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Abstract

Let TX be the full transformation semigroup on the nonempty set X. We fix a nonempty subset Y of X
and consider the semigroup

S (X, Y) = { f ∈ TX : f (Y) ⊆ Y}

of transformations that leave Y invariant, and endow it with the so-called natural partial order. Under
this partial order, we determine when two elements of S (X, Y) are related, find the elements which are
compatible and describe the maximal elements, the minimal elements and the greatest lower bound of
two elements. Also, we show that the semigroup S (X, Y) is abundant.
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1. Introduction

Let X be a nonempty set. The semigroup TX of full transformations on X consists
of the maps from X to X with composition as the semigroup operation. Let f , g ∈ TX

and denote by f g the map obtained by performing first g and then f . For Y ⊆ X, the
semigroup

S (X, Y) = { f ∈ TX : f (Y) ⊆ Y}

of transformations that leave a subset Y invariant is a subsemigroup of TX . It contains
the identity map idX on X. If Y = X, then S (X, Y) = TX . So we may regard it as a
generalisation of TX . It was investigated in [3, 5, 7, 12]. For example, Symons [12]
described the automorphism group of this semigroup. Honyam and Sanwong [3]
determined when S (X, Y) is isomorphic to T (Z) for some set Z and proved that every
semigroup A can be embedded in S (A1, A). They also described Green’s relations of
S (X, Y), its groupH-classes, and its ideals.

A semigroup S is regular if for each a ∈ S , a = axa for some x ∈ S . The following
result was proved in [7].
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L 1.1. The semigroup S (X, Y) is regular if and only if Y = X or |Y | = 1.

In this paper the set X is finite (|X| ≥ 3) or infinite and the subset |Y | ≥ 2. We
endow S (X, Y) with the so-called natural partial order [6], that is, for f , g ∈ S (X, Y)
(= S 1(X, Y)),

f ≤ g if and only if f = kg = gh and f = k f for some k, h ∈ S (X, Y),

and investigate the partial order on S (X, Y). With respect to this partial order, we
determine when two elements of S (X, Y) are related, find the elements which are
compatible and describe the maximal elements, the minimal elements and the greatest
lower bound of two elements. For the study of natural order on transformation
semigroups, one may see [4, 8, 10, 11]. Also, we describe the abundance of S (X, Y).

Now we recall some notation which will be useful later. Let f (X) be the image of f .
Denote by π( f ) the partition of X induced by f ∈ TX , namely, π( f ) = { f −1(y), y ∈ X}
and call f −1(y) a ker-class of f . Also, πY ( f ) = { f −1(y), y ∈ Y} and πY ( f ) ⊆ π( f ).

Let A, B be two collections of subsets of X. If, for each A ∈ A, there exists some
B ∈ B such that A ⊆ B, thenA is said to refine B.

2. Characterisation of ≤ and compatible elements

In this section, we give a characterisation of this partial order ≤ and then find the
compatible elements.

T 2.1. Let f , g ∈ S (X, Y). Then f ≤ g if and only if the following statements
hold:

(1) π(g) refines π( f ) and πY (g) refines πY ( f );
(2) if g(x) ∈ f (X) for some x ∈ X, then f (x) = g(x);
(3) f (X) ⊆ g(X) and f (Y) ⊆ g(Y).

P. Suppose that f ≤ g. Then there exist some k, h ∈ S (X, Y) such that

f = kg = gh, f = k f .

It follows from f = kg that π(g) refines π( f ) and πY (g) refines πY ( f ). Now if g(x) ∈
f (X) for some x ∈ X, then there exists some y ∈ X such that g(x) = f (y). So

f (x) = kg(x) = k f (y) = f (y) = g(x)

and (2) holds. Since f = gh, we immediately have f (X) ⊆ g(X) and f (Y) ⊆ g(Y) and
so (3) holds.

To show the sufficiency, we assume the conditions hold and define k, h ∈ S (X, Y)
such that

f = kg = gh, f = k f .
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First we define k on X. For each x ∈ g(X), there exists some z ∈ X such that x = g(z).
Define k : X→ X by

k(x) =

{
f (z) if x ∈ g(X),
g(x) otherwise.

