the sort of the variables of the function).

Now for each 1 ≤ 8 ≤ =, we fix an arbitrary 68 ∈ %
�′=,?
8

. The set of elements appearing in the tuple
Sk(068 ) is an elementary LSk-submodel of M by Tarski-Vaught. In particular, we can choose some
�8 ⊆ �068 so that the tuple 0′68 := (Sk 9 (068 ) : 9 ∈ �8) enumerates aclL (068 ) without repeated elements.

Now for an arbitrary 1 ≤ 8 ≤ = and 6 ∈ %
�′=,?
8

, we let 0′6 := (Sk 9 (06) : 9 ∈ �8). Similarly, we choose
some �0 ⊆ �1 so that the tuple 1′ := (Sk 9 (1) : 9 ∈ �0) lists aclL(1) without repeated elements. Since
we have both indiscernibilities in (1) in the sense of )Sk, it follows that:

3. 1′ enumerates aclL (1) (by definition);

4. For any 6 ∈ � ′=,? , the tuple 0′6 enumerates aclL (06) without repetitions (as 6 ∈ %
�′=,?
8

=⇒ 06 ≡
L

Sk

068 by (1) =⇒ 0′6 ≡
L 0′68 );
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5. |1′ |, |0′6 | ≤ ^;

6. (0′6)6∈�′=,? is$ ′=,?-indiscernible over ∅ and� ′=,?-indiscernible over 1′, both in the sense of )Sk (and
hence in the sense of ) as well; again by (1) and definition of 0′6 and 1′).

As ) is =-dependent, it follows from (6) by Proposition 2.9(3) that

7. (0′6)6∈�′=,? is $ ′=,?-indiscernible over 1′ in the sense of ) .

Next we consider the L′-isomorphism type of the structure induced on the tuple 1′0′61
. . . 0′6= as 6̄

varies, and demonstrate that it cannot reflect exactly the hyper-edge relation '= of � ′=,? . Without loss
of generality, we may assume that all relations in L′ \L are of arity exactly =. By $ ′=,?-indiscernibility
in ) ′ in (6), for any � ∈ L′ \ L, we have

8. |= � (061
, . . . , 06= ) ⇐⇒ |= � (0ℎ1

, . . . , 0ℎ= ) for all 68 , ℎ8 ∈ %
�′=,?
8

, 1 ≤ 8 ≤ =.

We consider an expansion �̃ ′=,? of � ′=,? where for each � (G1, . . . , G=) ∈ L′ \ L, each 1 ≤ 8 ≤ =

and each 9C ∈ �C , C ∈ {0, . . . , =} \ {8}, we add a new (= − 1)-ary relation '�,8, 9̄ ⊆
∏
C ∈{1,...,=}\{8 } %

�′=,?
C

defined as follows: for any (6C )C ∈{1,...,=}\{8 } ∈
∏
C ∈{1,...,=}\{8 } %

�′=,?
C , we have

(6C )C ∈{1,...,=}\{8 } ∈ '�,8, 9̄ :⇐⇒ |= �
(
0′61 , 91

, . . . , 0′68−1 , 98−1
, 1′90 , 0

′
68+1 , 98+1

, . . . , 0′6= , 9=

)
,

where 0′6, 9 is the 9 th element of the tuple 0′6 (i.e. 0′6, 9 = Sk 9 (06)).
Note that taking

L̃ := {'�,8, 9̄ : � ∈ L′ \ L, 1 ≤ 8 ≤ =, 9C ∈ �C for 0 ≤ C ≤ =} ∪ L,

we have |L̃| ≤ ^ by (5). Then, by Proposition 7.11 and the choice of _, there exist some 68 , ℎ8 ∈ %
�′=,?
8

for 1 ≤ 8 ≤ = such that:

9. qftp
L̃
(61, . . . , 6=) = qftp

L̃
(ℎ1, . . . , ℎ=),

10. � ′=,? |= '= (61, . . . , 6=),
11. � ′=,? |= ¬'= (ℎ1, . . . , ℎ=).

By (7) 0′61
. . . 0′6= ≡

L

1′
0′
ℎ1
. . . 0′

ℎ=
. Taking any L-automorphism f of M sending the tuple on the

left-hand side to the right-hand side over 1′, we have:

12. f fixes 1′ pointwise, and f(0′68 ) = 0
′
ℎ8

(preserving the ordering of the tuples) for all 1 ≤ 8 ≤ =.

13. f
(
aclL (1

′0′61
. . . 0′6= )

)
= aclL (1

′0′
ℎ1
. . . 0′

ℎ=
) setwise.

