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Abstract We consider the eigenvalue equation for the largest eigenvalue of certain kinds of non-compact
linear operators given as the sum of a multiplication and a kernel operator. It is shown that, under
moderate conditions, such operators can be approximated arbitrarily well by operators of finite rank,
which constitutes a discretization procedure. For this purpose, two standard methods of approximation
theory, the Nyström and the Galerkin method, are generalized. The operators considered describe models
for mutation and selection of an infinitely large population of individuals that are labelled by real
numbers, commonly called continuum-of-alleles models.
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1. Introduction

This article is concerned with eigenvalue equations on L1(I) of the form

r(x)p(x) +
∫

I

[u(x, y)p(y) − u(y, x)p(x)] dy = λp(x) for all x ∈ I. (1.1)

Here, p is a probability density on the set I, which is either taken to be a compact
interval [a, b] or the real line R, i.e. p ∈ L1(I) with p � 0 and

∫
I
p(x) dx = 1. Sufficient

conditions for the existence and uniqueness of solutions of (1.1) were given by Bürger
(see [4, Chapter IV.3]), in which case λ is the largest eigenvalue.

If one is interested in a discrete approximation of (1.1), one faces the problem that the
operator acting on p is the sum of a multiplication operator and a kernel operator; and
the former is never compact (apart from trivial cases). Therefore, a direct application of
most standard methods of approximation theory fails because, for these, compactness is a
prerequisite. In this article, it will be shown that, under some moderate extra conditions,
these methods can nevertheless be applied.
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One motivation to study equations of the form (1.1) is their occurrence in population
genetics, which is concerned with the (micro)evolution of the genetic composition of pop-
ulations. For many situations, individuals are adequately described by a continuous scalar
variable, representing, for example, a quantitative character under selection. This leads
to the definition of so-called continuum-of-alleles (COA) models, in which individuals are
identified with this variable, referred to as their type. Usually, selection is then modelled
by type-dependent fitness values, whereas mutation is described, for every source type,
by a probability distribution for the mutant types. For a recent review of and relevant
literature on COA models, see [4].

In population genetics, evolution may quite generally be assumed to proceed in contin-
uous time, with overlapping generations, or in discrete generations. For the COA model,
in both cases, equilibrium is described by an equation of the form (1.1) (cf. [12]). Here,
I is the set of possible types. Assuming the population to be effectively infinite, we
represent it by the probability density p.

The notation chosen here best fits the case of continuous time, where r(x) describes
the effective reproduction rate of type x (i.e. the difference of its birth and death rate),
the so-called Malthusian fitness, and u(x, y) is the mutation rate u1(y) of type y times
the density m(x, y) of mutant types x, conditioned on a mutation to occur for y. With
discrete generations, r(x) has the interpretation of the expected number of offspring of an
individual of type x, i.e. its Wrightian fitness, and mutation is assumed to occur during
reproduction with some probability µ(y) for type y. The distribution of mutant types
is again given by m(x, y), hence u(x, y) = m(x, y)µ(y)r(y). In both cases, λ equals the
equilibrium mean fitness

∫
I
r(x)p(x) dx.

There are several reasons why it is desirable to approximate a COA model by a model
with discrete types. One reason is the need for numerical investigations of COA models,
since most of them are not tractable analytically. These inevitably require a discrete
formulation of the model. Another reason is that, recently, a simple characterization
of the equilibrium of discrete mutation–selection models has been found (see [8]; see
also [2,6,7]); this takes the form of a scalar maximum principle in a limit of infinitely
many types that densely fill a compact interval. Gaining a better understanding of the
relation between models with discrete and continuous types is therefore promising to
enable a transfer of some of these results.

This article starts with a summary of Bürger’s results on (1.1) in § 2, since these form
the basis for our treatment. We will then consider two methods to approximate compact
kernel operators and extend them to our case. One, the Nyström method, is applicable
to continuous functions r and u on compact intervals I and involves sampling∗ of these
functions. This is presented in § 3. The other one, the Galerkin method, is based on
projections to finite-dimensional subspaces and works (in principle) for a broad class of
compact operators. In our case, however, one has to make relatively strong assumptions,
e.g. that the functions r and u are, in some sense, uniformly continuous. Then it turns
out that the local averaging in the projection process can be replaced by sampling again

∗ The term sampling is used in the meaning also used in signal processing: instead of a continuous
function, one considers its values at a (properly chosen) finite set of points.
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(if an additional condition is satisfied). This is discussed in § 4. A comparison of both
methods in § 5 and an outlook in § 6 complete this article.

2. General properties

Let us first put the equilibrium condition (1.1) in operator notation. Since we are inter-
ested in probability densities, we will consider L1(I), or a subspace thereof, as the under-
lying function space. We define the total mutation rate of type x as

u1(x) =
∫

I

u(y, x) dy (2.1)

and, for notational brevity,
w = u1 − r.

Then (1.1) is equivalent to the eigenvalue equation

(A + λ)p = 0, (2.2)

where, for elements f of the function space and all x ∈ I,

(Tf)(x) = w(x)f(x), (2.3)

(Uf)(x) =
∫

I

u(x, y)f(y) dy, (2.4)

A = T − U. (2.5)

As mentioned above, being a (non-zero) multiplication operator, T cannot be compact
(cf. [16, Theorem 2.1]). Strong results, like analogues to the Perron–Frobenius Theorem,
however, are only available for compact, or at least power compact∗, operators (see [20,
Chapter V]). Therefore, one considers the following family of kernel operators,

(Kαf)(x) =
∫

I

kα(x, y)f(y) dy,

where

kα(x, y) =
u(x, y)

w(y) + α
.

These are, under conditions that will be given shortly, power compact or even compact.
Their connection to the operator A from (2.5) is stated in the following.

Lemma 2.1 (cf. Proposition 2.1 (i) of [3]). Let T , U be operators in a Banach
space X, with U being bounded, T densely defined, i.e. D(T ) = X, and T +α invertible.
Then f is an eigenvector of A = T − U with eigenvalue −α, i.e. 0 �= f ∈ D(A) = D(T )
and

(A + α)f = 0,

if and only if g = (T + α)f is an eigenvector of Kα = U(T + α)−1 with eigenvalue 1,

(Kα − 1)g = 0.

∗ An operator is said to be power compact if one of its powers is compact.
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So, explicitly in our case, the eigenvalue equation (2.2) is equivalent to

(Kλ − 1)q = 0 (2.6)

with q = (T + λ)p. This equation can now be used to find sufficient conditions for the
existence and uniqueness of a solution of (2.2).

