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ON THE MAXIMAL ABELIAN /-EXTENSION OF A FINITE
ALGEBRAIC NUMBER FIELD WITH
GIVEN RAMIFICATION

HIROO MIKI®

Let k£ be a finite algebraic number field and let ¢ be a fixed odd
prime number. In this paper, we shall prove the equivalence of certain
rather strong conditions on the following four things (1) ~ (4), respec-
tively :

(1) the class number of the cyclotomic Z,-extension of k,

(2) the Galois group of the maximal abelian /4-extension of k& with
given ramification,

(8) the number of independent cyclic extensions of k& of degree ¢,
which can be extended to finite cyclic extensions of k of any /-power
degree, and

(4) a certain subgroup B.(m, S) (cf. §2) of kX/(k*)" for any natural
number m (see the main theorem in §3).

Bertrandias-Payan [2] made some examples of & satisfying our con-
dition on (3), which implies the non-vanishing of the ¢-adic regulator
of &k (Leopoldt’s conjecture for (¢4, k)), and satisfying the condition |S,]
=2, for ¢ =3 and 5, where |S;| is the number of places of & lying
above ¢. In §4, we shall prove the existence of k satisfying our con-
dition on (1) and the condition |S,| = n, for each natural number n and
each regular odd prime number £.

In §1, we shall transform Kubota’s theorem [16] into our useful
form to prove the equivalence of our conditions on (2), (8) and (4) in
§3.

In §2, we shall discuss a certain relation between B(m,S) and the
class number of a cyclotomic Z,-extension. It is already noted in
Satz 8.1 of Neukirch [20] that our condition on (1) implies our condition
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on (4). The converse can be proved by using Iwasawa-Yokoyama’s
method [10], [24] (cf. Theorem 2 in §2).

In §3, by using the results of §1 and 2, we shall give a complete
proof of the main theorem. ,

In §4, we shall also prove the following statement: Let ¢, be a
primitive £*-th root of unity, and put k; = k, ({;), where k,/Q is a total-
ly real finite Galois extension such that ¢ is completely decomposed in k.
Suppose that the class number of k, is not divisible by £. Then the class
number of k, is not divided by ¢ for any i = 1. Note that this state-
ment is a generalization of Iwasawa [10].

In §5, we shall give another proof of a part of the main theorem,
based on Kummer theory (cf. [17], Proposition 3)® and a cohomology
theoretic method of Iwasawa [9].

I wish to express my sincere thanks to Professors Y. Kawada, T.
Kubota and S. -N. Kuroda for their helpful advice and encouragement.

Notation and terminology

(1) Z: the ring of rational integers. N={reZ|n=1}. N =N
U {0} U {eo}. Z,: the ring of ¢-adic integers. @Q,: the field of ¢-adic
numbers. F,: the finite field with ¢/ elements. |X|: the cardinal num-
ber of a set X. (4™): the cyclic group of order ¢™ for each non-nega-
tive integer m. (¢~): the additive group of Z,. C(m,s): the direct
product of s copies of (¢™) for each m,se N'. G(K/k): the Galois group
of a Galois extension K of a field k. K*: the multiplicative group of
a field K.

@ ¢: a fixed odd prime number. ¢;: a primitive 4:*-th root of
unity for 2= 0. k: a finite algebraic number field. 7,: the non-negative
integer such that ¢, ek and {,,.,8k%k. 7,: the number of real places of
k. r,: the number of complex places of k. k; = k({,). Fk,: the comple-
tion of k with respect to a prime divisor v of k. U,: the group of
units of k, if v is non-archimedean, and k) otherwise. S,: the set of
all the prime divisors of % lying above ¢. S: a finite set of non-archi-
medean prime divisors of k, containing S,. S; = {veS|{;€ky i1 &Ky}
for each 1 = 0. s;,=1S;. S': the set of all prime divisors of k;, lying

(1) Note that Corollary to Proposition 3 of [17] is the same as Theorem 1 of
Bertrandias-Payan [2] when the basic field contains a primitive £-th root of unity.
‘The author did not know their result when he wrote [17].
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apbove S for each ¢ = 0. 7T: a finite set of prime divisors of k. An
algebraic extension K of k is called T-ramified (or unremified outside T)
if K/k is unramified for any prime divisor v& T.

k(T): the maximal T-ramified abelian /-extension of k. G,(T)
=GE(DM/E). Um,T)={xeck|(®) =a", zeck for veT}, where (x)
is a principal ideal of % generated by 2, a denotes a fractional ideal
of k. Bym,T) = Ug(m,T)/k*". I.: the group of ideals of k. P,: the
group of principal ideals of k. Cl,: the ideal class group of %, i.e.,
Cl, = I;/P,. ClL(S) = Cl,/<{S>, where <S> is the subgroup of Cl, gen-
erated by all ideal classes containing prime ideals in S. J: the idele
group of k. C,: the idele class group of k. W: the group of Z-power
roots of unity in k. W,: the group of 4-power roots of unity in k, for
a prime divisor v of k. n,: the non-negative integer such that {, ek,
and {,.. ¢k, ie., {, is a generator of W,. Uy ={x= @)el|z,cU,
for veT, z,=1 for veT}. FE,: the group of units in k. ES)
={xek*|reU, for any ve&S}.

