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The idea behind tangles

This chapter offers three introductions to the concept and purpose of

tangles: one for the natural sciences, one for the social sciences, and

one for data science. These introductions can be read independently,

and readers may choose any one of them as an entry point to this book,

according to their own background.

However as all three introductions illuminate the same concept,

readers from any background are likely also to benefit from the other

two viewpoints. Indeed, while each of them may seem plausible enough

on its own, they are rather different. The fact that they nevertheless

describe the same concept, that of a tangle, illustrates better than any

abstract discussion the breadth of this concept and its potential appli-

cations, including in fields not even touched upon here. Moreover, even

in a given context where one of the three viewpoints seems more fitting

than the other two, switching to one of those deliberately for a moment

is likely to add insight that would otherwise be easy to miss.

1.1 Tangles in the natural sciences

Suppose we are trying to establish a possible common cause of some set

of similar phenomena. To facilitate this, we may design a series of mea-

surements to test various different aspects of each of these phenomena.1

If we already have an overview of all the potential causes, we might

try to design these measurements so that each potential cause would yield

a list of expected readings, one for each of these different measurements,

so that different potential causes differ in at least one measurement.
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4 1. The idea behind tangles

Then only the true cause would be compatible with all the readings we

get from our actual measurements performed on the phenomena we are

trying to explain.

In our less-than-ideal world, it may not quite work like this. For a

start, we might simply not be aware of all the potential causes – not to

mention the fundamental issue of what, if anything, is a ‘cause’. Similar

phenomena may have different causes, or no single cause. Even poten-

tially single causes need not be mutually exclusive but may be able to

co-exist; then we shall not be able to design experiments that will exclude

all but one of them with certainty. And finally, measurements may be

corrupted, but we may not know which ones were.

We usually try to compensate for this by building in some redun-

dancy: perhaps by taking more measurements, or by measuring more

different aspects. Or we might resign ourselves to making claims only in

probability – which will protect us from being disproved by any single

event, but which may also increase immensely the overheads needed to

justify precise quantitative assertions (of probabilities).

Tangles offer a structural, rather than probabilistic, way to af-

ford the redundancy needed in such cases. They allow us to

derive predictions from our data as we would expect them from

identifying causes, while sidestepping the philosophical issue of

what constitutes a cause.

The idea, at a high level, is to replace the search for ‘causes’ with

a search for something we can observe directly: structure in our data

that occurs as a result of the presence of an underlying cause – a kind

of structural footprint in observable data that we find whenever phe-

nomena have some common cause, no matter what that cause may be.

Different causes have different footprints, but all causes have the same

structural type of footprint: tangles. The idea is that the structural

footprint of each particular cause should carry enough information to

replace any reference in the scientific process to that cause, e.g. in mak-

ing predictions, with a reference to this structure, the tangle that reflects

this cause in observable data. If desired, we may think of tangles as an

extensional definition of ‘cause’ that achieves precision and observability

at the expense of the intuitive appeal of our informal notion of ‘cause’.

In our generic example, a tangle would be a set of hypothetical

readings for the measurements we have performed on our phenomena,

a set of one possible reading per measurement. It would not be just any
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such set, but one that is typical for the actual readings we got on our

phenomena:

A tangle is a typical set of measurement readings, one for each

measurement, such as a set of readings due to a particular cause.

It may happen that one, or several, of our phenomena produced

exactly this set of readings. But it can also happen that an ‘abstract’

set of readings is typical, and hence a tangle, for our collection of phe-

nomena without occurring exactly in any one of them. This might be

the case, for example, for a set τ of measurement readings produced by

some given cause under laboratory conditions. This set of readings will

be typical for our phenomena if they were indeed triggered by this cause,

even if none of them produced exactly τ under our measurements.

What, then, does it mean that τ is typical for our phenomena? We

shall address this question in detail below. Its most important aspect,

however, is that our definition of ‘typical’ will not stipulate the exist-

ence of some common cause for our phenomena. It will be such that a

single cause, or some fixed combination of causes, will produce a set of

readings that satisfies our definition of ‘typical’. But the definition itself

will refer only to our data: the measurement readings we obtained on

the phenomena we are seeking to explain. This will allow us to identify

tangles directly in the data, without guessing at possible causes, and then

from these tangles infer that, perhaps, some known cause is present.