An important class of bounded kernel operators from Lq(I) into Lp(I) (1 � p, q � ∞)
are the Hille–Tamarkin operators (see [11, § 11.3]). Their kernels need to satisfy

|K|pq := ‖k1‖p < ∞, with k1(x) = ‖k(x, ·)‖q′ , (2.7)

where (Kf)(x) =
∫

I
k(x, y)f(y) dy, k(x, ·) denotes the function y �→ k(x, y) and q′ is the

conjugate exponent to q satisfying 1/q + 1/q′ = 1, 1 � q′ � ∞. The Hille–Tamarkin
norm | · |pq turns the set Hpq(I) of all Hille–Tamarkin operators into a Banach space [11,
Theorem 11.5]. Here, we are interested in p = q = 1, in which case (2.7) yields

|K|11 =
∫

I

ess sup
y∈I

|k(x, y)| dx < ∞

and K2 is compact for every K ∈ H11(I) (see [11, Theorem 11.9]).
Let us now turn to kernel operators that are power compact, positive and irreducible.

An operator is called positive if it maps the set of non-negative functions into itself,
for which, in the case of kernel operators, non-negativity of the kernel is necessary and
sufficient (see [11, p. 122]). A kernel operator is irreducible if its kernel satisfies (see [20,
Example 4, § V.6])

∫
I\J

∫
J

k(x, y) dxdy > 0 for all measurable J ⊂ I with |J |, |I \ J | > 0.

Here, |J | denotes the Lebesgue measure of a measurable set J . Then the theorem of
Jentzsch [20, Theorem V.6.6], which parallels the Perron–Frobenius Theorem for matri-
ces, states that the spectral radius is an algebraically simple eigenvalue with an (up to
normalization) unique positive eigenfunction (i.e. strictly positive a.e.∗) and the only
eigenvalue with a positive eigenfunction.

In our case, the following requirements are sufficient for the Kα to be Hille–Tamarkin
operators (see [3, § 3]).

(U1) u is non-negative and measurable.

(U2) u1(x) from (2.1) exists for a.e. x ∈ R and u1 ∈ L∞(I), i.e. u1 is essentially bounded.
(By Hölder’s inequality, this implies that U is bounded (cf. [3, Proposition 3.1 (ii)]).)

(T1) w = u1 − r is measurable and satisfies ess infx∈Iw(x) = 0. (The latter can be
achieved, without loss of generality, by adding a suitable constant to r.)

∗ The abbreviation ‘a.e.’ stands for ‘almost every’ or ‘almost everywhere’ and means that the set at
which the condition it refers to is not fulfilled has zero (Lebesgue) measure.
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(T2) (w + 1)−1 ∈ L∞(I) is then already a consequence of (T1).

(U4)
∫

I
ess supy∈I u(x, y)/(w(y) + α) dx < ∞ for one (and then for all) α > 0.

For α > 0, Kα is irreducible if U is (see [3, proof of Theorem 2.2 (c)]), i.e.
∫

I\J

∫
J

u(x, y) dxdy > 0 for all measurable J ⊂ I with |J |, |I \ J | > 0. (2.8)

To keep the equilibrium distribution from having atoms, we assume that there is a set
J ⊂ I with positive measure for which ess infx∈Jw(x) = 0 such that

ess inf
x,y∈J

u(x, y)
∫

J

(w(x))−1 dx > 1 (2.9)

or the integral diverges (see [4, Condition 3′′, § IV.3]).
Putting everything together, we have the following theorem.

Theorem 2.2 (cf. Bürger). Under the above conditions, equation (1.1) has a unique
positive solution p ∈ L1(I) with ‖p‖1 = 1, for which λ > 0 is the largest spectral value of
−A from (2.5).

Proof. See the above, Theorem 3.5 of [3] and § IV.3 of [4]. �

Note that, due to (T1), p is positive if and only if q = (w + α)p is, for α > 0.
Another result that will be needed in the sequel is the following.

Lemma 2.3 (cf. Lemmas 1–3 and Theorem 2.2 (ii) of [3]). Under the above
conditions, the spectral radius ρ(Kα) is, as a function of α, strictly decreasing and satisfies
ρ(Kλ) = 1 as well as limα→∞ρ(Kα) = 0. Thus ρ(Kα) < 1 implies α > λ and ρ(Kα) > 1
implies α < λ.

Throughout the rest of this article, all the above criteria are assumed to be satisfied,
namely (U1), (U2), (U4), (T1), (T2) and equations (2.8), (2.9).

3. Discretization: compact interval

Let the interval I be compact and C (I) denote the Banach space of bounded, contin-
uous functions equipped with the supremum norm ‖f‖∞ = supx∈I |f(x)|. We consider
operators K of the form

(Kf)(x) =
∫

I

k(x, y)f(y) dy for all x ∈ I (3.1)

with a continuous kernel k : I × I → R. First note the following two basic results.

Proposition 3.1. Any K of the form (3.1) maps L1(I) into C (I) ⊂ L1(I).
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Proof. We follow the proof of [5, Theorem 2.1], where this is shown for L2(I), which,
since I is compact, is a subspace of L1(I). Let f ∈ L1(I) and x, ξ ∈ I be given. Then

|(Kf)(x) − (Kf)(ξ)| �
∫

I

|k(x, y) − k(ξ, y)| |f(y)| dy � sup
y∈I

|k(x, y) − k(ξ, y)| ‖f‖1.

Due to the uniform continuity of k in I × I, we have

lim
ξ→x

sup
y∈I

|k(x, y) − k(ξ, y)| = 0,

from which the continuity of Kf follows. �

Proposition 3.2. An operator K of the form (3.1) is compact from C (I) or L1(I) to
either of the two spaces.

Proof. Follow the proof of [5, Theorem 2.10] (or [15, § XVII.4]), where this is shown
for L2(I) ⊂ L1(I), and use Hölder’s inequality whenever the Cauchy–Schwarz inequality
is used. Alternatively, see [20, Example 3, § IV.10]. �

Thus, if, in our case, the functions r and u are continuous, the kernel kα also is,
for every α > 0. It then follows from Proposition 3.1 that the equilibrium density p is
continuous as well. Therefore, we can restrict our attention to C (I) in our quest for a
solution of the eigenvalue equation (2.2). This makes the Nyström method applicable as
a discretization procedure, which will be presented now.

3.1. The Nyström method

The Nyström method is based on quadratures, which are used for numerical integration
(cf., for example, [14, Chapter 12]). We will use this (slightly restricted) definition.

Definition 3.3. A quadrature rule Qn is a mapping of the form

Qn : C (I) → R, f �→ Qnf =
Nn∑
k=1

αn,kf(tn,k),

with n ∈ N, Nn ∈ N, quadrature points tn,k ∈ I and quadrature weights αn,k > 0, for
k ∈ Nn := {1, . . . , Nn}. A sequence of quadrature rules, or simply a quadrature, (Qn) is
said to be convergent if

Qnf → Qf for all f ∈ C (I), (3.2)

where Q : C (I) → R is the linear functional that assigns to each f its integral,
i.e. Qf =

∫
I
f(x) dx.

Another notion that is important for the Nyström method is the collectively compact
convergence of operators. The standard reference for this matter is [1].

Definition 3.4. A sequence (Kn) of (compact) operators in a Banach space X is
collectively compact if the set {KnB : n ∈ N} is relatively compact (i.e. its closure is
compact) for every bounded set B ⊂ X. Furthermore, if the sequence converges pointwise
to an operator K, one speaks of collectively compact convergence; in symbols, Kn

cc−→ K.
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As a direct consequence of this definition, K is compact (as well as all Kn). The central
result for the Nyström method is as follows.