If x = g(z) = g(z′) for some distinct z, z′ ∈ X, then f (z) = f (z′) since π(g) refines π( f ).
So k is well defined. We now show k ∈ S (X, Y). For each y ∈ Y , we have y < g(X) or
y ∈ g(X). If y < g(X), then k(y) = g(y) ∈ Y . If y ∈ g(X), then there exists some x ∈ X
such that y = g(x). Noting that πY (g) refines πY ( f ), we have x ∈ g−1(y) ⊆ f −1(y′) for
some y′ ∈ Y and k(y) = f (x) = y′ ∈ Y . Thus, k ∈ S (X, Y). It is clear that f = kg. To see
f = k f , note that for each x ∈ X, f (x) = g(x′) for some x′ ∈ X (by (3)). It follows from
(2) that f (x′) = g(x′). So

k f (x) = kg(x′) = f (x′) = g(x′) = f (x)

and f = k f holds.
Finally, we define h on X. By virtue of f (Y) ⊆ g(Y), for each x ∈ Y , there is some

y ∈ Y such that f (x) = g(y). Moreover, by f (X) ⊆ g(X), for each x ∈ X − Y , there is
some z ∈ X such that f (x) = g(z). Define h : X→ X by

h(x) =

{
y if x ∈ Y,
z if x ∈ X − Y.

It is routine to show h ∈ S (X, Y) and f = gh. �

In Theorem 2.1, if Y = X (in the case S (X, Y) = TX), then f ≤ g if and only if
(1) π(g) refines π( f ), (2) if g(x) ∈ f (X) for some x ∈ X, then f (x) = g(x) and (3)
f (X) ⊆ g(X). The result coincides with that in [4, Proposition 2.3].

As a consequence of Theorem 2.1, we have the following corollary whose proof is
omitted.

C 2.2. Let f , g ∈ S (X, Y) and f ≤ g. If g(X) = f (X), then g = f .

An element h ∈ S (X, Y) is said to be left compatible with the partial order if h f ≤ hg
whenever f ≤ g. We say that h is strictly left compatible if h f < hg whenever f < g.
Right compatibility is defined similarly.

In the full transformation semigroup TX , if h is injective, then h is left compatible,
and if h is surjective, then h is right compatible.

It is clear that a constant map in S (X, Y) is left compatible.

T 2.3. Let h ∈ S (X, Y). Then h is strictly left compatible if and only if h is an
injection.

P. It is routine to verify the sufficiency and we only show the necessity. If h is
not an injection, then h(a) = h(b) for some distinct a, b ∈ X. There are two cases to
consider.
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Case 1: a, b ∈ X − Y or a, b ∈ Y . Define f , g : X→ X by

f (x) =

{
b if x = a,
x otherwise,

and g(x) =


b if x = a,
a if x = b,
x otherwise.

Clearly, f , g ∈ S (X, Y) and f < g by Theorem 2.1. Thus, h f < hg since h is strictly
left compatible, and so h f (X) ⊂ hg(X) by Corollary 2.2 (where A ⊂ B means that
A is a proper subset of B). However, by the definition of f and g, it follows that
h f (X) = hg(X), a contradiction.

Case 2: a ∈ X − Y and b ∈ Y . Define f : X→ X as in Case 1. Then f ∈ S (X, Y) and
f < idX . Thus, h f < hidX = h and h f (X) ⊂ h(X). By the definition of f ,

h f (X) = h(X − {a}) = h(X),

a contradiction.
In either case, a contradiction will arise, so h is an injection and the necessity

follows. �

T 2.4. Let h ∈ S (X, Y). Then h is right compatible if and only if either of the
following statements holds:

(1) h(Y) = h(X) = Y;
(2) h(Y) = Y and h(X) = X.

P. Suppose that h is right compatible. Now we can assert that h(Y) = Y . Indeed,
if h(Y) ⊂ Y , take a ∈ Y − h(Y), b ∈ X − Y and define g : X→ X by

g(x) =

{
a if x ∈ Y,
b otherwise.