14. f
(
aclL (1

′0′61
. . . 0′6= ) ∩ (

)
= aclL (1

′0′
ℎ1
. . . 0′

ℎ=
) ∩ ( setwise.

Let now an element 4 ∈ aclL (1
′0′61

. . . 0′6= ) ∩ ( be arbitrary. As all elements of ( are trivial (in
)) by assumption, we have 4 ∈ aclL (1

′) = 1′ or 4 ∈ aclL (0
′
68
) = 0′68 for some 1 ≤ 8 ≤ =. Hence

aclL (1
′0′61

. . . 0′6= ) ∩ ( ⊆ 1
′0′61

. . . 0′6= , and so also aclL (1
′0′
ℎ1
. . . 0′

ℎ=
) ∩ ( ⊆ 1′0′

ℎ1
. . . 0′

ℎ=
. Given

any tuple 2 of elements from aclL (1
′0′61

. . . 0′6= ), by definition of ) ′ it can satisfy a relation � ∈ L′ \L
only if 2 is entirely contained in (, hence only if 2 is contained in the tuple 1′0′61

. . . 0′6= . But by (8)

and (9) (unwinding the definition of L̃ and using (12)), for any tuple 2 in 1′0′61
. . . 0′6= and � ∈ L′ \L,

2 satisfies � if and only if f(2) satisfies �. And of course 2 and f(2) agree on all L-formulas. We
thus conclude that f ↾aclL (1

′0′61
...0′6= )

is an automorphism of L′-structures aclL (1
′0′61

. . . 0′6= ) and
aclL (1

′0′
ℎ1
. . . 0′

ℎ=
) sending 1′0′61

. . . 0′6= to 1′0′
ℎ1
. . . 0′

ℎ=
.
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Hence by Fact 7.10(†), we have

tpL′ (061
. . . 06=/1) = tpL′ (0ℎ1

. . . 0ℎ=/1).

But this contradicts the choice of i in view of (10) and (11).
Finally, the converse implication of the proposition is obvious. �

Combining Propositions 7.6 and 7.12, we thus have the following ‘baby case’ of the relationship of
the collapse of =-dependence to dependence and complicated geometry of algebraic closure that we
expect to happen for fields.

Corollary 7.13. Let ) be a geometric theory. The following are equivalent:

1. )% is dependent.

2. )% is =-dependent for some = ∈ l.

3. ) has disintegrated algebraic closure.

Problem 7.14. It should be possible to generalize these results on preservation of =-dependence to

interpolative fusions of theories as studied in [32].

Appendix A. An explicit isomorphism in Kaplan-Scanlon-Wagner,

by Martin Bays

Let : be a perfect field of characteristic ? > 0. Let q be the Frobenius automorphism, q(G) := G? ,
and let ℘ be the Artin-Schreier map, ℘(G) := q(G) − G = G? − G. Let 0 = (00, . . . , 0<) ∈ :

<+1.
Let �0 := {G | 00℘(G0) = . . . = 0<℘(G<)}, considered as an algebraic subgroup over : of the
Cartesian power of the additive group G<+10 . A crucial step in the proof in [31] of Artin-Schreier
closedness of dependent fields is to show that if 0 is an algebraically independent tuple — that is,
trd(F? (0)/F?) = < + 1 — then �0 is isomorphic over : to the additive group, as algebraic groups.
Hempel [22] improves this by showing that the same holds when the assumption is weakened to F?-
linear independence of (0−1

0
, . . . , 0−1

< ). In both cases, the proof is rather indirect, going via showing that
�0 is connected and then referring to some standard theorems characterising vector groups in positive
characteristic. The purpose of this appendix is to exhibit such an isomorphism. Thanks to Mohammed
Bardestani and Pierre Touchard for helpful discussion.

First we need the following fact about the Moore matrix, being the analogue of the Wronskian matrix
with Frobenius in place of differentiation. For completeness, we include a proof.

Fact A.1. Let : be a perfect field of characteristic ? > 0. Let 2 = (20, . . . , 2<) ∈ :
<+1. Then the Moore

matrix " := (q8 (2 9 ))0≤8, 9≤< is singular if and only if 2 is F?-linearly dependent.

Proof. Suppose 2 is F?-linearly dependent, say
∑<
9=0 _ 92 9 = 0 with _ ∈ F<+1? \ {0}. Then∑<

9=0 _ 9q
8 (2 9 ) = 0 for all 8, so " is singular.