Theorem 3.5. Let K be a compact kernel operator of the form (3.1), whose eigenvalue
equation

(K − ν)g = 0 (3.3)

is to be approximated. To this end, let (Qn)n∈N be a convergent quadrature with the
notation as in Definition 3.3. A complete discretization is given by the Nn ×Nn matrices
Kn with entries

Kn,k� = αn,�k(tn,k, tn,�),

and a partial discretization by means of the operators Kn on C (I) with

(Knf)(x) =
Nn∑
k=1

αn,kk(x, tn,k)f(tn,k) = Qn(k(x, ·)f). (3.4)

Consider the corresponding eigenvalue equations,

(Kn − νn)gn = 0 and (Kn − νn)gn = 0, (3.5)

where gn is an Nn-dimensional vector with components gn,k, and gn ∈ C (I). Then, under
the above conditions, the following statements are true.

(a) Both eigenvalue equations in (3.5) are equivalent and connected via

gn(x) =
Nn∑
k=1

αn,kk(x, tn,k)gn,k. (3.6)

(b) For every ν �= 0 from (3.3), there is a sequence (νn) of eigenvalues of (3.5) such that
νn → ν as n → ∞. Conversely, every non-zero limit point of any sequence (νn) of
eigenvalues of (3.5) is an eigenvalue of (3.3).

(c) Every bounded sequence (gn) of eigenfunctions of (3.5) associated with eigenvalues
νn → ν �= 0 contains a convergent subsequence; the limit of any convergent subse-
quence (gni)i is an eigenfunction of (3.3) associated with the eigenvalue ν (unless
the limit is zero).

Proof. (a) is the statement of [14, Theorem 12.7] or [5, Lemma 3.15]. (b) and (c)
rely on Kn

cc−→ K, which is shown, for example, in [1, Propositions 2.1, 2.2], [14, The-
orem 12.8] or [5, Theorem 3.22]. The statements then follow from [1, Theorems 4.11,
4.17]. �

We will restrict ourselves to quadratures that allow for disjoint partitions of I with
intervals In,k, i.e. In,k ∩In,� �= ∅ and

⋃Nn

k=0In,k = I, such that tn,k ∈ In,k and |In,k| = αn,k
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(with k ∈ Nn). For such quadratures, it is easy to see that∗

‖Qn‖ =
Nn∑
k=1

αn,k = |I| (3.7)

and that the partitions are unique (up to the boundary points of the intervals). Further-
more, we have the following result.

Lemma 3.6. Let (Qn) be a convergent quadrature that allows for partitions of I as
described above. Then limn→∞ maxk∈Nn |In,k| = 0.

Proof. Assume the contrary. Then there exist ε > 0 and sequences (ni)i and (ki)i

with limi→∞ni = ∞ such that |Ini,ki | � ε. Due to the compactness of I, these can
be chosen in a way that limi→∞ tni,ki

=: t exists. Now consider the continuous func-
tion f(x) = max{1 − 2|x − t|/ε, 0}. For this, we have Qf � 1

2ε, but limi→∞ Qnif �
εlimi→∞ f(tni,ki

) = ε, which contradicts the convergence of the quadrature (3.2). �

3.2. Application to the COA model

In our case of the COA model, with a compact interval I and continuous functions r

and u, the complete discretization is given by the following Nn × Nn matrices:

Tn,k� = δk�w(tn,k) � 0, (3.8)

Un,k� = αn,�u(tn,k, tn,�) � 0 (3.9)

and
An = Tn − Un, Kα,n = Un(Tn + α)−1 for α > − min

k∈Nn

w(tn,k).

The eigenvalue equations to be solved are

(An + λn)pn = 0, with pn > 0.

Here, −An + c is positive with a suitable constant c. We further have to assume that
the An are irreducible (which might not be the case for special choices of the tn,k, e.g. if
u1(tn,k) = 0 for some k). Then, due to the Perron–Frobenius Theorem, there exist (up to
normalization) unique positive pn belonging to the eigenvalues −λn = −ρ(−An + c)+ c,
where ρ(M) denotes the spectral radius of a matrix M . With qn = (Tn + λn)pn, also
the eigenvalue equations

(Kλn,n − 1)qn = 0 (3.10)

are solved (and vice versa) (cf. Lemma 2.1).
Both Kλn,n and qn can be embedded into C (I) as described by (3.4) and (3.6). Then,

with Theorem 3.5, one might conclude the convergence ‖qn − q‖∞ → 0. In the end,
however, we are interested in the population vectors pn and their convergence to the

∗ If not noted otherwise, the following convention for operator norms is used. If an operator maps a
space X into itself, we denote its norm by the same symbol as the norm of X, e.g. ‖ · ‖X or ‖ · ‖1 for L1;
in all other cases, the unornamented symbol ‖ · ‖ is used.
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density p. It might be easiest to interpret the vectors pn as point measures on I. But
then the best one can hope for is weak convergence, since the set of point measures is
closed under the total variation norm. It will turn out that we can indeed achieve norm
convergence if we embed the pn into L1(I) in the following way. We choose a disjoint
partition of I as above and let

pn =
Nn∑
k=1

pn,k1In,k
,

where 1J denotes the characteristic function of a set J . (Note that pn,k denotes the kth
component of pn ∈ R

Nn , whereas pn is an L1 function.) Thus the pn can be interpreted
as probability densities on I, if we normalize them such that ‖pn‖1 = 1. This is most
easily expressed using the induced norm

‖f‖(n) :=
Nn∑
k=1

αn,k|fk| on R
Nn .

Convergence in total variation then corresponds to ‖pn − p‖1 → 0 (see [18, Theo-
rem 6.13])∗.

3.3. Convergence of eigenvalues and eigenvectors

We now come to prove the main approximation result.

Theorem 3.7. With the notation and assumptions from §§ 2 and 3.2, we have the
following.

(a) limn→∞ λn = λ > 0.

(b) limn→∞‖pn−p‖1 = 0, i.e. the probability measures corresponding to these densities
converge in total variation.

The idea of the proof is as follows. In the following two lemmas, we first determine an
upper and a lower bound for the λn and conclude that there is a convergent subsequence.
Then we show that every convergent subsequence converges to λ and hence the sequence
itself. By Theorem 3.5, this implies the convergence of a subsequence of (qn/‖qn‖∞)
to a (non-negative) limit function. Since, due to Theorem 2.2, the latter is unique, we
conclude that it is q/‖q‖∞. With this, part (b) can be shown.

Lemma 3.8. There is a constant M > 0 such that |λn| � M for all n ∈ N.

∗ One may also define operator analogues of the An (see [17, § II.2.1.2]).
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Proof. Using (3.8) and (3.9), one checks that

|λn| =
‖λnpn‖(n)

‖pn‖(n)

=
‖Anpn‖(n)

‖pn‖(n)

� sup
‖f‖(n)=1

Nn∑
k=1

αn,k

∣∣∣∣
Nn∑
�=1

(Tn,k� − Un,kl)f�

∣∣∣∣

� max
k

w(tn,k) + max
k,�

u(tn,k, tn,�)
Nn∑
k=1

αn,k

� ‖w‖∞ + ‖u‖C(I×I) sup
m

‖Qm‖

=: M

> 0.