Then g ∈ S (X, Y) and g ≤ idX . So gh ≤ h. By Theorem 2.1(3), {a} = gh(Y) ⊆ h(Y),
that is, a ∈ h(Y), a contradiction and the assertion follows. It remains to show that
h(X) = Y or h(X) = X. For each constant map 〈x〉 with x ∈ Y , we have 〈x〉 ≤ idX . Thus,
〈x〉h ≤ idXh and so 〈x〉 ≤ h. By Theorem 2.1(3), x ∈ h(X). Hence, Y ⊆ h(X) which
implies that Y = h(X) or Y ⊂ h(X). If Y ⊂ h(X), then take c ∈ X − Y, d ∈ Y and define
k : X→ X by

k(x) =

{
c if x ∈ X − Y,
d otherwise.

It is clear that k ∈ S (X, Y) and k ≤ idX . So kh ≤ h. By Theorem 2.1(3), {c, d} = kh(X) ⊆
h(X) and so c ∈ h(X) which implies that X − Y ⊆ h(X) and h(X) = X.

Conversely, let f , g ∈ S (X, Y) and f ≤ g. We now verify that f h, gh satisfy
Theorem 2.1(1)–(3) for the first case h(X) = h(Y) = Y . If gh(x) = gh(y) for some
distinct x, y ∈ X, then f h(x) = f h(y) since π(g) refines π( f ). Moreover, gh(x) =

gh(y) ∈ Y implies that f h(x) = f h(y) ∈ Y since πY (g) refines πY ( f ). So f h, gh satisfy
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Theorem 2.1(1). Now if gh(x) ∈ f h(X) for some x ∈ X, then gh(x) ∈ f (Y) ⊆ f (X); thus,
f h(x) = gh(x) and f h, gh satisfy Theorem 2.1(2). Also, f h, gh satisfy Theorem 2.1(3)
since f h(X) = f (Y) ⊆ g(Y) = gh(X) and f h(Y) = f (Y) ⊆ g(Y) = gh(Y). So, f h ≤ gh.
Similarly, for the second case h(Y) = Y and h(X) = X, we can also deduce that f h ≤ gh
and the conclusion follows. �

3. Maximal and minimal elements, greatest lower bound of f, g

For f , g, h ∈ S (X, Y), if h ≤ f , h ≤ g, then h is called a lower bound of f , g. Denote
by inf{ f , g} the greatest lower bound of f , g. In this section, we describe the maximal
and minimal elements of S (X, Y), then present a condition for the existence of inf{ f , g}.

T 3.1. Let f ∈ S (X, Y). Then f is maximal if and only if either of the following
statements holds:

(1) f is either surjective or injective;
(2) f |X−Y is injective, f (X − Y) ∩ Y = ∅ and f (Y) = Y.

P. Let f be maximal. Suppose to the contrary that neither (1) nor (2) holds. There
are three cases to consider.

Case 1: f |X−Y is not injective, f (X − Y) ∩ Y = ∅ and f (Y) = Y . Let f (x1) = f (x2) for
some distinct x1, x2 ∈ X − Y . Since f is not surjective, we take a ∈ X − f (X). Then
a < Y . Define g : X→ X by

g(x) =

{
a if x = x1

f (x) otherwise.

Then g ∈ S (X, Y) and f < g, a contradiction.

Case 2: f |X−Y is injective, f (X − Y) ∩ Y , ∅ and f (Y) = Y . Let f (x1) = f (x2) for some
x1 ∈ X − Y, x2 ∈ Y . Take a ∈ X − Y − f (X) and define g : X→ X as in Case 1. Then
g ∈ S (X, Y) and f < g, a contradiction.

Case 3: f |X−Y is injective, f (X − Y) ∩ Y = ∅ and f (Y) ⊂ Y . Since f is not injective,
we have f (x1) = f (x2) for some distinct x1, x2 ∈ Y . Take a ∈ Y − f (Y) and define
g : X→ X as in Case 1. Then g ∈ S (X, Y) and f < g, a contradiction.