Just as a set of similar phenomena can have several possible causes,

our measurements might indicate the presence of a single tangle, or sev-

eral, or none. Given any one of these tangles, we may try to find a

common cause for this typical set of readings, or choose not to try. If

there is a common cause for sufficiently many of the phenomena inves-

tigated, it will show up as a tangle and can thus be identified.

But there can also be tangles that cannot, or not yet, be ‘explained’

by a common cause. Such tangles are just as substantial, and potentially

useful, as those that can be labelled by a known common cause; indeed

perhaps more so, since the absence of an obvious common cause may

have left them unidentified in the past. In this sense, identifying tangles

in large sets of similar phenomena can lead to the discovery of new meta-

phenomena that had previously gone unnoticed and might, henceforth,

be interpreted as a ‘cause’ for the group of phenomena that gave rise to

this tangle.
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6 1. The idea behind tangles

So when is a set τ of hypothetical measurement readings deemed

‘typical’ for the actual measurements taken on our phenomena, and is

therefore a tangle? There are two notions of ‘typical’ that are important

in tangle theory: a strong one that is satisfied by many tangles but not

required in their definition, and a weaker one that is required in their de-

finition, and which suffices to establish the main theorems about tangles.

The strong notion, which we might call popularity-based , is that

our set of phenomena has a subset X – not too small – such that,

for every measurement made, some healthy majority – more than two

thirds – of the phenomena in X yielded the reading specified by τ for

that measurement.2 Note that these may be different two thirds of X for

different measurements: every phenomenon, even one inX, may for some

measurements produce readings different from the readings that τ speci-

fies for those measurements. But every entry in τ reflects some aspect of

what we measured that many of the phenomena in X have in common,

and is in this sense typical for all the phenomena in X. Clearly, there can

be several such tangles τ , witnessed by different sets X of phenomena.

The weaker notion of when our set τ of hypothetical measurement

readings is ‘typical’ for the actual readings obtained from our measure-

ments, and hence constitutes a tangle, might be called consistency-based .

It requires of τ that, for every set of up to three of our measurements, at

least one of the phenomena we measured gave the readings specified by τ

for these three phenomena.3 Note that if τ is typical in the popularity-

based sense it will also be typical in this consistency-based sense,4 but

not conversely.

We often strengthen these consistency requirements of a tangle by

asking a little more: that, for some ‘agreement parameter’ n we chose

for the given context, every three measurement readings specified by τ

must be shared not only by one of the phenomena we measured but by at

least n of them. Such sets of hypothetical measurement readings, one for

every measurement, will thus be even more typical for our phenomena,

the more so the larger n is.

All three of these notions of ‘typical’ are robust against small

changes in our data. This makes tangles well suited to ‘fuzzy’ data with

the kind of inherent variation indicated earlier. But the definition of tan-

gles will be completely precise: a formal description of the structure of

our data including any aspects of its fuzziness. We shall therefore be able

to use tangles in rigorous mathematical analysis of our data as it comes.
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1.2 Tangles in the social sciences

Suppose we run a survey S of political questions on a population P of a

thousand people. If there exists a group of, say, a hundred like-minded

people among these, there should be a way of answering all the questions

in S that is typical for those one hundred people: that, after all, is what

‘like-minded’ means. Let us write X for this set of a hundred people,

and τ for the way of answering S that is typical for them. Thus, τ is

one typical set of answers to all the questions in S.

Let us try to quantify this last assertion, that our answer set τ is

typical for the people in X. One way to do this is to require that, for

every question s in S, some healthy majority – more than two thirds,

say – of the people in X agree with the answer to s that τ specifies. Note

that which two thirds of X these are may differ for different questions s.

Every answer specified by τ reflects the views of a large majority of the

people in X, and is typical for all of X in this way. But we may not be

able to pin down anyone in P , let alone two thirds of the people in X,

that answered all of S as specified by τ .

We shall call such a complete collection τ of views that is typical

for some of the people in P a mindset tangle. There may be more than

one mindset tangle for S, or none, just as there may be several groups

of like-minded people in P , or none, each with their own typical way of

answering S.