The converse is clear for< = 0. So suppose< ≥ 1, and 2 is F?-linearly independent but" is singular,

say
∧

0≤8≤<

∑
9≥0 ` 9q

8 (2 9 ) = 0 with ¯̀ ∈ : \ {0}. Since (21, . . . , 2<) is F?-linearly independent, we
may inductively assume that the < × < matrix " ′ := (q8 (2 9 ))0<8, 9≤< is non-singular. It follows that

`0 ≠ 0. Now, let U :=
q (`0)

`0
≠ 0. Then for 0 < 8 ≤ <, we have

q(`0)q
8 (20) +

∑
9≥1

q(` 9 )q
8 (2 9 ) =

∑
9≥0

q(` 9 )q
8 (2 9 )

= q
©­«
∑
9≥0

` 9q
8−1(2 9 )

ª®¬
= 0
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= U ·
∑
9≥0

` 9q
8 (2 9 )

= q(`0)q
8 (20) +

∑
9≥1

U` 9q
8 (2 9 ).

Consequently
∑
9≥1 q(` 9 )q

8 (2 9 ) =
∑
9≥1 U` 9q

8 (2 9 ). By non-singularity of " ′, we deduce that∧
0≤ 9≤< q(` 9 ) = U` 9 . Let V (in an extension of :) be such that (V) ?−1 = U and set _ 9 :=

` 9

V
. Then

either _ 9 = ` 9 = 0 or

_
?−1

9
=
`
?−1

9

V?−1
=
q(` 9 )

U` 9
= 1.

Hence _ 9 ∈ F<+1? \ {0}. But
∑
9≥0 _ 92 9 =

1
V

∑
9≥0 ` 92 9 = 0, contradicting F?-linear independence

of 2. �

Now let 0 = (00, . . . , 0<) ∈ :
<+1, and suppose 1 := (0−1

0
, . . . , 0−1

< ) is F?-linearly independent.

Write X8, 9 for the Kronecker delta. By Fact A.1 applied to q−<(1), (q−8 (1 9 ))0≤8, 9≤< is non-
singular. Since : is perfect, q−8 (1 9 ) ∈ : . So there exists U = (U0, . . . , U<) ∈ :

<+1 \ {0̄} such that∧
0≤8≤<

∑
9≥0 q

−8 (1 9 )U 9 = X0,8 .

Claim A.2. U is F?-linearly independent.

Proof. Suppose not, so (permuting if necessary) we have U0 =
∑
9≥1 _ 9U 9 with _ 9 ∈ F? . Then for

1 ≤ 8 ≤ <, we have q−8 (10)
∑
9≥1 _ 9U 9+

∑
9≥1 q

−8 (1 9 )U 9 = X0,8 = 0, and so
∑
9≥1 U 9q

−8 (1 9+_ 910) = 0.

But U 9 ≠ 0 for some 9 ≥ 1, since U ≠ 0. So by Fact A.1, (1 9 + _ 910) 9≥1 is F?-linearly dependent,

and consequently so is 1, contrary to assumption. �

We proceed to define an algebraic isomorphism over : of �0 with the additive group. So let  ≥ :
be an arbitrary field extension, and let G ∈ �0 ( ): that is, 00℘(G0) = . . . = 0<℘(G<). Set

C :=
∑
9≥0

U 9G 9 .

Claim A.3. For 8 ≥ 0, we have q8 (C) =
∑
9≥0 q

8 (U 9 )G 9 .

Proof. This holds by definition for 8 = 0. For 8 > 0, we have

∑
9≥0

q8 (U 9 )

0 9
= q8

©­«
∑
9≥0

q−8 (1 9 )U 9
ª®¬
= q8 (X0,8) = 0.

Using this, induction and the equations of �0, we find

q8 (C) = q
©­«
∑
9≥0

q8−1(U 9 )G 9
ª®¬

=

∑
9≥0

q8 (U 9 )q(G 9 )

=

∑
9≥0

q8 (U 9 )
(
℘(G 9 ) + G 9

)
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=

∑
9≥0

q8 (U 9 )

0 9
0 9℘(G 9 ) +

∑
9≥0

q8 (U 9 )G 9

=

∑
9≥0

q8 (U 9 )G 9 .

�

Now by Claim A.2 and Fact A.1, the matrix (q8 (U 9 ))0≤8, 9≤< is non-singular, so say (V8 9 )0≤8, 9≤< is
the inverse, where V8 9 ∈ : .

Then by Claim A.3, G8 =
∑
9≥0 V8 9q

9 (C).
So we have defined an isomorphism over : of affine varieties

�0 → G0
G ↦→

∑
9≥0 U 9G 9

(
∑
9≥0 V8 9q

9 (C))8 ← � C

between �0 and the additive group G0; since the polynomials involved are additive polynomials, this is
an isomorphism of algebraic groups.
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