Here, ‖Qm‖ = |I| due to (3.7). More generally, supm ‖Qm‖ < ∞ holds for any convergent
quadrature according to the theorem of Banach–Steinhaus (cf. [19, Theorem 2.5]). �

Lemma 3.9. lim infn→∞ λn > 0.

Proof. We start by following Bürger [4, p. 134] and show that the spectral radius
ρ(Kα) is larger than 1 for sufficiently small α > 0, from which then λ > α > 0 follows
by Lemma 2.3. Let J be the interval from (2.9). Then we have

(Kα1J)(x) =
∫

J

u(x, y)
w(y) + α

dy � 1J(x) ess inf
x′,y′∈J

u(x′, y′)
∫

J

(w(y) + α)−1 dy,

and thus
‖Km

α ‖1/m
1 � ess inf

x,y∈J
u(x, y)

∫
J

(w(y) + α)−1 dy for all m ∈ N,

which implies, for the spectral radius,

ρ(Kα) � ess inf
x,y∈J

u(x, y)
∫

J

(w(y) + α)−1 dy. (3.11)

The right-hand side is, as a function of α, strictly decreasing. Thus, as a consequence of
Levi’s monotone convergence theorem (see [9, Theorem III.12.22]), we also have

lim
α↘0

ρ(Kα) � ess inf
x,y∈J

u(x, y)
∫

J

(w(y))−1 dy > 1

according to (2.9) (including divergence of both sides).
Now we choose α > 0 such that the right-hand side of (3.11) is greater than or equal to

1+ ε, with a sufficiently small ε > 0. Furthermore, we pick, according to the convergence
of the quadrature, an n0 with

ess inf
x,y∈J

u(x, y)|Qn(w + α)−1 − Q(w + α)−1| < 1
2ε for all n � n0.
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In this way,

(Kα,n1J)(x) = Qn(u(x, ·)(w + α)−11J)

� 1J(x) ess inf
x′,y′∈J

u(x′, y′)Qn(w + α)−1

� 1J(x)(ess inf
x′,y′∈J

u(x′, y′)Q(w + α)−1 − 1
2ε)

� 1J(x)(1 + 1
2ε).

Hence, by Lemma 2.3, λn > α > 0 for all n � n0, from which the claim follows. �

Proof of Theorem 3.7. By Lemmas 3.8 and 3.9, the sequence (λn)n has a convergent
subsequence (λni

)i with limit λ′ ∈ ]0, M ]. Consider (Kλ′f)(x) = Q(kλ′(x, ·)f) as well as

(Knf)(x) := (Kλn,nf)(x) = Qn(T + λn)−1(T + λ′)(kλ′(x, ·)f).

We first show that the ‘distorted’ quadrature Q̃ni = Qni(T +λni)
−1(T +λ′) is convergent.

Note that, for i0 large enough, such that infj�i0 λnj > 0, and i � i0, one finds

‖(T + λni)
−1(T + λ) − 1‖∞ = sup

‖f‖∞�1

∥∥∥∥ w + λ

w + λni

f − f

∥∥∥∥
∞

�
∥∥∥(

w + inf
j�i0

λnj

)−1∥∥∥
∞

|λ − λni
| ‖f‖∞

→ 0. (3.12)

Then, since (Qn) is convergent by assumption, we have, for all f ∈ C (I),

‖(Q̃ni
− Q)f‖∞ � ‖Qni

((T + λni
)−1(T + λ′) − 1)f‖∞ + ‖(Qni

− Q)f‖∞ → 0,

where the first term vanishes in the limit due to supm ‖Qm‖ < ∞ and (3.12).
With this, it follows from Theorem 3.5 that ρ(Kn) = 1 is also an eigenvalue of Kλ′

going with a non-negative eigenfunction. The latter is even a.e. positive since, due to
the irreducibility (2.8) of Kλ′ , there cannot be a set with positive measure on which
a non-negative eigenfunction vanishes∗. But since, according to Theorem 2.2, there is,
up to normalization, only one positive eigenfunction, we have λ′ = λ. Therefore, every
convergent subsequence of (λn)n converges to λ, and thus, due to the boundedness, also
the sequence itself. This proves part (a).

Along the same line of reasoning, (anqn), with an = 1/‖qn‖∞, has a convergent subse-
quence with an a.e. positive limit function, which equals aq with a = 1/‖q‖∞. Therefore,

∗ Let q̃ be the eigenfunction and J = {x : q̃(x) > 0} with 0 < |J |. Assume that |J | < |I|. Then, for
x ∈ I \ J , we have 0 = q̃(x) =

∫
J kλ′ (x, y)q̃(y) dy, which implies, for a.e. y ∈ J , that kλ′ (x, y)q̃(y) = 0

and thus u(x, y) = 0, contradicting (2.8).
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‖anqn − aq‖∞ → 0 for n → ∞. Now consider

‖anpn − ap‖∞ = ‖anpn − (T + λ)−1aq‖∞

= max
k∈Nn

sup
x∈In,k

|(w(tn,k) + λn)−1anqn,k − (w(x) + λ)−1aq(x)|

� max
k∈Nn

|(w(tn,k) + λn)−1 − (w(tn,k) + λ)−1|anqn(tn,k)

+ max
k∈Nn

(w(tn,k) + λ)−1|anqn(tn,k) − aq(tn,k)|

+ max
k∈Nn

sup
x∈In,k

|(w(tn,k) + λ)−1aq(tn,k) − (w(x) + λ)−1aq(x)|.

The first term is bounded from above by

|λ − λn|‖(w + inf
m�n0

λm)−1(w + λ)−1‖∞,

for n � n0 with sufficiently large n0, and vanishes for n → ∞ due to λn → λ. The second
term vanishes due to the uniform convergence of the anqn towards aq, and the third due
to the uniform continuity of (w +λ)−1q and Lemma 3.6. With this, anpn → ap in L∞(I)
and thus in L1(I). Hence an → a and pn → p in L1(I), which proves part (b). �

4. Discretization: unbounded interval

Now we assume the types to be taken from I = R and the functions r and u to be
continuous. It will be one aim of this section to analyse what further conditions have
to be imposed in order to allow for a discretization procedure similar to the one in the
previous section. In order to do so, we start by a summary of the relevant theory.

4.1. The Galerkin method

In the Galerkin method, an approximation of compact operators is achieved using
projections to finite-dimensional subspaces. This method has been reviewed, for example,
by Krasnosel’skii et al . [13, § 18]. The results needed in the sequel are collected in the
following result.