Traditionally, mindsets are found intuitively: they are first guessed,

and only then established by quantitative evidence, perhaps even from

a survey designed specifically to test them. Mindset tangles can do

that, too. For example, we might feel that there is a ‘socialist’ way σ

of answering our survey S. We could write these answers down without

looking at the actual returns for S, just appealing to our intuitive notion

of what a ‘socialist’ way to answer S would be. To test our intuition that

this is indeed a typical mindset for the people in P we might then check

whether, in the actual returns for S we received from the people in P ,

we can find a sizeable subset X of P as earlier for this particular τ = σ.

But tangles can also do the converse: we can identify mindsets, as

tangles, in the returns for S without having to guess their answers first:

Tangles offer a precise and quantitative way to test for suspect-

ed mindsets in a population and to discover unknown ones.

For example, tangle analysis of political polls in the UK in the years

before the Brexit referendum might have detected the existence of an
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unknown mindset of voters across the familiar political spectrum that

helped establish the surprise majority for Brexit in 2016. And similarly

in the US with the MAGA5 mindset before 2016, or that of conservative

Greens in Europe in the early 1970s. Tangles can identify previously

unknown patterns of coherent views or behaviour.

1.3 Tangles in data science

One of the most basic, and at the same time most elusive, tasks in the

analysis of big datasets is clustering : given a large set of points in some

space, one seeks to identify within this set a small number of subsets,

called ‘clusters’, of points that are in some sense similar. If we visualize

similarity as distance, clusters will be sets of points that are, somehow,

close to each other.

Figure 1.1 shows a simple example of points in the plane. In the

picture on the left we can clearly see four clusters. Or can we? If a cluster

is a set of points that are pairwise close, and the two points shown in

green in the right half of the picture lie in the same cluster, should not

the two red points – which are much closer – lie in a common cluster too?

FIGURE 1.1. Four clusters?

For reasons such as this, and other more subtle ones, there is no uni-

versal notion of cluster in data science. In our example there are ‘clearly’

four clusters – but it is hard to come up with an abstract definition of

‘cluster’ that is satisfied by exactly four sets of points in Figure 1.1, let

alone four sets resembling those that we intuitively see as clusters.

Tangles seek to describe clusters in an entirely different manner. Not

by dividing the dataset into subsets in some clever new way, but without

dividing it up at all: although there will be four tangles in our picture,
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these will not be defined as sets of points. In particular, questions such

as whether the green points should end up in the same cluster but the

red points, perhaps, should not, do not even arise.

By avoiding the issue of assigning points to clusters altogether, tan-

gles can be precise without making arbitrary and unwarranted choices:

Tangles offer a precise, if indirect, way to identify fuzzy clusters.

Rather than looking for dense clouds of data points, tangles look

for the converse: for obvious ‘bottlenecks’ at which the dataset naturally

splits in two. We call ways of splitting our dataset into two disjoint sub-

sets partitions of the set, and the two subsets the sides of the partition.

Figure 1.2 shows three partitions of our point set at bottlenecks.6

Now, whatever formal definition of ‘cluster’ one might choose to work

with, one thing will be clear: no bottleneck partition will divide any

cluster roughly in half, since that should violate either the definition of

a cluster or that of a bottleneck. For example, given one of the three

bottlenecks in our picture, and one of the four obvious clusters, we might

argue over a few points about whether they should count as belonging

to that cluster or not, or on which side of the bottleneck they lie. But

for almost all the points in our picture these questions will have a clear

answer once we consider a fixed cluster and a fixed bottleneck, no matter

how exactly these may be defined.

Put another way, whichever precise definition of cluster (and of bot-

tleneck) someone chose to work with, each of our four intuitive clusters

would liemostly on the same side of any partition at a bottleneck. Let us

then say that the cluster orients this partition towards the side on which

most of it lies. Figure 1.2 shows how the central cluster, no matter how

it was defined precisely, orients the partitions at the three bottlenecks in

FIGURE 1.2. Orienting the bottlenecks consistently towards the
central cluster.
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10 1. The idea behind tangles

this way. Each of the four clusters assigns its own set of arrows to these

same three partitions, and the central cluster orients them all inwards.

Note that assignments of arrows to bottlenecks that come from one

of the four clusters in this way are not arbitrary: the arrows are consis-

tent in that they all point roughly the same way, towards that cluster.

