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GAPS BETWEEN SPHERES IN NORMED 
LINEAR SPACES 

BY 

R O B E R T H. L O H M A N 

ABSTRACT. The geometric notions of a gap and gap points 
between "concentric" spheres in a normed linear space are intro­
duced and studied. The existence of gap points characterizes finite-
dimensional spaces. General conditions are given under which an 
infinite-dimensional normed linear space admits concentric spheres 
such that both these spheres and their dual spheres fail to have gap 
points. 

In this paper, we introduce the idea of a gap and gap point between two 
"concentric" spheres in a normed linear space X It is shown how the existence 
of gap points in X is related to norm-preserving extensions (with respect to two 
equivalent norms) of certain continuous linear functional on subspaces of X 
[Proposition 2]. In addition, we show how the existence of gap points in X 
implies the existence of gap points in the dual of X [Proposition 3] and in 
quotients of X [Proposition 5]. In the main results of the paper, finite-
dimensional normed linear spaces are characterized in terms of existence of 
gap points [Proposition 7] and infinite-dimensional Banach spaces that are 
weakly compactly generated or have weakly compactly generated dual spaces 
are shown to admit concentric spheres such that both these spheres and their 
dual spheres fail to have gap points [Propositions 8, 9]. 

X denotes a real or complex vector space. If p is a norm on X, then 
U(p) = {x:p(x)<l} and S(p) = {x :p(x) = 1}. The dual of X is denoted by X* 
and the dual norm by p* (i.e., p*(/) = sup{|/(x)|:p(x)<l}). If A <=-X (respec­
tively, B c X * ) , we let A 0 (respectively, B0) denote { /eX*: | / (x ) |< l for all 
xeA} (respectively, { x e X : | / ( x ) | < l for all feB}). Recall that U(p)° = l/(p*) 
and (7(p*)0= U(p). If A is a convex, circled, absorbing subset of X, the gauge 
functional pA of A is defined by pA(x) = inf{À >0:xe\A}. A subset A of a 
normed linear space is a convex body provided A is a closed, convex, bounded 
set with nonempty interior. A Banach space X is said to be weakly compactly 
generated (WCG) in case there exists a weakly compact subset A of X such 
that the closed linear span of A is all of X In particular, all separable or 
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reflexive Banach spaces are WCG. If X is a Banach space, a sequence 
(x*)<=X* is called a weak*-basic sequence in case: (i) Every element in the 
weak*-closed linear span of (x*) has a unique expansion of the form £*= 1 anx* 
relative to the weak* topology, and (ii) the coefficient functional of (x*) are 
weak*-continuous. Fundamental results on weak*-basic sequences can be 
found in [5]. 

DEFINITION 1. Let p and q be equivalent norms on X such that q^p. The 
number g(p, q ) - l , where 

g(p, q) = sup{p(x) : q(x) = 1}, 

is called the gap between the spheres S(p) and S(q). If q(x0) = 1 and p(x0) = 
g(p,q), then x0 is called a gap point for (p, q). 

Of course, if U(q) is a multiple of U(p), every member of S (q) is a gap 
point. Also, if X is a finite-dimensional vector space, then S(q) is compact for 
the p-topology. Consequently, a gap point exists. The following examples give 
other conditions under which gap points exist: 

(i) Let V be a convex, circled subset of the normed space (X, p) such that V 
contains a point vQ of maximum p-norm; for instance, V might be compact. If 
q denotes the gauge functional of l /(p)+ V, then (l + p(u0)_1)uo is a gap point 
for(p,q) . 

(ii) Given a normed space (X, q), let / be a continuous linear functional that 
attains its norm on U(q), say at x0. If the norm p is defined by p(x) = 
q(x) + \f(x)\> then x0 is a gap point for (p, q). 

(iii) Let (X, q) be a Banach algebra with identity and let x be an invertible 
element of X such that q ( x _ 1 ) < l < q ( x ) . If qx denotes the norm whose unit 
ball is xU(q), then x is a gap point for (q, qx). 

REMARK. If p, q are as in Definition 1, it is easy to see that 

g(p, q) = sup{p(x) : q(x)< 1} = inf{A > 0 : U{q) a kU(p)}9 

and l / (q)cg(p ,q) l / (p) . 

PROPOSITION 2. Let p and q be equivalent novnus on X such that q<p. Let x0 

be a gap point for (p, q) and let Y be a linear subspace of X containing x0. If f is 
a continuous linear functional on Y that attains its p-norm at p(x0)_1x0, then 

(a) / attains its q-norm at x0 and q*(/) = g(p, q)p*(/); 
(b) Every linear extension of f to X that preserves its p-norm also preserves its 

q-norm. 