Theorem 4.1. Let K be a compact linear operator on the Banach space Y . Consider
the eigenvalue equation

(K − ν)g = 0, (4.1)

which is to be approximated. To this end, let (Yn) be a sequence of closed subspaces of
Y with bounded projections Pn onto them. On these subspaces, let the compact linear
operators Kn be defined, together with the eigenvalue equations

(Kn − νn)gn = 0. (4.2)

Assume that

‖Kn − PnK‖Yn → 0, ‖K − PnK‖Y → 0 as n → ∞. (4.3)
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Then the following statements are true.

(a) For every ν �= 0 from (4.1), there is a sequence (νn) of eigenvalues of (4.2) such that
νn → ν as n → ∞. Conversely, every non-zero limit point of any sequence (νn) of
eigenvalues of (4.2) is an eigenvalue of (4.1).

(b) Every bounded sequence (gn) of eigenvectors of (4.2) associated with eigenvalues
νn → ν �= 0 contains a convergent subsequence; the limit of any convergent subse-
quence (gni)i is an eigenvector of (4.1) associated with the eigenvalue ν (unless the
limit is zero).

Proof. See [13, Theorems 18.1, 18.2]. �

A sufficient condition for the validity of the second assumption in (4.3) is given by the
following.

Proposition 4.2. Let X be a normed space, Y a Banach space and K : X → Y a
compact linear operator. For bounded linear operators Pn : Y → Y (n ∈ N) with Pn → 1
pointwise for n → ∞, the operators PnK approximate K, i.e. ‖PnK − K‖ → 0.

Proof. Follow the proof of [21, Theorem II.3.5], where the additional assumptions
on X and (Pn) are not used. �

4.2. Application to kernel operators

In our case of the COA model, we have X = Y = L1(R) and K is of the form

(Kf)(x) =
∫

R

k(x, y)f(y) dy for all x ∈ R, (4.4)

with a measurable kernel k : R × R → R. Therefore, for the Galerkin method to work, it
is necessary that, for L1(R), operators Pn as in Proposition 4.2 exist. We will explicitly
construct such operators using a sequence ({In,k : 1 � k � Nn})n of families of disjoint
intervals that get finer and finer and also ultimately cover every bounded interval∗.

Proposition 4.3. Let Y be the Banach space L1(R) and finite-dimensional subspaces
Yn of Y chosen to consist of all step functions with prescribed (bounded) intervals In,k

(k ∈ Nn := {1, . . . , Nn}) with the following properties.

(I1) For every bounded interval I ⊂ R and every ε > 0, there is an n0 such that, for all
n � n0, a set L ⊂ Nn exists for which In,L :=

⋃
�∈L In,� satisfies |I \ In,L| = 0 and

|In,L \ I| < ε. (We then say that I is ε-optimally covered.)

(I2) |In,k ∩ In,�| = 0 for all n ∈ N and 1 � k < � � Nn.

∗ Both properties are formally captured by (I1) in Proposition 4.3.
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Then, with the characteristic functions ϕn,k = 1In,k
, the projections Pn onto the sub-

spaces Yn spanned by {ϕn,k : k ∈ Nn} are given by

Pnf =
Nn∑
k=1

ϕn,k
1

|In,k|

∫
In,k

f(x) dx for f ∈ L1(R),

where
∫

In,k
f(x) dx are conditional expectations (cf. [20, Theorem IV.2.4]∗). The projec-

tions satisfy ‖Pn‖1 = 1 and Pn → 1 pointwise.

Proof. Obviously, the subspaces Yn are closed, finite dimensional and the Pn are, due
to (I2), projections onto them. Since

‖Pnf‖ =
Nn∑
k=1

∫
In,k

|f(x)| dx �
∫

R

|f(x)| dx = ‖f‖1 for every f ∈ L1(R)

and ‖Pnϕn,k‖ = ‖ϕn,k‖ for every k ∈ Nn, we have ‖Pn‖ = 1.
We now show that Pn → 1 pointwise. To this end, let f ∈ L1(R) and ε > 0 be

given. Remember that the set of all step functions is, by definition, dense in L1(R)
(cf. [15, § VI.3]). Therefore, we can find a step function ψ =

∑m
k=1 ψk1Jk

(with bounded
intervals Jk) that satisfies ‖f − ψ‖1 < 1

3ε. Due to (I1), we can now choose an n0 such
that ∣∣∣∣

m⋃
k=1

Jk \
Nn⋃
k=1

In,k

∣∣∣∣ = 0 for all n � n0.

Then the only contributions to ‖Pnψ − ψ‖1 are due to mismatches at the bound-
aries of the Jk. Therefore, let J+

k and J−
k (k ∈ Nn) be open intervals of measure

η = ε/(12m maxk |ψk|) that contain the right and left boundary points of Jk, respec-
tively. Choosing n1 � n0 according to (I1) large enough such that every J±

k is η-optimally
covered for n � n1, we have

‖Pnψ − ψ‖1 < 2
m∑

k=1

2ηψk � 1
3ε for n � n1.

Putting everything together yields, for n � n1,

‖Pnf − f‖1 � ‖Pn(f − ψ)‖1 + ‖Pnψ − ψ‖1 + ‖ψ − f‖1 < ε,

which proves ‖Pnf − f‖ → 0 for n → ∞ and thus the approximation property. �

∗ See also [17] for a discussion of the connection to the approximation property of Banach spaces.
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With respect to a kernel operator K of the form (4.4) and some f =
∑Nn

k=1ϕn,kfk

in Yn, the above procedure amounts to the discretization

(PnKf) =
Nn∑
k=1

ϕn,k
1

|In,k|

(∫
In,k

∫
R

k(x, y)
Nn∑
�=1

f�ϕn,�(y) dy dx

)

=
Nn∑
k=1

ϕn,k

Nn∑
�=1

1
|In,k|

(∫
In,k

∫
In,�

k(x, y) dy dx

)
f�

=:
Nn∑
k=1

ϕn,k

Nn∑
�=1

Mn,k�f�,

with an Nn × Nn matrix Mn = (Mn,k�). The corresponding eigenvalue equation is

Mngn = νngn, or, equivalently, PnKgn = νngn,

where gn ∈ Yn is granted due to the projection property. An example of intervals In,k

satisfying properties (I1) and (I2) above is In,k = [−n + 2−n(k − 1),−n + 2−nk], with
k ∈ Nn = {1, . . . , 2n+1n}.

With respect to compactness of K, following Jörgens [11, §§ 11, 12], we extract the
following result.

Proposition 4.4. A kernel operator K on L1(R) of the form (4.4) is compact if it
satisfies the following conditions.

(C1) The function x → k(x, ·) from R to L1(R) is continuous and bounded.

(C2) For every ε > 0, there exists a finite open covering (V1, . . . , Vn) of R and points
xj ∈ Vj such that ‖k(x, ·) − k(xj , ·)‖1 < ε for all x ∈ Vj and all j.

(C3) The function y → k(·, y) from R to L1(R) is continuous and bounded.

(C4) For every ε > 0, there exists a finite open covering (W1, . . . , Wn) of R and points
yj ∈ Wj such that ‖k(·, y) − k(·, yj)‖1 < ε for all y ∈ Wj and all j.