§1. Kubota’s theorem and its corollaries

To introduce some of Kubota’s results [16], we need some notations.
Let 4,k,S,, T and B,(v, T) be as in Notation. For each ve N, let k(v, T)
be the maximal T-ramified abelian Z-extension of k such that ¢* = 1 for
all ¢ e G(k(v, T)/k), and let k(v)/k be the composite field of all cyclic ex-
tensions K of k£ of degree /™ with m < v such that for any neN, K/k
can be extended to a cyclic extension K of k of degree 4»*». Let
Gy, T) = G(k(, T) k) and H,(v) = G(k()/k). Let N =[k:Q]. For each
veT, let N, = [k,: Q] or 0 according as v|£ or vV ¢4, and let w,,, be the
number of roots of unity in kX whose orders divide ¢*. Let h, be the
¢*-class number of k, i.e., the number of the ideal classes of & whose
orders divide ¢°. Put

Ui, T) = {x e kX | (@) = o,z e W,(k})* for all ve T}
and Bf@,T) = U@, T)/(k*)*, where W, is as in Notation.

THEOREM 1 (Kubota [16]). Under the above notation and assump-
tions, the following two statements hold:

(1) |Gy, )| = h, -ng @Y w, ) (By(v, ¢): By, T)™;
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3i) |H.W)| = h,- ¥ (B, $): B¥@, S .

Remark 1. Kubota [16] stated the statement (i) in Theorem 1 when
T = S,, but in the same way as his, the general case follows.

Now we transform Kubota’s result quoted above into a useful form
for our purpose. For this we need the following elementary

LEMMA 1. Under the above notation and assumptions,
IBk(v, ¢)| — hug(7‘1+1‘s—l)”wv ,
where w, 1s the number of roots of unity in kX whose orders divide ¢.

Proof. We have an exact sequence

1—>EJE" 25 Bv,¢) P> H,—>1,

where H, is the group of the ideal classes of k whose orders divide ¢,
() = emod (k*)” with ¢ =emod Ef,ec E;, and ¢,(&) = a mod P, with
Z = z mod (), x e Uiy, ¢), () = a® and ael,. From this exact se-
quence, we obtain |B,(,¢)| = |H,|-|E./EY|. From this equality and
Dirichlet’s unit theorem, the assertion follows.

Remark 2. When v =1, the above Lemma 1 is contained in the
proof of Theorem 1 of Safarevié [22], and the above proof is the same
as his.

By Theorem 1 and Lemma 1, we obtain immediately the following

COROLLARY 1. Under the above notation and assumptions, the fol-
lowing two statements hold:

(1) [Gk(y, T)] = ];[T(gva'wv,v)'in(”’ T)I_(g(7’1+r2-l)».wp)—l;
In particular,
|G, T)| = zwm»( I w”,,,)w;l IBuw, T)|  if T D S,;
vE

(i) [Hy@)| = B, SI|- 67wt .

Proof. If TDS,, then >, N,= N and N =7, + 2r,, From this
equality, Theorem 1 and Lemma 1, the assertion follows.

Remark 3. The statement (i) in the above Corollary is the same
as Theorem 1 of Safarevi¢ [22], when v = 1.
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COROLLARY 2. Let the notation be as in Notation. Then the follow-
ing three statements are equivalent:

(i) The essential rank of G.(S) is r, + 1, i.e., the number of inde-
pendent Z,extensions of k is equal to r, + 1.

(ii) There exists an integer ¢ depending only on k and S such that
|By(m, S)| < ¢ for all m = 1.

(iii) There exist integers ¢ and m, depending only on k and S such
that |By(m, S)| = ¢ for all m = m,.

Proof. 1t is obvious that the statement (i) is equivalent to that
|G(m + 1, 8)|/|Gr(m, S)| = ¢m*! for sufficiently large m. By the statement
(i) of Corollary 1 to Theorem 1,

|Gu(m + 1, 9)|/|Ge(m, S)| = £77"-|By(m + 1, 8)|-| Bi(m, S)[™!

for sufficiently large m. Hence the statement (i) is equivalent to that
there exists an integer m, such that |B.(m + 1,S)| = |B(m,S)| for all
m = m,, i.e., that the statement (iii) holds. It is clear that (iii) implies
(ii). Now suppose that the statement (ii) holds. By Lemma 2,
|By(m + 1,8)| = |By(m, S)| for sufficiently large m. Hence the condition
(ii) implies the condition (iii).

Remark 4. (1) According to Iwasawa, the condition (i) in the above
Corollary 2 is equivalent to the non-vanishing of the /-adic regulator of
k (Leopoldt’s conjecture for (4, k)) (see [12], p. 254).

(2) By Corollary 1 to Theorem 1 and Lemma 2,

|Gy(m + 1,9)|/|G(m, S)| = £ |B(m + 1, S)||By(m, S)|™*

and |B,(m + 1,8)| = |Bi(m, S)| for sufficiently large m. This gives that
the essential rank of G,(S) =7, + 1 (a part of Theorem 2 of Iwasawa

[12).

LEMMA 2. Let the notation and assumptions be as in Notation. Then
the £4-th power homomorphism f from U,(m,S) to U,(m + 1,8) induces
the injection from B,(m,S) to B,(m + 1,8) for sufficiently large m. In
particular, |B,(m,S)| < |B,(m + 1,S)| for sufficiently large m.

Proof. By definition, U,(m,S)} c U,(m + 1,S) for m =1. Let
2eUym,S) be such that z‘ec(#*)*'. Then ‘= y*' with a yek*,
hence z = ¢y with an re¢Z. Let v,¢8S;. Then we see easily that
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¢ & (kX)) for sufficiently large m. Since SO S,, z e U,(m, S) implies that
¢l e (k%)™ hence r =0 (mod 4), i.e., x =y ¢ (k)*". Therefore we have
the assertion.