The key idea behind tangles, now, is to keep for each cluster exactly

this information – how it orients all the bottleneck partitions – and to

forget everything else (such as which points might belong to it). More

precisely, tangles will be defined as such abstract objects: as consistent

orientations of all the bottleneck partitions in a data set.

In this way, tangles will extract from the various explicit ways of

defining clusters as point sets something like their common essence. Tan-

gles will be robust against small changes in the data, just as they are

robust against small changes in any explicit definition of point clusters

that we might use to specify them. But their definition as such will

be perfectly precise, and involve no arbitrary choices of the kind one

invariably has to make when one tries to define clusters as sets of points.

To make this approach work, of course, one has to define formally

what the ‘bottleneck partitions’ of a given dataset are, and when an ori-

entation of all these bottleneck partitions is deemed to be ‘consistent’. In

our example of Figure 1.2 we defined both these with reference to those

four intuitive clusters. Indeed, as ‘bottleneck partitions’ we took those

that split the set of points where this appeared narrow in the picture,

which is just another way of saying that we took precisely those parti-

tions that did not cut right through any of the four intuitive clusters;

and we called a way of orienting these three partitions ‘consistent’ if the

arrows indicating this pointed towards one of those intuitive clusters.

If we are serious about defining tangles as abstract objects, however,

in a bid to bypass the difficulties inherent in trying to define clusters as

point sets, then this would beg the question. The challenge is to define

both bottleneck partitions and consistency of their orientations without

reference to any perceived cluster, however vaguely defined. Only once

we have achieved this can we ‘define’ clusters not explicitly as point sets

but indirectly as tangles, as is our aim.7

To make this challenge a little clearer, let us look at a slightly modi-

fied example. Figure 1.3 again shows four clusters with three bottlenecks.

This time, one of these has an elongated shape, like a handle. As before,

there are clearly four clusters, yet there is no obvious way to define them

directly as point sets.
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FIGURE 1.3. Three bottlenecks, but many bottleneck partitions,
all oriented consistently by the central cluster.

But now there appears to be a problem with our indirect approach

too. Intuitively, we would like to orient those bottlenecks; formally we

can orient partitions (at bottlenecks), by choosing one of their two sides;

but now there are many partitions ‘at’ the same bottleneck of the handle.

Which of these shall we choose to represent that bottleneck?

Since there is no canonical way to make this choice in the abstract,

we shall simply consider all those partitions at once: we shall work with

‘bottleneck partitions’ directly, and find ways to define these formally,

but we shall abandon our initial aim to formalize the more intuitive idea

of bottlenecks themselves. Our notion of consistency, then, will have to

apply also to how we orient partitions at the same bottleneck.

Let us see how this can work in Figure 1.3. We would like there to

be four clusters, no more, so only four of the many ways of orienting all

its bottleneck partitions should count as ‘consistent’. In the picture this

can be achieved if, and only if, we can ensure that consistent orientations

of partitions at the same bottleneck always point the same way.8

In our example, the orientations of bottleneck partitions induced by

one of the four obvious clusters satisfy this nicely: any given cluster will

either lie mostly on the left of every partition at the handle, or mostly

on the right of every partition at the handle. Hence, the arrows defined

at these partitions by any of our four clusters will either all point to the

left, or they will all point to the right, and thus be intuitively consistent.

The challenge remains to come up with a formal definition of con-

sistency as the basis for our notion of tangle that bears this out: one

that does not refer to any perceived clusters, but which in the above ex-

ample will orient all the partitions at the handle in the same direction.

Chapter 2 shows how this can be done.

The task of identifying bottleneck partitions in a given dataset with-
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out reference to intuitively perceived clusters will be our topic later, in

Chapter 9. Until then we shall usually assume a set of bottleneck parti-

tions as given.

Once these two tasks are achieved, however, we shall have a defi-

nition of tangle which, while being entirely formal and precise, will be

able to capture ‘fuzzy’ clusters in a robust way that does not require us

to allocate points to clusters.

1.4 On the use of mathematical language in this book

In order to make tangles applicable in such diverse contexts as discussed

in this chapter, the language in which we describe them can be based

only on what all these contexts have in common. The basic language of

modern mathematics is ideally suited to this. It uses only a few funda-

mental terms: sets and their elements, intersections and unions of sets,

perhaps functions that assign to each element of one set some element

of another set. And that’s all we shall need for the start.