Proof. First, as in [11, § 12.4], we consider the dual system 〈C (R),C1(R)〉 with the
bilinear form 〈f, g〉 =

∫
R
f(x)g(x) dx. Here, C (R) is equipped with the supremum norm

‖ · ‖∞ and C1(R) := C (R) ∩ L1(R) with the norm ‖| · ‖| := max{‖ · ‖∞, ‖ · ‖1}. With this,
we define the transposed KT of K via (KTg)(y) =

∫
R
g(x)k(x, y) dx, for all y ∈ R. Then,

by (C1)–(C4) and [11, Theorems 12.2, 12.3], the compactness of K and KT on C (R)
follows.

As both KT and K are bounded as operators on C (R), they are, at the same time,
Hille–Tamarkin operators in H∞∞(R), since the respective norm, | · |∞∞ in (2.7),
is just given by supx∈R

∫
R

k(x, y) dy and supy∈R

∫
R

k(x, y) dx, respectively [11, Theo-
rems 12.2, 12.3]. Then, according to [11, Theorem 11.5], K and KT can also be regarded
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as bounded operators on L1(R); thus both map C1(R) into itself. Due to [11, Theo-
rem 12.6], there is, for every ε > 0, an operator of finite rank, Kε, with ‖|Kε − K‖| < ε,
where ‖|A‖| := max{‖A‖∞, ‖AT‖∞} is a norm for the Banach algebra of all operators
on C (R) that map C1(R) into itself and have a transposed of the same kind. We have
‖|Af‖| � ‖|A‖| ‖|f‖| for f ∈ C1(R) (see [11, § 12.4]). Thus ‖|A‖| can serve as an upper
bound for the operator norm of A on C1(R). Therefore, K is compact as an operator on
C1(R) and can be approximated by Kε. Furthermore, according to [11, Theorem 11.5],
‖Kε − K‖1 � ‖|(Kε − K)T‖| < ε holds. Hence K is compact as an operator on L1(R)
as well. �

4.3. Application to the COA model

Checking the compactness of Kα by conditions (C1)–(C4) of Proposition 4.4, we would
be able to apply Theorem 4.1 and approximate Kα by operators of finite rank. However,
the original system is described by the (non-compact) operator A = T − U , not by
some Kα. It will be shown that it is indeed possible to discretize the operators T and U

directly by applying the projections Pn from Proposition 4.3, if further restrictions apply.
Then, even more generally, the approximation can be done by choosing arbitrary points
in the intervals In,k at which the functions w and u are sampled. Both procedures will
now be described in detail.

In the first setting, Kλ is approximated by Kn := PnU(PnT + λn)−1. Explicitly, for
f ∈ Yn with f =

∑Nn

k=1 fkϕn,k, it reads

PnTf =
Nn∑
k=1

ϕn,k
1

|In,k|

∫
In,k

w(x) dxfk =
Nn∑
k=1

ϕn,kw(twn,k)fk,

PnUf =
Nn∑

k,�=1

ϕn,k
1

|In,k|

∫
In,k

∫
In,�

u(x, y) dy dxf� =
Nn∑

k,�=1

ϕn,k|In,�|u(tux
n,k�, t

uy
n,k�)f�,

with appropriate points twn,k, tux
n,k� ∈ In,k and tuy

n,k� ∈ In,� that satisfy

1
|In,k|

∫
In,k

u(x, tuy
n,k�) dx = u(tux

n,k�, t
uy
n,k�). (4.5)

These exist due to the continuity of w and u. But more generally, we may pick the points
arbitrarily from the respective intervals.

In either case, we define the Nn × Nn matrices Tn, Un and An := Tn − Un via

Tn,kk := w(twn,k), Un,k� := |In,�|u(tux
n,k�, t

uy
n,k�). (4.6)

The corresponding operators in Yn are given by

Tnf =
Nn∑
k=1

ϕn,kTn,kkfk, Unf =
Nn∑

k,�=1

ϕn,kUn,k�f�, An = Tn − Un,
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again with f =
∑Nn

k=1 fkϕn,k. For notational convenience, we also define the matrices
Pα,n by

PnKαf =
Nn∑

k,�=1

ϕn,k
1

|In,k|

∫
In,k

∫
In,�

u(x, y)
w(y) + α

dy dxf� =:
Nn∑

k,�=1

ϕn,kPα,n,k�f�. (4.7)

The eigenvalue equation to be solved is

(An + λn)pn = 0,

which is equivalent to

(An + λn)pn = 0, (4.8)

where pn =
∑Nn

k=1 pn,kϕn,k ∈ Yn. With Kα,n = Un(Tn + α)−1, α > − mink∈Nn w(tn,k)
and qn = (Tn + λn)pn, also the eigenvalue equation

(Kλn,n − 1)qn = 0

is solved (and vice versa) (cf. Lemma 2.1). (The inequality λn > − mink∈Nn w(tn,k)
follows from Theorem 2.2.)

For these procedures to be valid approximations, the first condition in (4.3), that is,
‖Kn − PnK‖Yn

→ 0, has to be true for K = Kλ and Kn = Un(Tn+λn)−1. This, however,
is not given automatically. Problems arise from the fact that in Kn the averaging defined
by Pn (or, more generally, the sampling) is applied to the numerator and denominator
of kλn separately, whereas in PnK the quotient kλ is averaged as such. It turns out that
some additional requirements of uniform continuity are sufficient for the convergence.
This is made precise in the following two propositions.

Proposition 4.5. Suppose that the following conditions are true.

(S1) u(x, ·) is uniformly continuous for all x ∈ R.

(S2) kα is uniformly continuous on I × R for all α > 0 and all bounded I ⊂ R.

(S3) There is a function wmin : R → R�0, satisfying

∫
R

sup
y∈R

u(x, y)
wmin(y) + α

dx < ∞ for all α > 0,

and an n0 ∈ N such that w(y) � wmin(y′) for all n � n0, � ∈ Nn and y, y′ ∈ In,�.

Then, for K = Kα and Kn = PnU(PnT + α)−1 with any α > 0 and the projections
Pn from Proposition 4.3, the first condition in (4.3) is fulfilled, i.e. ‖Kn − PnK‖Yn → 0
as n → ∞. The same is true for Kn = Kα,n = Un(Tn + α)−1, with the more general
discretization from above if, in addition to (S1)–(S3), the following condition is satisfied.
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(S4) There is a function umax : R × R → R�0, satisfying

∫
R

sup
y∈R

umax(x, y)
wmin(y) + α

dx < ∞ for all α > 0,

and an n1 � n0 such that u(x, y) � umax(x′, y) for all n � n1, k ∈ Nn, y ∈ R and
x, x′ ∈ In,k.

Let us split the rather technical proof into a couple of digestible lemmas.

Lemma 4.6. If conditions (S1) and (S2) are true, then, for every ε > 0 and every
compact interval I ⊂ R, there is an n2 such that, for all n � n2 and all k, � ∈ Nn with
In,k ∩ I �= ∅, we have

1
|In,�|

|Pα,n,k� − Un,k�

Tn,�� + α
| <

ε

|I| .