Proof, (a). Let q(x) = 1, x e Y. Then 

| /(x) |<p(x)p*(/)<g(p,q)p*(/) , 
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implying q*(/)^g(p, q)p*(f). On the other hand, 

q*(f)* l/(*o)l = gip, q) l /CpW^ol = g(p, q)p*(f). 
Therefore 

\f(xj\ = q*(f) = g{p,q)p*(f). 

(b). Let h be a linear extension of / to X such that p*(h) = p*(/). Then h 
attains its p-norm at p(x0)_1x0. By (a), 

q*(W = g(p, «)p*(h) = g(p, q)p*(f) = q*(/). 

REMARK. If p and q are equivalent norms on X and q ^ p , then q* and p* 
are equivalent norms on X* and p*<q*. Moreover, 

g(q*, p*) = inf{A > 0 : U(p)°c AL/(q)0} 

= inf{A > 0 : l /(p)°c (A"1 U(q))0} 

= inf{A>0:A-1[/(q)e(7(p)} 

= g(P, q). 

Therefore the gap between S(q*) and S(p*) is the same as the gap between 
Sip) and S(p). 

PROPOSITION 3. Let p and q be equivalent norms on X with q^p. If S(q) 
contains a gap point for (p, q), then S(p*) contains a gap point for (q*, p*). 

Proof. Let q(x0) = 1 and p(x0) = g(p, q). Choose f0 e X* such that p*(/0) = 1 
and /o(x0) = p(x0). Then we certainly have q*(f0)^g(p, q). On the other hand, 
we must have q*(/0)^g(q*, p*). The preceding remark completes the proof. 

REMARK. In general, the converse of Proposition 3 fails. For example, let 
X = c0, let p denote the usual supremum norm on X, and let q denote the 
norm whose unit ball is 

U(q) = {(xn):\xn\<2-lln}. 

It is easily checked that S(q) (respectivley, Sip*)) does not contain a gap point 
for (p, q) (respectively, (q*, p*)). However, since 

C/(p**) = { ( x n ) e C : k | < l } , 
and 

Uiq**) = {ixn)e€00:\xn\^2-lln}, 

it is clear that the sequence (2-l/n)e U(q**) is a gap point for (p**, q**). 
If X is reflexive, Proposition 3 yields the following result. 

COROLLARY 4. Let (X, p) be a reflexive Banach space and let q be an 
equivalent norm on X such that q^p. Then S(q) contains a gap point for (p, q) if 
and only if Sip*) contains a gap point for (q*, p*). 
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Before proceeding, let us recall a notion of orthogonality introduced in [1] 
(also, see [3]). Let (X, p) be a normed space, Y a linear subspace of X and 
x0 e X We say x0 is orthogonal to Y relative to p in case 

p(x0 + y)>p(x0)> for all y e Y 

Now let p and q be equivalent norms on X such that q < p. If Y is a closed 
linear subspace of X and 7r :X—» X/Y denotes the quotient mapping, let p^, q^ 
denote the quotient norms on X/Y determined by p and q, respectively. Then 
p^ and q^ are equivalent norms on X/Y such that q^^p^. 

PROPOSITION 5. Let p and q be equivalent norms on X such that q^p. Let x0 

be a gap point for (p, q) and let Y be a closed linear subspace of X such that x0 is 
orthogonal to Y relative to p. Then 

(a) x0 is orthogonal to Y relative to q ; 
(b) g(p,q) = g(p^,qj; 
(c) TTX0 is a gap point for (p^, q^). 

Proof, (a). Suppose there exists yeY such that q(x0 + y)<q(x0) = 1. Let 
z = q(jCo + y)_1(x0 + y). Then q(z) = l and 

p(z) > q(x0 + y)_1pUo) = q(x0 + y)_1g(p, q) > g(p, q), 

a contradiction. 
(b). Recall that IT maps the interior of U(p) onto the interior of U(p^). 

Therefore, if A > 0 and t / (q )c ALT(p), then l / ( q j c Al / (pJ . Taking the in-
fimum over all such À shows gip^, q>rr) — g(p> <Ù- On the other hand, since x0 is 
orthogonal to Y relative to both p and q, qw(7rx0) = q(x0)= 1 and p^C^Xo) 
= p(x0) = g(p, q). It follows that gCp ,̂ q^) = g(p, q). At the same time we have 
also shown rrx0 is a gap point for (p^, q^), thus establishing (c). 

We can now sharpen Proposition 3 as follows. 

COROLLARY 6. Let p and q be equivalent norms on X such that q^p. Let x0 be 
a gap point for (p, q) and let Y be a closed linear subspace of X such that x0 is 
orthogonal to Y relative to p. Then a gap point exists in Y± for (q*,p*). 