To apply Theorem 1 to the proof of the part “(iii) & (v)” of the
main theorem, we need moreover the following Lemma 4, and for the
proof of Lemma 4 we need the following

LEMMA 3. Let the notation and assumptions be as above. Moreover
suppose that ¢, ek and £, &k with ny = 1. Then B,(1,S) = 0 implies
that B,(v,S) =0 for 1 < v £ n,

Proof. 1t suffices to prove that B, +1,8) =0 with a v <n,—1
under the assumption that B,(m,S) =0 for 1< all m <v. Let
zeU,v+1,8). Then B, S) =0 implies that 2 = y* with a yek*.
Then ze U,y + 1,8) implies that y = {72! with r,e Z, z, ¢ kX for each
veS. Since v < m —1,yeké for each ve S, hence ye U,(1,S). Hence
B,(1,S) = 0 implies that ¥y = z° with a z¢e k%, hence = y* = z#*'. This
implies that B, + 1,8) = 0.

LEMMA 4. Let the notation and assumptions be as above. If {, ek,
then suppose moreover that there exists v,e Sy such that £,,.. & k,,. Then
the following three statements are equivalent:

(i) By, Sy) =0 for all v = 1.

(ii) |B¥(,Sp| = ¢ or 1 according as {, €k or not.

i) UL S0 = Lok

Proof. The equivalence of (ii) and (iii) is obvious. First suppose
that (i). Let ze U¥(1,S,). Then there exists a positive integer n such
that 2" e U,(n + 1,S,). By (@), " = y** with a ye k*. Hence z =y’
with an reZ. This implies that U@, S;) = <, >&*), i.e., the state-
ment (iii) follows. Conversely suppose that (iii). We prove the asser-
tion (i) by induction on ». Since U,(, S, < U, S,), (iii) implies that
U.a,8,) = &, i.e.,, B,(1,S,) =0, when {,&k. When { ek, by the
assumption that ¢, & ki with a v,¢S,, we have ¢, & U,(1,S,). Hence
(iii) gives U1, S, = (¢ ie., B,1,S,) =0. Then by Lemma 3,
B, S,) =0 if n,=1. Now suppose that B,(»,S,) =0 for a v
= max (n,1). Let xe U, + 1,S;). Then it follows from B,(v,S,) =0
that x = 2# for a zek*. By definition, ze U¥(1,S;). From (iii), we
obtain z = w®* with seZ, wek* Hence z = z* = w**, since
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vy = max (n,1). This implies that B,(v + 1,S;) = 0. Therefore by in-
duction on v, we obtain (i).

Remark 5. (1) In the above proof, we use the assumption that
Cros1 € Ky, With a v, e S, if n,=1, only to prove that (ii) implies (i).

@2) If B,1,S) =0 and if { ek, then there exists v,¢.S such that
Cay & K5, In fact, if ¢, ek for all veS, then {,, € U,Q,S) and ¢, & k*;
this implies that B,(1,S) = 0; this is a contradiction.

§2. A relation between B (m,S) and the class number of a cyclotomic Z -
extension

LEMMA 5. Let 4,k,C;, 1S and B,(m,S) be as in Notation and let
m be a positive integer. Suppose that there exists a v,e S such that
Crnps1 € Ky,e Then By(m,S) = 0 implies that B,(1,S) =0 for 1 < all © < m.

Proof. Let xzeU,@4,S), and put z = z~*, then ze U,(m,S). Since
B,(m, S) = 0, there exists a y € k* such that z = y*", hence z = {; y* with
some reZ. Since xe U@, S), ¢, e ki,. This implies ¢, = £ with some
seZ, since ¢, ¢k, and {,,., & k,,; hence e k*. Therefore B,(¢,S) = 0.

LEMMA 6. Let 4,k,S and &, be as in Notation, and let m,e N be
such that ¢,,& k, for all veS. Then B,(m, S) = 0 implies that B,(m, S)
=0 for all m = m,.

Proof. We shall prove the lemma by induction on m. If m = m,,
then the assertion is valid by assumption. Suppose m > m, and let
zeUg(m,S). Since B,(m — 1,S) = 0 by the induction hypothesis, there
exists a ¥ ¢ k> such that x = y""*. Since 2z ¢ k" for all ve S, there ex-
ists r,eZ and a, ek} such that y = {»-af. We have n, <m, for all
vesS, since &,,&k,. Hence ™ =al™ all veS, so y™ e Uim,NS).
Since B,(m,, S) = 0, there exists a zeck* such that ™' = 2z, hence
x = 2" e k™. This implies B,(m,S) = 0. By induction on m, we have
the assertion.

LEMMA 7 (Iwasawa, Yokoyama). Let ¢ and k be as in Notation
and let K|k be a finite Galois extension of f-power degree. Let v, be a
non-archimedean prime divisor of k and let V, be an extension of v, to
K. Let M|k (resp. M’'|k) be a finite Galois extension of f-power degree
containing K such that V, is unramified in M (resp. V, is completely
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decomposed in M’). Assume that M x K (resp. M’ xx K). Then there
exists a cyclic extension L of k of degree ¢ in M (resp. M’) where v, s
unramified (resp. v, is completely decomposed).

The above Lemma 7 follows directly from the proofs of Iwasawa
[8] and [Yokoyama [24], Theorem 4] (see also [Iwasawa [11], § 6-3, Lem-
ma, (iDD).

THEOREM 2. Let £ be a prime number. Let k,n, S, S, k; and Cl,(S)
be as in Notation and assume that k contains a primitive 4-th root of
unity if £ =2. Let m be a positive integer. Then the following state-
ments hold:

1) (Remark in Neukirch [20], Satz (8.1)). If |Cl,, (S™| = 0 (mod 4),
then B,(m,S) = 0.

(2) Assume moreover that {, ek and that there exists a v, S such
that £,p.1€ ko, Then By(m,S) = 0 implies |Cl,, (S™)| = 0 (mod 4).