Therefore, the necessity follows. Let f ≤ g for some g ∈ S (X, Y). Then f (X) ⊆ g(X).
If f is surjective, then f (X) = g(X). By Corollary 2.2, f = g and f is maximal. If f is
injective, then we claim that f (X) = g(X). Indeed, if f (X) ⊂ g(X), take y ∈ g(X) − f (X).
Let g(x) = y for some x ∈ X. Then f (x) = g(x′) for some x′ ∈ X (x′ , x). It follows that
f (x′) = g(x′) from Theorem 2.1(2) which implies that f (x) = f (x′), a contradiction.
So f (X) = g(X). Thus, f = g and f is also maximal. Now let f satisfy statement (2).
By Theorem 2.1(3), Y = f (Y) ⊆ g(Y) ⊆ Y and g(Y) = Y . To see f (X − Y) = g(X − Y),
by Theorem 2.1(3) again, f (X) ⊆ g(X). As f (X − Y) ∩ f (Y) = ∅, we have f (X − Y) ⊆
g(X − Y). If f (X − Y) ⊂ g(X − Y), then g(x) ∈ g(X − Y) − f (X − Y) for some
x ∈ X − Y . Thus, f (x) = g(y) for some y ∈ X − Y . We claim that x , y. Indeed, if x = y,
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then g(x) = g(y) = f (x) ∈ f (X − Y), a contradiction. By Theorem 2.1(2), f (y) = g(y) =

f (x) which contradicts that f |X−Y is injective. Hence, f (X − Y) = g(X − Y) and so
f (X) = g(X). Consequently, f = g and f is maximal. �

From Theorem 3.1, we have the following corollary.

C 3.2. Let Y be finite. Then f ∈ S (X, Y) is maximal if and only if f is
surjective or injective.

E 3.3. Let X = {1, 2, . . .}, Y = {3, 6, 9, . . .} and

f =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · ·

4 5 3 7 8 3 10 11 6 13 14 6 16 17 9 19 20 9 · · ·

)
.

One can easily verify that f ∈ S (X, Y) is neither surjective nor injective and satisfies
Theorem 3.1(2), so f is a maximal element.

T 3.4. Let f ∈ S (X, Y). Then f is minimal if and only if f is a constant map.

P. The sufficiency is clear, so we only show the necessity. If f is not a constant
map, then | f (X)| ≥ 2. Take a ∈ f (X) ∩ Y and define g(x) = a for each x ∈ X. Clearly,
g ∈ S (X, Y) and g < f , which leads to a contradiction. �

According to Theorems 3.1 and 3.4, we know that if Y = X (S (X, Y) = TX), then f
is maximal if and only if f is either surjective or injective, and that f is minimal if and
only if f is a constant map, which was proved in [4, Theorem 3.1].

We now pay attention to the existence of inf{ f , g}. If f , g are constant maps, then
inf{ f , g} does not exist. If f is a constant map and f , g are not comparable, then
inf{ f , g} also does not exist. If f is a constant map and f , g are comparable, then
inf{ f , g} = f . In what follows, we assume that f , g are not constant maps.

The subset X′ of X is said to be complete with respect to f , g ∈ S (X, Y) if it is
both a union of ker-classes of f and a union of ker-classes of g. In general, the
subset f −1(z) ∪ g−1(z) is not complete for z ∈ f (X) ∩ g(X). Denote by Kz( f , g) the
smallest complete subset of X that contains f −1(z) ∪ g−1(z). (It is easy to show
that such a subset exists.) The following example shows that, generally speaking,
Kz( f , g) ∩ Ku( f , g) , ∅ for all distinct z, u ∈ f (X) ∩ g(X).

E 3.5. Let X = {1, 2, . . . , 9}, Y = {3, 6, 9} and

f =

(
1 2 3 4 5 6 7 8 9
1 3 3 2 2 3 4 4 6

)
and g =

(
1 2 3 4 5 6 7 8 9
1 4 6 4 4 6 4 4 3

)
.