Proof. By Proposition 5, IT(X0) is a gap point for (p^q^) in X/Y. By 
Proposition 3, a gap point exists in (X/Y)* for (q*,p*). Using the standard 
identification (X/Y, p j * = ( Y \ p*), the result follows. 

Our next result characterizes finite-dimensional spaces in terms of the 
existence of gap points and operators attaining their norm. 

PROPOSITION 7. Let (X, q) be a normed linear space, the following are 
equivalent: 

(i) X is of finite dimension ; 
(ii) For every equivalent norm p such that q<p, a gap point exists for (p, q); 
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(iii) Every bounded linear operator T:X-*c0 attains its q-norm; 
(iv) For every equivalent norm r such that r<q, a gap point exists for (q, r). 

Proof, (i) ^ (ii) and (i) => (iv) are clear. 
(ii)4>(iii). Let T:X->c0 be a bounded linear operator. Define p(x) = 

q(x) + ||T(x)|| for x e X . Then p is an equivalent norm on X such that q < p . If 
x0 is a gap point for (p, q), T attains its q-norm at x0. 

(iii)=> (i). Assume that every bounded linear operator T:X—> c0 attains its 
q-norm. If X is infinite-dimensional, then by [6] there is a normalized sequence 
(/n) in X* such that fn —» 0 pointwise on X. Let (an) be a sequence of positive 
scalars strictly increasing to 1. Define T:X-^c0 by T(x) = (anfn(x)) for all 
x e X. Then T is a linear operator, T has norm one, yet T does not attain its 
q-norm. The contradiction shows that X is of finite dimension. 

(iv) => (i). If X is infinite-dimensional, X contains a normalized basic se­
quence fa). Let r denote the norm on X whose unit ball is the closed, convex, 
circled hull of the set 

U(q)U{(2-n-1)xn:n = l,2,...}. 

It is clear that r is an equivalent norm, r < q and g(q, r) = 2. By hypothesis, 
there exists x 0 e X such that r(x0) = l and q(x0) = 2. 

By the definition of U(r)9 there is a sequence ( i i j in U(q) and finitely 
nonzero scalar sequences (akn)~=1 , (0kn)~=i with 5£=i (|akn)| + | /3k n | )^l , such 
that the sequence 

Uk= Z «kn"n+ Z |3kn(2-n~1)xn, k = l , 2 , . . . , 
n = l n = l 

converges to x0. For each fc, q ( u k ) ^ 2 - £ ~ = 1 l«knl a n d ^ m *s fixed, 

qOfc)̂  I k J + 2 Z |/3kn| + |/3km|(2-m-1) 
n = l n^m 

^1+ I l^nl-IPkmlm-1 

n = l 

< 2 - | j 8 k m | m - 1 . 

Since q(uk)—»2, it follows that limk Xn=i |akn | = 0. Therefore, x0 is in the 
closed linear span of (xn), say x0 = Xn=i ^ n - The preceding inequality also 
shows that for each rc, limk |3kn = 0. Therefore 8n = 0 for all rc. The contradiction 
shows that X is of finite dimension. 

REMARKS. (1) If X is a reflexive Banach space, then every bounded linear 
operator T:X->€1 attains its norm. Therefore, in statement (iii) of Proposi­
tion 7, c0 cannot be replaced by an unspecified, but fixed, Banach space. 
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(2) An immediate consequence of Proposition 7 and Corollary 4 is the fact 
that if (X, q) is an infinite-dimensional, reflexive Banach space, then there are 
equivalent norms p, r on X with r<q<p such that gap points do not exist for 
(p, q), (q, r), (q*, p*), (r*, q*). We do not know if this result is true for all 
infinite-dimensional Banach spaces. The fact, however, that both X and X* are 
WCG if X is reflexive suggests the preceding observation might be extendable 
to the case when X and X* are WCG. This is, in fact, true and it results from 
the content of the next two propositions. Their proofs depend upon properties 
of WCG spaces, weak*-basic sequences, and a modification of part of the 
proof of Proposition 7. 

PROPOSITION 8. If (X, q) is an infinite-dimensional WCG Banach space, then 
there is an equivalent norm p onX with q^p such that gap points do not exist for 
(p,q), (q*,p*). 

Proof. Let (x*) be a normalized sequence in X* such that x * - * 0 weak*. 
Since X is WCG, we may assume by [4, p. 114] that (x*) is a weak*-basic 
sequence. Let s denote the norm on X* whose unit ball is the weak*-closed, 
convex, circled hull of the set 

V = l / ( q * ) U { 2 - n - 1 ) x * : n = l , 2 , . . . } . 