Proof. (2) It is sufficient to prove that B,(m,S) = 0 under the as-
sumption |Cl; (S™)| =0 (mod 4). Let M/k, be the maximum unramified
abelian ¢-extension of k,, where any prime divisor in S™ is completely
decomposed. Clearly M/k is a Galois extension. By class field theory,
|CL, (S™)] = 0 (mod ¢) implies that M x k,,. Hence by Lemma 7, there
exists a cyclic extension K of k& of degree ¢ in M where v, is complete-
ly decomposed. Since,,.; & Ky, ¥, is not completely decomposed in k,,,,/k.
Therefore k, N K=k, so [Kk,:k,]=¢ Let xek* be such that
K = k(*'z). Since k,/k is S-ramified, K/k is S-ramified. Put z = 2.
Let ve S, and let V be an extension of v to k,. Since V is completely
decomposed in Mk, and Kk, C M, we have = € (k,),:. Hence by Kummer
theory, ¢ = a’¢] withaek},jeZ,ieN,i<m. Hencez=2""=a"cki.
Now let v& S be any non-archimedean prime divisor of k. Since K/k
is S-ramified, ord, (x) = 0 (mod ¢), so ord, () = 0 (mod £™), where ord, is
the normalized additive valuation of % with respect to v. Therefore
z2e Ug(m,S). On the other hand, z& k*. In fact, if z €k, then z = z™*
= w™ with a wek*, hence x = {,,_,w’ with some 7¢Z; this implies
K c k,,, but this contradicts that [Kk,:k,]l = ¢; so z& k. Therefore
B(m,S) x 0.

LEMMA 8. Let 4,k, 1,8 ks, Sk, S, S™ and Cl,(S) be as in Notation
and let m = n, be a rational integer. Assume that ¢, k. Assume more-
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over that any prime divisor in S™ — S, s not decomposed in ky../kn
and that there ewists a v,€8S,, mot decomposed in Kk, /kn. Then
|Cly,,,,,(S™)| 2 0 (mod ¢) implies that |Cl,, (S;,)| = 0 (mod £).

Proof. 1t is sufficient to prove that |Cl,,,.(S™*")| = 0 under the as-
sumption that |Cl, (S,,)| = 0 (mod ¢). By class field theory, this condi-
tion implies that there exists an unramified cyclic extension K/k, of
degree ¢ where any prime divisor in S, is completely decomposed.
From the existence of v, it follows that Kk,,./k,.. is an unramified
cyclic extension of degree ¢ where any prime divisor in S,,,, is com-
pletely decomposed. Now suppose that there exists a V,eS™* — 8§, .|
not decomposed in Kk, ,,/kn,,.,. Let v, be the restriction of V, to k,.
Since any prime divisor in S™ — S, is not decomposed in k,.,/k,, v; is
unramified and not decomposed in Kk,,./k,, hence Kk,.,/k, is cyclic
of degree 42. But this is a contradiction. Therefore any prime divisor
in S™*! is completely decomposed in Kk, ,./k..1;, S0 by class field theory,
|Cly,...(S™ )| = 0 (mod ¢).

By Lemmas 5,6,8 and Theorem 2, we obtain the following

THEOREM 3. Let 4,k,S,, S, &;, Ny, ksy S?, ClL(S) and B,(m,S) be as in
Notation. Assume that { ek and that there exists a v, S, such thot
Crnos1 € Kn,. Then the following statements (1) ~ (8) are equivalent:

1) B,m,S)=0 for all meN.

@ B,(m,Sy) =0 for all meN.

3 |0, (S™| =0 (mod ¢) for all meN.

4 |Cl,(S:)] =0 (mod 4) for all meN.

(B) Bi(my, S) =0 for some m, =1 such that ¢, ,&k, for all veS.

(6) By(m,, S;) =0 for some m, =1 such that ¢,, &k, for all veS;.

™ |CL, (8™ %0 (mod 4) for some m, =1 such that {, &k, for
all ves.

® |Cl, (Sk.)| =0 (mod £) for some m, =1 such that {,,&k, for
all veS,.

§3. Main Theorem

MAIN THEOREM. Let the notation be as in Notation and suppose that
k contains a primitive {¢-th root of wunity and that there exists v,e S,
such that W, = W. Then the following statements (i) ~ (vi) are equiv-
alent :
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(i) |CL(S| =0 (mod¥¢) forall i=1;

(i) |CL,(S)|) =0 (mod¥) for all i =1;

(iii)) B,(m,S,) =0 for all m =1;

(iv) By(m,S) =0 for all m =1;

(v) The number of independent cyclic extensions of k of degree ¢,
which can be extended to cyclic extensions of k of degree 4* for any
neN, is equal to r, + 1;

(vi) Gi(S) = (TTves-twg W) X Z, X -++ X Z, (r, + 1 copies).

Proof. It is contained in Theorem 3 that the statements (i), (ii),
(iii) and (iv) are equivalent each other. It is easily verified that the
statement (vi) in the main theorem is equivalent to that

|G, S)| = ev<r=+1>< 1 w,,v)w;l for all y> 1.
veS

By (i) of Corollary 1 to Theorem 1, this is equivalent to that |B.(v, S)|
=1 for all v = 1, i.e., the statement (iv) in the main theorem. TUnder
the assumption that ¢, & k!, with a v,€S;, it is obvious that the state-
ment (v) is equivalent to that |H.(1)| = ¢*'. By (ii) of Corollary 1 to
Theorem 1, this is equivalent to |B¥(1,S;)| = ¢, since ¢ ek. Hence by
Lemma 4, this is equivalent to (iii).