Since this basic mathematical language is so simple, it will be easy

to ensure that all definitions and statements made in it will be reliable:

they can be taken out of context, referred back to from any point later

in the book, and should still stand up to scrutiny. Readers from outside

mathematics may find this unusual, and are especially encouraged to rely

on it: should they ever find themselves unsure of what some passage later

in the book is intended to mean, the solution is likely not just to look out

for redundancy near that passage, hoping it is repeated there in slightly

different terms, but to look up the definitions of the terms involved.

Another important aspect of mathematical use of language is that,

while all notions are precisely defined, the words we use to denote them

are usually borrowed from everyday language – like ‘tangle’. The reason

is that inventing a new word for every new notion would soon make

any text unreadable: there are just too many new notions invented all

the time. To help with readability, moreover, we try to choose not just

any ordinary word for some given new notion, but one that our memory

can easily associate with it: a word whose everyday meaning resembles,

a little at least, that new mathematical notion. When such a word is

then encountered later in the text, it should already be flagged in the

reader’s mind as having a technical meaning, and it will usually be that

meaning, not its everyday meaning, that is meant.
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Still, there will remain cases where such ordinary words are still used

with their ordinary meaning, and the reader will have to guess from the

context when this is the case. A good example is the word ‘typical’, to

which we assigned a technical meaning in Section 1.1 but which we used

naively again at the start of Section 1.2. This was necessary, because the

later section was meant to be readable as an entry point to this book.

But any reader that happened to have read the earlier section first had

to guess from the context at the start of Section 1.2 that ‘typical’ is used

there with its everyday meaning.

While we usually hijack everyday words for mathematical notions,

individual mathematical objects are often denoted by strange-looking

symbols. These are chosen to help the reader remember how these ob-

jects relate to others, or how they might be interpreted when tangles are

applied. For example, if we chose to denote a bottleneck partition as dis-

cussed in Section 1.3 by the letter s, it will be natural later to denote its

two orientations as →s and ←s . This is innocuous enough. But remember

that s, a partition of some dataset V, is a pair of subsets of V, its two

sides. Now it may happen in our narrative that one of these sides occurs

first, and that we wish to consider s only because it has this subset of V

as a side. How, then, shall we refer to this side before s is mentioned?

One way to do this would be to introduce that side as a set denoted

by some generic symbol for sets, such as A, then define B as its comple-

ment V !A, introduce s as the set {A,B}, note that this is a partition

of V with sides A and B, remember that orienting s means picking one of

its sides, and finally define →s as the ‘orientation’ A of s. Apart from the

fact that this last step looks notationally odd, introducing the letters A

and B is also a lot of notational clutter if all we ever need is s and its two

orientations. In such cases we may therefore start our story by giving

some interesting subset of V the name →s : just like that, out of the blue.

To non-mathematicians this may look strange, perhaps a little terri-

fying. But probably only because they suspect some hidden information

in this notation which they think they do not know. When this happens,

there is a very simple way to keep ones head: to rely on what exactly

the text says, and not to worry about the notation. If #S is introduced as

an arbitrary finite set, then that’s what it is: a set, nothing special. The

reason for calling it #S rather than A, say, may become apparent later,9

but it will help not to speculate about this too much too early.

The whole point of using mathematical language is that its notions

are not overloaded with meaning developed through the centuries, and
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perhaps subject to debate. Starting our formal description in Part III

of what tangles are with just arbitrary sets, their elements and so on,

we shall have a clean slate that will be filled only carefully and slowly.

Every statement in the text should be understandable, if necessary, on

the basis of just the few things said formally before in Part III, so these

can be checked if in doubt.

Yet human readers are not machines, and sometimes it helps to have

an intuition, however vague, of what some formal notions are intended

to describe. Our formal development of tangle terminology will therefore

be accompanied by plenty of informal examples.

At the beginning, in Chapter 2, the narrative will in fact be almost

entirely in terms of examples. However, in order to become acquainted

early with the symbols to be used later in our more formal discourse,

we shall introduce these symbols here already: not in a mathematically

rigorous way as abstract sets, but naively as sets of ‘things’ that are

not mathematical objects. As the book progresses, I shall make more of

an effort to keep the levels of formal definitions and of examples visibly

separate: so that examples are not formally relied on later, while formal

definitions that are meant to be relied on can be easily be identified.
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