Proof. Let ε and I be given as above and

I0 =
⋃
n∈N

⋃
k:In,k∩I 	=∅

In,k,

which is a bounded interval due to (I1) from Proposition 4.3. By assumptions (S1)
and (S2), u and kα are uniformly continuous on Ī0 × R. Furthermore, (w + α)−1 is
bounded by α−1. Thus there is an n2 such that, for every n � n2 and k, � ∈ Nn with
In,k ∩ I �= ∅,

∣∣∣∣ 1
|In,k|

1
|In,�|

∫
In,k

∫
In,�

u(x, y)
w(y) + α

dy dx −
u(tux

n,k�, t
uy
n,k�)

w(twn,�) + α

∣∣∣∣
=

∣∣∣∣u(tkx
n,k�, t

ky
n,k�)

w(tky
n,k�) + α

−
u(tux

n,k�, t
uy
n,k�)

w(twn,�) + α

∣∣∣∣

�
∣∣∣∣u(tkx

n,k�, t
ky
n,k�)

w(tky
n,k�) + α

−
u(tux

n,k�, t
w
n,�)

w(twn,�) + α

∣∣∣∣ +
|u(tux

n,k�, t
w
n,�) − u(tux

n,k�, t
uy
n,k�)|

w(twn,�) + α

<
ε

|I| .

Here, the points tkx
n,k� ∈ In,k and tky

n,k� ∈ In,� are chosen such that the first equality holds,
which is possible due to the continuity of kα. From this, the claim follows easily with (4.6)
and (4.7). �

Lemma 4.7. For every ε > 0, there is a compact interval I1 such that, for all intervals
I ⊃ I1 and all n ∈ N, ∑

k
In,k∩I=∅

|In,k| max
�∈Nn

Pα,n,k�

|In,�|
< ε.
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Proof. Due to (U4), there is a compact interval I1 such that, for all I ⊃ I1,∑
k

In,k∩I=∅

|In,k| max
�∈Nn

Pα,n,k�

|In,�|
�

∑
k

In,k∩I=∅

|In,k| 1
|In,k|

∫
In,k

max
y∈R

u(x, y)
w(y) + α

dx

�
∫

R\I1

max
y∈R

u(x, y)
w(y) + α

dx

< ε,

which proves the claim. �

Lemma 4.8. If condition (S3) is true, and if

(i) Un,k� = (|In,�|/|In,k|)
∫

In,k
u(x, tuy

n,k�) dx for all k, � ∈ Nn; or

(ii) condition (S4) is fulfilled,

then, for every ε > 0, there is a compact interval I2 such that, for all intervals I ⊃ I2

and all n ∈ N, ∑
k

In,k∩I=∅

|In,k| max
�∈Nn

Un,k�

|In,�|(Tn,�� + α)
< ε.

Proof. In case (i), we have, using (4.5),

∑
k

In,k∩I=∅

|In,k| max
�∈Nn

u(tux
n,k�, t

uy
n,k�)

w(twn,�) + α
=

∑
k

In,k∩I=∅

max
�∈Nn

∫
In,k

u(x, tuy
n,k�) dx

w(twn,�) + α

�
∑

k
In,k∩I=∅

∫
In,k

max
y∈R

u(x, y)
wmin(y) + α

dx

�
∫

R\I2

max
y∈R

u(x, y)
wmin(y) + α

dx

< ε

for some compact interval I2, due to (S3), and all intervals I ⊃ I2. In case (ii), we can
find, due to (S4), a compact interval I2 such that, for all intervals I ⊃ I2,

∑
k

In,k∩I=∅

|In,k| max
�∈Nn

u(tux
n,k�, t

uy
n,k�)

w(twn,�) + α
�

∑
k

In,k∩I=∅

|In,k| max
y∈R

u(tux
n,k�, y)

wmin(y) + α

�
∑

k
In,k∩I=∅

max
y∈R

∫
In,k

umax(x, y) dx

wmin(y) + α

�
∫

R\I2

max
y∈R

umax(x, y)
wmin(y) + α

dx

< ε.

This completes the proof. �
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Proof of Proposition 4.5. Let ε > 0 be given. Choose a compact interval I such
that I ⊃ I1 ∪ I2, with I1 and I2 from Lemmas 4.7 and 4.8. Let

I3 =
⋃

n,k:In,k∩I 	=∅
In,k.

Furthermore, let n0 be as in (S3), n1 as in (S4) (or n0 = n1 if not applicable), n2 as in
Lemma 4.6 and n � max{n0, n1, n2}. Then

‖PnKα − Kα,n‖Yn

= sup
f∈Yn

‖f‖Yn �1

Nn∑
k=1

|In,k|
∣∣∣∣

Nn∑
�=1

(
Pα,n,k� − Un,k�

Tn,�� + α

)
f�

∣∣∣∣

�
( ∑

k
In,k∩I 	=∅

+
∑

k
In,k∩I=∅

)
|In,k| max

�∈Nn

1
|In,�|

∣∣∣∣Pα,n,k� − Un,k�

Tn,�� + α

∣∣∣∣

�
∑

k
In,k∩I 	=∅

|In,k| ε

|I3|
+

∑
k

In,k∩I=∅

|In,k|
(

max
�∈Nn

Pα,n,k�

|In,�|
+ max

�∈Nn

Un,k�

|In,�|(Tn,�� + α)

)

< 3ε

according to Lemmas 4.6–4.8. From this, the claim follows. �

Proposition 4.9. Let αn > − mink∈Nn
w(tn,k) with αn → α > 0 as n → ∞ and the

hypotheses of Proposition 4.5 be satisfied. Then ‖Kαn,n − PnKα‖Yn
→ 0.

Proof. Consider

‖PnKα − Un(Tn + αn)−1‖Yn

� ‖PnKα − Un(Tn + α)−1‖Yn + ‖Un[(Tn + αn)−1 − (Tn + α)−1]‖Yn .

The first term tends to zero as n → ∞ according to Proposition 4.5. For the second,
choose n0 such that infn�n0αn > 0. Then, for n � n0,

‖Un[(Tn + αn)−1 − (Tn + α)−1]‖Yn
= |α − αn| ‖Un(Tn + αn)−1(Tn + α)−1‖Yn

� |α − αn| ‖U‖Y

(
inf

n�n0
αn

)−1
α−1.

This vanishes as n → ∞, since all constants that occur are finite, from which the claim
follows. �

4.4. Convergence of eigenvalues and eigenvectors

Let us now show the main result.

Theorem 4.10. With the notation and assumptions from § 2 and λ, p, λn, pn as
in (2.2) and (4.8), we have the following.
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(a) limn→∞ λn = λ > 0.

(b) limn→∞‖pn−p‖1 = 0, i.e. the probability measures corresponding to these densities
converge in total variation.

The plan is the same as that described in § 3.3. The proofs, however, are quite different
due to the more general set-up.

Lemma 4.11. There is a constant M > 0 such that lim supn→∞ λn � M .