Remark 6. (1) If |Cl,(Sy)|=0 (mod ¢) and if ¢, €k, then there ex-
ists a v,¢ S, such that W,,=W. In fact, if W,x W for all v e S;, then
Fpgsr = k(T is an unramified cyclic extension of k of degree ¢ where
any place v e S, is fully decomposed. By class field theory, this implies
that |Cl,(S;)| = 0 (mod ¢), and this is a contradiction. Hence there exists
a v,e S, such that W, = W.

(2) The above proof of the statements of “(iii) & (v)” and “(iv)
& (vi)” of the main theorem are also valid in the case where ¢, & k.

§4. Existence of finite algebraic number fields & satisfying the condition (i)
in the main theorem and the condition |S,| > n for each » >1 and each
regular prime number /¢

By Iwasawa [10], we see easily that for each regular prime number
¢ there exist infinitely many finite algebraic number fields % satisfying
the condition (i) in the main theorem and the condition |S;|=1. But
when S =S, and |S;|=1, the part “(i) = (vi)“ of the main theorem
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follows also from [Safarevi¢ [22], §4] and [Brumer [4], Corollary 3.3],
hence it is natural to consider whether there exists a finite algebraic
number field % satisfying the condition (i) in the main theorem and the
condition |S,| > 1. Note that Bertrandias-Payan [2] gave some examples
satisfying the condition (v) in the main theorem and the condition |S,]
=2 for £ =3,5.

The purpose of this section is to prove the following two theorems.

THEOREM 4. Let ¢ and {; be as in Notation. Let k/Q be a finite
Galois extension where £ is completely decomposed. Put k, = k&, with
1= 1. Suppose that |Cl,,| = 0 (mod ¢). Then the following two statements
are equivalent :

(i) |Cl,| =0 (mod 4) for all i = 2.

(ii) Fk s totally real.

THEOREM 5. For each regular prime number £ x 2 and each n e N,
there exist infinitely many finite algebraic number fields k satisfying the
following conditions (1) ~ (4):

@O Ciek;

@) k/Q&) is not a Galois extension, and [k: Q)] = ¢¢ with some
s = 2.

3) |Cl,i=0 (mod¥) for all it =1;

@ Sl =mn,
where C;, ky, Cl,, and S, are as in Notation.

EXAMPLES. (1) Put £=3 and k= QW 7). Then ¢ is decomposed
in k and |Cl,| = 0 (mod ¢). Therefore by Theorem 4, |Cl,,| %= 0 (mod 4)
for all ¢ = 2.

(2 Put ¢ =3 and k= QW —2). Then ¢ is decomposed in k and
|Cl,| % 0 (mod ¢). But by Theorem 4, |Cl;,| = 0 (mod ¢), hence |Cl,,|=0
(mod ¢) for all i = 2.

() Put £=3 and k= Q(, V(@ + 3V —3)4 + 3/—3)). Then ex-
actly two primes (2 + 3v—3) and (4 + 34/ —3) in Q(¢) are ramified in
k/Q(), and |S,| = 3. Since any prime in S, is not decomposed in %,
and since |Clyq,| = 0 (mod ¢) for all 1 > 1, we see by Lemma 10 that
|Cli,| = 0 (mod ¢) for all ¢ = 1. Therefore by the main theorem, G.(S,)
=Z, X Z, X Z; X 3) X (8). We can make many such examples in the
way of the proof of Theorem 5.
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5.1. Generalizations of Iwasawa-Yokoyama’s theorem on class num-
bers.

In this section, we state two lemmas on the /4-rank of the ideal
class group and class numbers (see Lemmas 9 and 10), which are con-
sidered as generalizations of Iwasawa [10] and [Yokoyama [24], Theorem
4]. In §§5.2-5.3, we shall use these lemmas for the proofs of Theorems
4 and 5.

LEMMA 9 ([18], Theorem). Let ¢ be a prime number and let k
be a finite algebraic number field. Let Cl, denote the ideal class group
of k. Let k,/k be a ramified cyclic extension of degree £™ with neN
and let k,/k be the sub-extension of degree £¢° for 0 < i< n. Suppose
that the following two conditions are satisfied:

(i) Any archimedean prime divisor of k is unramified in k,;

(i) Any prime divisor of k ramified in k, is fully ramified in k,.
Then the equality ¢-rank Cl, = {-rank Cl,, implies that {L-rank Cl,
= g-rank Cl,, for 1 £i<n. In particular, the conditions |Cl,| = 0 (mod 4)
and |Cl,,| = 0 (mod ¢) imply that |Cl,,|x 0 (mod 4) for 1 £ any ¢ < n.

Note that the condition (i) in Lemma 9 is always satisfied if £ ¢ 2
and that there exists a finite cyclic extension k,/k of degree 4" such
that |Cl,]=0 (mod 4) and |Cl,,|=0 (mod ¢) (cf. (2) of Examples of Theorem 4).

LEmMA 10. Let ¢,k,2;,n, and Cl, be as in Notation and let v, and
v, be two distinct non-archimedean prime divisors of k such that ..,
& k,, and such that v, does not lie above {. Let K be a finite Galois
extension of k of é-power degree, unramified outside v, and v,, and let
G = G(K 1k). Then the following two statements hold:

@) If |Cl,) =< 0 (mod ¢), then |Clg| = 0 (mod 4).

(@) Suppose moreover that K|k is cyclic and that v, ts fully ramified
in K/k. Then |Cl¢|=|Cl,|, where Cl§ is the subgroup of Clg of all
elements invariant by G.

For the proof of Lemma 10, we use Iwasawa-Yokoyama’s Lemma 7
and the following

LEMMA 11. Let 4,k,{; and n, be as in Lemma 10 and let v, be a
non-archimedean prime divisor of k not lying above ¢. Suppose that
Cnps1 € kn,e Let K|k be a cyclic extension of degree £, unramified outside
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v. Then K|k is unramified.