Then s is an equivalent norm, s < q * and g(q*, s) = 2. If a gap point x ^ e X * 
exists for (q*, s), there is a net (vy) in V such that vy -» x* weak*. For each 7 
choose a sequence (u*n)~=1 in U(q*) and finitely nonzero scalar sequences 
(ayn)n=i, (i&Yn)n=i> as in Proposition 7, such that 

v*= I aynu*n+ £ 0 ^ ( 2 - r T 1 ) * * . 
n = 1 n=1 

We again have q*(i>*)-»2 and, arguing as in Proposition 7, we see that 
limy Y,n=i\ayn\ = 0. Thus, x* is in the weak*-closed linear span of (x*). Since 
(x*) is weak*-basic, there is a sequence (8n) of scalars such that x* = En=i ^n** 
relative to weak* topology. Because we still have lim^ (3yn = 0 for each n, the 
fact that the coefficient functional for (x*) are weak*-continuous implies 
8n = 0 for all n. The contradiction shows that no gap points exist for (q*, s). Let 
p denote the norm on X whose unit ball is U(s)0. Since, U(s) is weak*-closed, 
p* = s. By Proposition 3, no gap points exist for (p,q). 

PROPOSITION 9. If (X, q) is an infinite-dimensional Banach space such that 
X* is WCG, then there is an equivalent norm r on X with r<q such that gap 
points do not exist for (q, r), (r*,q*). 

Proof. Every quotient of X* is WCG. Sine C is not WCG, X does not 
contain an isomorphic copy of €t. By [7], there is a normalized sequence (xn) in 
X such that xn —» 0 weakly. Let j : X —» X** denote the canonical imbedding 
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and let j(xn) play the role of x* in proof of Proposition 8. By that proof, there 
is a norm t on X** such that t is equivalent to q**, t <q**, no gap points exist 
for (q**, f), and 17(f) is weak*-closed, convex, circled hull of the set l7(q**)U 
{(2- rT^/OO : n = 1, 2, . . .} . Define r(x) = t(j(x)) for all x e X. Then r is a norm 
on X, equivalent to q, with r > q. By Goldstine's theorem [2, p. 424], we have 

l/(r**) = I7(r*)° = I7(r)00 = (/(X) H I7(f))0° = U(t). 

Consequently, r** = t. By Proposition 3, gap points do not exist for (q, r) or 
(rW). 

If X is a reflexive Banach space, and Y is a closed linear subspace of X of 
finite codimension, then every convex body in X contains a point that is 
farthest from Y. As another application of Proposition 7, we prove the 
converse of this statement. More precisely, we have 

COROLLARY 10. Let (X, p) be a normed space and let Y be a closed linear 
subspace ofX. If every circled convex body A in X contains a point xA such that 

d(xA,Y) = sup{d(x,Y):xeA}, 

then Y is of finite codimension in X. 

Proof* Let 7r:X—»X/Y denote the quotient mapping and let q be the 
quotient norm determined by p. Suppose r is a norm on XIY that is equivalent 
to q and r<q. Since U(r) is a bounded subset of XIY, there is a constant M > 0 
such that ir(Ml/(p))=> l/(r). Let 

A = 7r1(LT(r))nMl7(p), 

and choose xA e A, as in the hypotheses. Then 7rxA G U(r) and 

q(7rxA) = d(xA, Y) = sup{d(x, Y) : x G A} = sup{q(x) : x e l/(r)}. 

Therefore 7rxA is a gap point for (q, r). By Proposition 7, X/Y is of finite 
dimension. 

REMARKS. Let p and q be equivalent norms on X such that q^p . The 
number g(p, q) — 1 that we have discussed here is a measure of the largest gap 
between the spheres S(p) and S(q). Note, too, that g(p, q)-\ is the usual 
distance in the Hausdorff metric between U(p) and U(q), measured using the 
norm p. The corresponding gap points are "wide" gap points. In a similar 
manner, if we let 

s(p,q) = inf{p(x):q(x) = l}, 

then s(p, q)-\ is a measure of the smallest gap between the spheres S(p) and 
S(q) and it then is natural to define a "narrow" gap point as a vector x such 
that q(x)= 1 and p(x) = s(p,q). If c>0 is chosen so that cp<q, then a wide 
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(respectively, narrow) gap point exists for (p, q) if and only if a narrow 
(respectively, wide) gap point exists for (q, cp). Using the results presented 
here, narrow gap analogues of Propositions 2, 3, 7, 8, 9 and Corollary 4 are 
easy to state and prove. For instance, Proposition 8 becomes 

PROPOSITION 8'. If (X, q) is an infinite-dimensional WCG Banach space, then 
there is an equivalent norm r on X with r<q such that narrow gap points do not 
exist for (q, r), (r*, q*). 
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