Then f , g ∈ S (X, Y) and
f (X) ∩ g(X) = {1, 3, 4, 6}.

Obviously, K3( f , g) = {2, 3, 4, 5, 6, 7, 8, 9} and K4( f , g) = {2, 3, 4, 5, 6, 7, 8}. Thus,

K3( f , g) ∩ K4( f , g) = {2, 3, 4, 5, 6, 7, 8}.
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A necessary condition for the existence of inf{ f , g} is given in the following lemma.

L 3.6. Let f , g ∈ S (X, Y). Write Z = f (X) ∩ g(X) , ∅ and W = f (Y) ∩ g(Y) , ∅
with |W | ≥ 2. If h = inf{ f , g} exists, then the following statements hold:

(1) h(X) = f (X) ∩ g(X) and h(Y) = f (Y) ∩ g(Y);
(2) if f (x), g(x) ∈ Z for some x ∈ X, then f (x) = g(x);
(3) f −1(z) ∪ g−1(z) ⊆ P ∈ π(h) for each z ∈ Z and h( f −1(z) ∪ g−1(z)) = z; conse-

quently, h(Kz( f , g)) = z for each z ∈ Z;
(4) for all distinct z, u ∈ Z, f −1(z) and f −1(u) are not contained in the same ker-class

of h; similarly, g−1(z) and g−1(u) are also not contained in the same ker-class
of h;

(5) for all distinct z, u ∈ Z, f −1(z) ∪ g−1(z) and f −1(u) ∪ g−1(u) are not contained in
the same ker-class of h.

P. (1) By Theorem 2.1(3), h(X) ⊆ f (X) and h(X) ⊆ g(X). So h(X) ⊆ f (X) ∩ g(X).
Similarly, h(Y) ⊆ f (Y) ∩ g(Y). To see f (Y) ∩ g(Y) ⊆ h(Y), take a ∈ f (Y) ∩ g(Y) and
define ha(x) = a for each x ∈ X. Clearly, ha ∈ S (X, Y). Then ha ≤ f , ha ≤ g and ha ≤ h
which implies that {a} ⊆ h(Y), that is, a ∈ h(Y). Since a ∈ f (Y) ∩ g(Y) is arbitrary, we
have f (Y) ∩ g(Y) ⊆ h(Y). Therefore, h(Y) = f (Y) ∩ g(Y) and h(Kw( f , g)) = w for each
w ∈W (by Theorem 2.1(2)). Now we show that f (X) ∩ g(X) ⊆ h(X). There are two
cases to consider.

Case 1: f (Y) ∩ g(Y) = f (X) ∩ g(X). Of course, f (X) ∩ g(X) = h(X).

Case 2: f (Y) ∩ g(Y) ⊂ f (X) ∩ g(X). Take a ∈ f (X) ∩ g(X) − f (Y) ∩ g(Y), b ∈ f (Y) ∩
g(Y) and define ha,b : X→ X by

ha,b(x) =

{
a if x ∈ Ka( f , g),
b otherwise.

To see ha,b ∈ S (X, Y), we need show thatKa( f , g) ∩ Y = ∅. Indeed, ifKa( f , g) ∩ Y , ∅,
then h(Ka( f , g)) ∈ Y . It follows from h(Y) = f (Y) ∩ g(Y) that h(Ka( f , g)) ∈ f (Y) ∩
g(Y). Then there exists some w ∈ f (Y) ∩ g(Y) such that h(Kw( f , g)) = h(Ka( f , g)) = w.
Take w′ ∈ f (Y) ∩ g(Y)(w′ , w) and define h′ : X→ X by

h′(x) =

{
w′ if x ∈ Ka( f , g),
h(x) otherwise.