Proof. Let J and Uy be as in Notation. Let N be the subgroup
of J associated with K, by class field theory. Since K/k is unramified
outside v, UgJ’k* < N, where S = {v,}. Let a = (a,)eJ be such that
t,, = 1 and a, = {,, for v x v, and let b = (b,) €J such that b,, = ¢,,
and b, =1 for v = v,. Then ¢, , =abinJ. ae Ug implies that b e Ugk*,
so beN. Since v, does not lie above ¢, U C J* C N, where U] is the
subgroup of U,, of principal units of %,,. Since ¢,, & k%, the conditions
beN and UY) € N imply that U,, € N. Therefore v, is unramified in
K.

Remark 7. Lemma 11 can be also proved by using [Safarevi¢ [22],
Theorem 1].

Proof of Lemma 10. (1) It is enough to prove that |Cl,| = 0 (mod ¢)
under the assumption that |Cl,|= 0 (mod ¢). Let M be the maximum
unramified abelian extension of K of 4-power degree. Obviously M/k
is a Galois extension. Then by class field theory, |Clg| =0 (mod ¢) im-
plies that M x K, so by Lemma 7, there exists a cyclic extension L of
k in M where v, is unramified. Since L C M, L/k is unramified outside
v, S0 by Lemma 11, L/k is unramified; hence by class field theory,
|Cl,| = 0 (mod 4).

(2) Put N (KX)NE,=A and [K: k] = ¢, where E, is the group
of units of k. Since v, is fully ramified in K, it follows from Lemma 11
that v, is fully ramified in K. Hence by the well-known formula of
[Cl%| (see Yokoi [23]), we have |Cl§| = [E,: A]"4*|Cl,|. Now we shall
show that F,/A is generated by {,, mod A and that [E,: A] = ¢. Since
Cn & K4, and since v, does not lie above ¢4, we see easily that for any
e € E; there exists an 7 e Z such that ;" e k4. So, since K/k is unrami-
fied outside v, and v,, ¢{;7 € Ng,/,(K¥) for all v x v,, where V is an ex-
tension of v to K. Therefore by Hasse’s norm theorem, £, € Ny, .(K>).
This implies that E,/A is generated by ¢, mod A. Suppose that i e A
with an seZ. Then {;, € Ng, 4, (K¥,), where V, is an extension of v, to
K. Since Ky,/k,, is fully ramified and cyclic of degree ¢” and since v,
does not lie above ¢, {;, € Ng, (K%, implies ¢, € (k3)*, so s = 0 (mod £"),
since ¢, €k!,; hence [E,: A] = ¢*. Therefore by the above formula,
[Clg| = |Cly].
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5.2. Proof of Theorem 4.

We prove Theorem 4, using Lemma 9, a formula of the number of
ambig ideals (see Yokoi [23]), Hasse’s norm theorem and the well-known
translation theorem in local class field theory (see e.g., Weil [26], Chap.
XII, § 8, Corollary 3 to Theorem 4).

Proof of Theorem 4. Put g =[k:Q]. Let v, -..,v, denote all the
primes of k lying above ¢. Then v, is fully ramified in k, for 1 <7 <g.
Let V; denote a unique extension of v; to k, for 1 <j<g. Let F and
E, denote the group of units of & and k; with 7 > 1, respectively. Since
¢ is completely decomposed in %k and since ¢ is fully ramified in @),
ENQE)=Q. Put A=EFE N Ny (k). First we shall show that
A = FE, N N;L(EY. Since Ny, (@)% = 62 X {# € QF|x = 1 (mod £7)},
we see by Hasse’s norm theorem and the translation theorem in local
class field theory that

™*) A={x eEllN(kl,,,j/Q,(x) =1 (mod s’ for 1 <j<g}.

Let ze B, N N (E). Then N,,,(x)eE’ Since (k)y, = Q) and k,,
= Qu Ny 0(®) = 1 (mod ¢). Hence N,,,(2) € E* implies that N, ., (%)
= 1 (mod ¢, i.e., that x e A. Conversely let x ¢ 4, and put y = N, ().
Then (*) implies that y ek, for 1<i<g9g. Hence k,(v¥)/k, is unrami-
fied. Since |Cl,,| = 0 (mod £), k,(‘/'y) = k,, hence yc ki, so ycE!. Mak-
ing N, operate on yekE: y'ecE’ so yek’ ie., xeck, N NL(EY.
Therefore

**) A=FE 0O N;(E.

The norm map N,,,; induces a linear map f from a vector space E,/E}
to a vector space E//E* over F, in the natural way. Since E‘' C N, ,.(E)
and since K 'E‘ =K, f is surjective. Since 4 D E{, (**) implies that
Ker f = A/E{ Hence [E,: A] = [E: E‘] = {m*""', where 7, and 7, denote
the numbers of real places and complex places of k&, respectively. By
the formula of the number of ambig ideal classes (see Yokoi [23]),

4o
[E,: A]

where G = G(k,/k,). By the theory of £4-groups, |CI¢ |2 0 (mod ¢) if and
only if |Cl,,| = 0 (mod 4), hence this implies that |Cl,,| = 0 (mod ¢) if
and only if 7,=0. By Lemma 9, |Cl,,|2= 0 (mod ¢) is equivalent to

= |Cl,,| ¢,
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that |Cl,,| = 0 (mod ¢) for all ¢ = 2.

5.3. Proof of Theorem 5.

We use the following two lemmas and Theorem 6.