Proof. Choose an α > 0 such that ‖Kα‖Y � 1 − ε for some 0 < ε < 1, which is
possible since ‖Kα‖Y → 0 for α → ∞. Then, for all n � n0 with some n0, due to
Propositions 4.2 and 4.5, |‖PnKα‖Y − ‖Kα‖Y | � 1

3ε and |‖Kα,n‖Yn − ‖PnKα‖Yn | � 1
3ε.

For these n, we have

ρ(Kα,n) � ‖Kα,n‖Yn

� ‖PnKα‖Yn
+ 1

3ε

� ‖PnKα‖Y + 1
3ε

� ‖Kα‖Y + 2
3ε

� 1 − 1
3ε

< 1,

and thus λn < α by Lemma 2.3. Then, with M = α, the claim follows. �

Lemma 4.12. lim infn→∞ λn > 0.

Proof. In a modification of the proof of Lemma 3.9, we choose α > 0 such that
ρ(Kα) � 1+ε with a sufficiently small ε > 0. We know from the theorem of Jentzsch [20,
Theorem V.6.6] that ρ(Kα) is a simple eigenvalue of Kα and the only one with a positive
eigenfunction. The same is true for ρ(Kα,n) with respect to Kα,n (as an operator in Yn).
Theorem 4.1, together with Proposition 4.5, implies that there is a sequence of eigenval-
ues νn of Kα,n with limit ρ(Kα). Therefore, lim infn→∞ ρ(Kα,n) � ρ(Kα) � 1 + ε and
thus λn > α > 0 for sufficiently large n. From this, the claim follows. �

Proof of Theorem 4.10. From Lemmas 4.11 and 4.12, we conclude that there is
a convergent subsequence (λni

)i with limit λ′ ∈ ]0, M ]. Then, due to Proposition 4.9,
Kλni

,ni
converges to PnKλ′ in norm. Hence limi→∞ ρ(Kλni

,ni
) = ρ(Kλni

,ni
) = 1 is

an eigenvalue of Kλ′ by Theorem 4.1. Furthermore, a subsequence of (aniqni), where
an = 1/‖qn‖1, converges to an eigenfunction q̃ of Kλ′ , and q̃ � 0 (but q̃ �= 0). As there
is only one non-negative eigenfunction by Theorem 2.2, we conclude that λ′ = λ and
q̃ = aq, with a = 1/‖q‖1. Since this is true for every convergent subsequence of (λn), the
claim of part (a) and the convergence anqn → aq follow.
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Now let n0 be sufficiently large so that α := infn�n0λn > 0. Then, for n � n0,

‖anpn − (T + λ)−1aq‖1

= ‖(PnT + λn)−1anqn − (T + λ)−1aq‖1

� ‖[(PnT + λn)−1 − (PnT + λ)−1]anqn‖1

+ ‖(PnT + λ)−1(anqn − aq)‖1 + ‖[(PnT + λ)−1 − (T + λ)−1]aq‖1

� 1
αλ

|λ − λn| +
1
λ

‖anqn − aq‖1 +
1
λ2 ‖(1 − Pn)Taq‖1

→ 0.

With this, anpn → ap in L1(I), and hence an → a and pn → p, which proves part (b). �

5. Comparison of both methods

Both approaches, the application of the Nyström method in the case of a compact interval
and of the Galerkin method in the case of an unbounded interval, effectively lead to
the same approximation procedure in our case of the COA model. First, one chooses
appropriate intervals In,k and points tn,k ∈ In,k (also, for an unbounded interval, the use
of identical points twn,k = tux

n,k� = tuy
n,�k = tn,k seems reasonable in many cases). Then the

operators T and U from (2.3) and (2.4), respectively, are approximated by matrices Tn

and Un (cf. equations (3.8), (3.9) and (4.6)). For these, the (finite-dimensional) eigenvalue
problem (Tn − Un + λn)pn = 0 is solved. Here, the eigenvectors pn are considered as
probability densities on I. Then, under the conditions described above, the eigenvalues λn

converge to λ and the measures corresponding to the pn converge in total variation to
the equilibrium distribution described by the solution p of the original problem (1.1).

The differences between the two approaches lie on the intermediate technical level of the
compact operators Kα and Kα,n and the solutions q and qn of the equivalent eigenvalue
problems (2.6), (3.5) and (4.2). Here, in the first case, we have collectively compact
convergence Kλn,n

cc−→ Kλ going together with ‖qn − q‖∞ → 0, whereas, in the second
case, ‖PnKλ −Kλ‖Y → 0 in Y = L1(R) and ‖Kλn,n −PnKλ‖Yn → 0 in the subspaces Yn

going together with ‖qn − q‖1 → 0. On this level, neither does ‖Kλn,n − Kλ‖∞ → 0 hold
in the first case (cf. [14, Theorem 12.8]), nor any kind of collectively compact convergence
in the second.

Both methods may, strictly speaking, only be applied to continuous mutation ker-
nels u. This excludes, for example, Γ -distributions (reflected at the source type), where
u(x, y) ∝ |x − y|Θ−1 exp(−d|x − y|), which have poles for x = y if Θ ∈ ]0, 1[ and d > 0.
These distributions incorporate biologically desirable properties, such as strong leptokur-
ticity, and have been used, for example, in [10]. However, kernels as the above may be
approximated arbitrarily well by continuous ones in the sense that the norm of the differ-
ence operator (and thus the difference of the largest eigenvalues) gets arbitrarily small.
Then the procedures described here may be applied to these continuous kernels.
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6. Outlook

This article shows that most reasonable COA models can be approximated arbitrarily
well by models with discrete types. Therefore, one can expect both model classes to
behave quite similarly. For certain mutation–selection models with discrete types, a sim-
ple maximum principle for the equilibrium mean fitness λ was recently found (see [8];
see also [2,6,7]). It takes the form

λ � sup
x∈I

(r(x) − g(x))

and holds as an exact identity in a limit of infinitely many types that densely fill a compact
interval I. In the simplest case, a linear ordering of types is assumed and mutation is
taken to only connect every type x with its two neighbours at rates u±(x). Then the
function g is given as g(x) = u+(x) + u−(x) − 2

√
u+(x)u−(x). In a subsequent analysis

(see [6]), models with three types of mutation (and hence six neighbours of every type)
were considered. For these, g is given as the sum of three terms of the above pattern
(and x has three components), one for each type of mutation.

In the light of the findings presented here, one may conjecture that, for certain COA
models, the above characterization is also valid with an appropriate function g. The first
steps in [17], both analytical and numerical, corroborate this conjecture with

g(x) =
∫

I

(u(x, y) −
√

u(x, y)u(y, x)) dy,

which generalizes the additive structure of g found in [6] with respect to a continuum of
possible mutations. The important prerequisite seems to be the possibility to approximate
every local subsystem, corresponding to a small interval J ⊂ I, by a COA model whose
mutation kernel is of the form u(x, y) = exp(γ(x−y))h(|x−y|). Then, in a limit ν → ∞,
where h is replaced by hν(|x − y|) = νh(ν|x − y|), the above expression seems to become
exact. A rigorous proof for this statement seems feasible in the near future.
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