Then h′ ∈ S (X, Y) and h′ , h. Observing that,

h(Kw( f , g) ∪ Ka( f , g)) = w, h(Kw′( f , g)) = w′,

h′(Kw( f , g)) = w, h′(Kw′( f , g) ∪ Ka( f , g)) = w′,

we have h′(X) = h(X). We now show that h′ ≤ f . Since Ka( f , g),Kw( f , g),Kw′( f , g)
are all a union of ker-classes of f , we know that π( f ) refines π(h′). To see
that πY ( f ) refines πY (h′), let f (P) ∈ Y . If P ⊆ Ka( f , g), then h′(P) = w′ ∈ Y .
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If P ∩ Ka( f , g) = ∅, then h′(P) = h(P) ∈ Y which implies πY ( f ) refines πY (h′). So h′, f
satisfy Theorem 2.1(1). Let f (x) ∈ h′(X) = h(X) for some x ∈ X. If f (x) = w, that
is, x ∈ f −1(w) ⊆ Kw( f , g), then h′(x) = h(x) = f (x). If f (x) ∈ h′(X) − {w}, that is, x <
f −1(w), then we assert that x <Ka( f , g). Indeed, if x ∈ Ka( f , g), then h(x) = f (x) = w,
a contradiction, which means that x <Ka( f , g). Thus, h′(x) = h(x) = f (x). So h′, f
satisfy Theorem 2.1(2). Moreover, h′(Y) = h(Y) ⊆ f (Y). Hence, h′ ≤ f . Similarly,
h′ ≤ g. Thus, h′ ≤ h. However, h′(X) = h(X), by Corollary 2.2, h′ = h, a contradiction.
Therefore, we deduce that ha,b ∈ S (X, Y). It is routine to verify that ha,b ≤ f and
ha,b ≤ g. So ha,b ≤ h and

{a, b} = ha,b(X) ⊆ h(X),

that is, a ∈ h(X) − h(Y). Noting that a ∈ f (X) ∩ g(X) − f (Y) ∩ g(Y) is arbitrary, we
have f (X) ∩ g(X) − f (Y) ∩ g(Y) ⊆ h(X) − h(Y) and f (X) ∩ g(X) ⊆ h(X).

Consequently, h(X) = f (X) ∩ g(X) and h(Y) = f (Y) ∩ g(Y).
(2) According to (1), we have f (x), g(x) ∈ h(X). By Theorem 2.1(2), h(x) = f (x) =

g(x).
(3) This follows from (1) and Theorem 2.1(2).
(4) By (3), h( f −1(z)) = z and h( f −1(u)) = u, so f −1(z) ⊆ h−1(z) and f −1(u) ⊆ h−1(u).

The argument for g is the same.
(5) This follows from (4). �

We now present a necessary and sufficient condition for the existence of inf{ f , g}.

T 3.7. Let f , g ∈ S (X, Y). Write Z = f (X) ∩ g(X) , ∅ and W = f (Y) ∩ g(Y) , ∅
with |W | ≥ 2. Then h = inf{ f , g} exists if and only if the following statements hold:

(1)
⋃
Kz∈Z( f , g) = X;

(2) Kz( f , g) ∩ Ku( f , g) = ∅ for all distinct z, u ∈ Z;
(3) Y ⊆

⋃
Kw∈W( f , g);

(4) for P ∈ πY ( f ) or P ∈ πY (g), if P ⊆ Kw( f , g) for some w ∈ Z, then w ∈W;
(5) if f (x), g(x) ∈ Z for some x ∈ X, then f (x) = g(x).

P. Suppose that h = inf{ f , g} exists.
(1) If M = X −

⋃
Kz∈Z( f , g) , ∅, then by virtue of Lemma 3.6(1), h(M) ⊆ f (X) ∩

g(X). There are two cases to consider.

Case 1: |h(M − Y)| = 1. Say h(M − Y) = {z}. Take w ∈W(w , z) and define h′ : X→ X
by

h′(x) =

{
w if x ∈ M − Y,
h(x) otherwise.