LEMMA 12. Let 4,k, ¢, and Cl, be as in Notation. Put |Cl,| = h
and assume that h =0 (mod¥). Let T be a finite set of non-orchi-
medean prime divisors of k not lying above ¢, and let K be a cyclic
extension of k of degree £, unramified outside T. Let p be a prime ideal
of k lying above ¢ and let yek* be such that (y) = p*. Suppose that
yeké for all veT. Then p is completely decomposed in K.

Proof. Let N be the subgroup of J associated with K, by class
field theory. Since K/k is unramified outside 7, N D UzJk*. Let a
= (a,) €J be such that ¢, =y if v =p and a, =1 otherwise, let b = (b,)
eJ be such that b, =1 if veT U {p} and b, =y otherwise, and let
¢c=(c,)ed be such that ¢,=vy if veT and ¢, =1 otherwise. Since
b e Ur by definition and since ¢ ¢ J* by assumption, the equation y = abe
in J implies that a e UTJ‘kX. Since (y) = p*, we can write y = us’ in
k, with a ueU, and a prime element m, of k, Since U, C UpJ°k*,
a € UpJ*k* implies that =} e UpJ’k*. Since h = 0 (mod ¢), there exists
an W'eZ such that A =1 (mod ¢). By taking the &’-th power of z
e UyJ°k*, we have mn,e UrJ'k*. Hence kY C Uy J°k* C N. By class field
theory, this implies that p is completely decomposed in K.

LEMMA 18. Let ¢, k, 1, 7y, G4 1y and Cl, be as in Notation. Assume
that ¢ ek and that h = 0 (mod ¢), where h = |Cl;|. Let p,p,, -+, be
all the prime ideals of k lying above ¢, and let y,ck* be such that
W) =49t for i=1,2,...,8. Let e,¢e5+--,¢6,_; be a system of the funda-
mental units of k, where r = v, + r,. Then there exist infinitely many
prime divisors v of k satisfying the following conditions (1) ~ (4):

(1) v does not lie above £.

@) ekl fori=12,.-.,7r—1, and y, ekl for j=1,2,--.,s.

@) L. sk

(4) The degree of v is 1.

Proof. Put M = k(Ve, -, Ver1, VUi, -+, VY. Clearly M and
k(n.) are linearly disjoint over k. Put M, = M(,,.) and let ¢ be a
generator of G(M,/M). By Cebotarev’s density theorem, there exist
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infinitely many prime divisors V of M, such that the Frobenius auto-
morphism of V with respect to k is ¢. If v is the restriction of V to
k, then v satisfies the above conditions (2) and (8). We can take such
v satisfying (1) and (4).

THEOREM 6. Let the notation and assumptions be as in Lemma 13.
Let v, and v, be two distinct prime divisors of k satisfying the condi-
tions (1) ~ (3) in Lemma 13. Then there exists one and only one cyclic
extension K of k of degree ¢, unramified outside v, and v,. The exten-
sion K|k satisfies the following four conditions (a) ~ (d):

(@) v, and v, are fully ramified in K.

(b) Any prime divisor in S, is completely decomposed in K.

(¢) v, and v, are not decomposed in k., where k; = k() and k.
= Uzil k;.

(@ |[Clg|=0 (mod¥). If|Cl,|=x0 (mod¥) for an teN, then |Clg,|
x 0 (mod &), where K, = K(,).

Proof. PutT = {v,v,}and T, = {v;} for ¢ = 1,2. By [Safarevié [19],
Theorem 1], rank G,(T) = 2 — 7, + dimy, B;,(1, T). Since |Cl;| = 0 (mol 4),
we see easily that B,(1,T) = {ce E;|c e k! for all ve T}/E{. Hence by the
definition of T, dimy, B,(1,T) = r, — 1. Therefore rank G,(T) = 1. This
implies that there exists one and only one cyclic extension K of k of
degree ¢, unramified outside », and »,. Similarly, rank G,(T;) = 0 for
1=1,2. This implies the condition (a). Note that the condition (a)
follows also from Lemma 11. The condition (b) follows from Lemma 12
and the condition (2) in Lemma 13. The condition (¢) follows from the
condition (8) in Lemma 13 and that k./k is a Z,-extension. The condi-
tion (d) follows from the condition (¢) and Lemma 10.

Proof of Theorem 5. We shall prove the theorem by induction on
n. If k= @), then by Iwasawa [8], we see that & satisfies the con-
ditions (1) and (3). Now let % satisfy the conditions (1) ~ (4). By Lem-
ma 13 and Theorem 6, there exists a cyclic extension K of k of degree
¢ such that [Clg,| 2 0 (mod ¢) for all 7 =1 and such that [Sg| = ¢n, where
K, =K(;). Let v, and v, be two prime divisors of K which are not
conjugate each other over k, satisfying the conditions (1) ~ (4) of Lem-
ma 13 (replacing k¢ by K). Then by Theorem 6, there exists a unique
cyclic extension L of K of degree ¢, unramified outside », and v,, satisfy-
ing the conditions (a) ~ (d) in Theorem 6 (replacing K and k by L and
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K, respectively). Then |S.| = ¢|Sg| = ¢*n. Since the degree of v; is 1
for © = 1,2, {v, v;} = {v{,v;} for o G(K/k), with ¢ % 1. From this, it
follows that L = L° for any extension ¢ of ¢ to the Galois closure of
L/k. This implies that L/k is not a Galois extension, so L/Q(;) is not
a Galois extension. Hence by induction on n, we have the assertion.

§5. Remark

In this section, we note that the part “(ii) = (vi)” of the main theo-
rem can be proved by using Galois theory, Kummer theory and the same
cohomology theoretic method as in Iwasawa [9]. The key lemma is
Proposition 8 of [17], which connects such a cohomology theoretic
method with our problem. We shall omit the details and sketch the
proof.

LEMMA 14 ([17], Proposition 3). Let ¢ be a prime number and let
¢, be a primitive £:-th root of unity for each i1e N. Let k be a field of
characteristic different from £. Assume that ek and that ek if
¢=2. Fix neN and put K = k(,). Let ¢ be a generator of G(K/k)
and let seZ be such that (i =¢. Put 3 =o¢"'+ "%+ ... 4 gs¥?
+ 8V, where N = [K: k]. Let L/K be a cyclic extension of K of degree
™ and let yeK* be such that L = K(“"vy). Then the following three
statements are equivalent:

1) L/k is an abelian extension whose Galois group is the direct
product of G(L/K) and a cyclic subgroup of G(L/k) of order N.

(2) There exists a we K* such that L = K(“"vw?).

B) y = w" with ¢ weK*, and L = K“"vVw?).

The equivalence of (2) and (8) follows from the proof of [[17],
Proposition 3].

Remark 8 We can prove that Grunwald-Hasse-Wang’s theorem
([71,181,125]; see also [1], Chap. 10) holds also in the case where the
base field is an arbitrary field with discrete valuations, by generalizing
and refining the above Lemma 14 (see [19]).

As an application of Lemma 14, we have the following

LEMMA 15. Let 4,k,Cs Ky, S, St, CL(S) and E(S) be as in Notation.
Let m be a positive rational integer. Assume that |Cl,(S)| 2= 0 (mod £)
and that |Cl,,(S™)| = 0 (mod ¢). Assume moreover that { ek and that
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L,ek if £ =2. Let K|k be an S-ramified cyclic extension of k of degree
4, and let ec B (S) be such that K = k(v¢). Then the following two
statements are equivalent:

(1) There exists an S-ramified cyclic extension L|k of degree 4™
containing K;

(@) e Ey(S) N (B, (S™).

Remark 9. (1) If |ClL,(S)|=0 (mod ¢), then for any S-ramified
cyclic extension K of k of degree ¢, there exists ¢ e F,(S) such that K
= k(Ve).

(2) The above Lemma 15 can be also proved by using the proof
of [Bertrandias-Payan [2], Theorem 1].

Proof of Lemma 15. Obviously we may suppose that K x &, ,,.
Suppose that the statement (2) holds. Put K, = k,(“"veZ), where 3 is
as in Lemma 14 for the extension k,/k and where ¢ e E, (S™) is such
that ¢/N,, () e Ex(S)’. Sinces=1(mod ), X =o¢" "'+ o2+ ... +0+1
(mod ¢). Hence N, _,(e)/ef € ki, s0 ¢/ef € kf,. This implies that K,, D K.
By Lemma 14, K, /k is abelian and G(K,/k) = G(K,/k,) X (N), so by
Galois theory, there exists a cyclic extension L/k of degree ¢™ such
that Kc LcK,,. Since ¢ €kl (S™) and since k,/k is S;-ramified, K, /k
is S-ramified, so L/k is also S-ramified. Conversely suppose that the
statement (1) holds. Put L, = Lk,. Since L,/k, is S™-ramified and
since [Cl, (S™)| = 0 (mod ¢), there exists ¢ ek, (S™ such that L,
= k,(""ve). By (8) of Lemma 14, there exists ¢, ¢ k2 such that & =&
and L, = k,("ve7). Since ¢ eE, (S™), e, E,,(S™. Since &f /Ny, ()
e k!, and since k,(‘veZ) = k,(‘/¢), we have N, ,(c;)/c € ki, with an re Z
such that 7 2 0 (mod £), hence by using Kummer theory we see easily
that ¢ N, () /e ekt with an ieZ. Put ¢ = (i, then ¢ e E, (S™) and
Ni.w€) /e ek, hence Ny, .()/e e B (S). This implies that the statement
(2) holds.

The following lemma can be proved by using the same cohomology
theoretic method as in Iwasawa [9], hence we omit the proof.

LEMMA 16. Let the notation and assumptions be as in Lemma 15 and
let t,, be the number of prime divisors in S completely decomposed in
k.. Then rank ﬁ“(G(km/k), E., S8™) =8| —t, —1, t.e., rank E.(S)/
Ny E e (S"NE(S) = |S| — tn — 1 for all m = n, + 1, where B means
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Tate-cohomology group of dimension 0.

Outline of another proof of the part “(ii) = (vi)” of the main theo-
rem. Obviously there exists an m,e N such that ¢,, = 0 for all m = m,.
Put N, = N, ., (E,(SDE(SY/E(S) for all i = 0. Regard N, as a vector
space over F, in the natural way. Then dimg, N, =7, 4+ |S|, and by
Lemma 16, dimy, N; =7, + 1+ ¢, for all ¢ =n, + 1. Let A = {a;};c, be
a basis of N,, over F, such that A N N, is a basis of N, over F, for
any ¢ =mn, For each 1¢ 4, let ¢; ¢ E,(S) be such that ¢, mod E,(S)’ = a,,
and put k, = k(‘/e,). Let K,/k be a maximal S-ramified cyclic exten-
sion of k of 4-power degree containing %k, Then by Lemma 15, [K,: k]
= ¢™, where m, = 0 is such that a,eN,, and a,& N,,,, if N,, 2 N,
and where m, = o if a,e N,,,. Put M = [[,., K,, then by Galois theory,
GM k) = C(oo, 7, + 1) X C(yy 8y — 1) X [15nes1 CG, 8y), since ¢; — ¢, = 8;
for i=zn,+1 and s, =|S|—t. By using Galois theory, Kummer
theory and Lemma 15, we can prove that £(S) = M. Hence the asser-
tion follows.
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