Then h′ ∈ S (X, Y) and h′ , h. Noting that

h(Kz( f , g) ∪ (M − Y)) = z, h′(Kz( f , g)) = z and h′(M − Y) = w ∈W ⊆ Z,

we have h′(X) = h(X). We now show that h′ ≤ f . Since π( f ) refines π(h) and
Kz( f , g) ∪ (M − Y) ∈ π(h), we know that M − Y is also a union of ker-classes of f .
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By the definition of h′, we have Kz( f , g),Kw( f , g) ∪ (M − Y) ∈ π(h′). Thus, π( f )
refines π(h′). To see that πY ( f ) refines πY (h′), let f (P) ∈ Y , that is, P ∈ f −1(Y).
If P ⊆ M − Y , then h′(P) = w ∈ Y . If P ∩ (M − Y) = ∅, then h′(P) = h(P) ∈ Y which
implies that πY ( f ) refines πY (h′). So h′, f satisfy Theorem 2.1(1). Let f (x) ∈ h′(X) =

f (X) ∩ g(X) for some x ∈ X; then x ∈ f −1(u) for some u ∈ Z. By Lemma 3.6(3),
h(x) = f (x). So h′(x) = h(x) = f (x) and h′, f satisfy Theorem 2.1(2). Moreover,
h′(Y) = h(Y) ⊆ f (Y). Hence, h′ ≤ f . Similarly, h′ ≤ g. Thus, h′ ≤ h. However,
h′(X) = h(X), by Corollary 2.2, h′ = h, a contradiction.

Case 2: |h(M − Y)| ≥ 2. Take some distinct z, u ∈ h(M − Y). Then z, u ∈ Z. Let

M1 = {x ∈ M − Y : h(x) = z}, M2 = {x ∈ M − Y : h(x) = u}.

If z, u ∈ Z −W or z, u ∈W, then define h′ : X→ X by

h′(x) =


u if x ∈ M1,
z if x ∈ M2,
h(x) otherwise.

If z ∈W, u ∈ Z −W, then take w ∈W(w , z) and define h′ : X→ X by

h′(x) =

{
w if x ∈ M1,
h(x) otherwise,

which also leads to a contradiction.
(2) If Kz( f , g) ∩ Ku( f , g) , ∅ for some distinct z, u ∈ Z, then, by Lemma 3.6(3),

z = h(Kz( f , g)) = h(Ku( f , g)) = u,

a contradiction. Therefore, Kz( f , g) ∩ Ku( f , g) = ∅.
(3) There are two cases to consider.

Case 1: W = f (Y) ∩ g(Y) = f (X) ∩ g(X) = Z. Then by (1),
⋃
Kz∈Z( f , g) = X. So

Y ⊆ X =
⋃
Kz∈Z( f , g) =

⋃
Kz∈W( f , g).

Case 2: W = f (Y) ∩ g(Y) ⊂ f (X) ∩ g(X) = Z. For each x ∈ Y , by (1), x ∈ Kw( f , g) for
some w ∈ Z. We claim that w ∈W. Indeed, if w ∈ Z −W, then

h(x) = h(Kw( f , g)) = w ∈ Z −W ⊆ X − Y

which implies that h < S (X, Y), a contradiction. Hence, Y ⊆
⋃
Kw∈W( f , g).

(4) Since πY ( f ) refines πY (h), we have h(P) = h(Kw( f , g)) = w ∈ Y . Then w ∈W.
The argument for g is the same.

(5) This follows from Lemma 3.6(2).
Conversely, suppose that (1)–(5) hold. Define h : X→ X by h(x) = z for each

x ∈ Kz( f , g) and z ∈ Z. Since

Kz( f , g) ∩ Ku( f , g) = ∅ for all distinct z, u ∈ Z,
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we see that h is well defined. Also note that h(X) = f (X) ∩ g(X) and h(Y) = f (Y) ∩
g(Y). By (3), we know that h ∈ S (X, Y). Now we verify h ≤ f . Let P ∈ π( f ); then,
by (1), P ⊆ Kz( f , g) for some z ∈ Z. By the definition of h, Kz( f , g) is mapped to
z by h. So π( f ) refines π(h). Let f (P′) ∈ Y , namely, P′ ∈ f −1(Y). Then by (1) and
(4), P′ ⊆ Kw( f , g) for some w ∈W. So h(Kw( f , g)) = h(P′) = w ∈ Y which implies that
πY ( f ) refines πY (h) and h, f satisfy Theorem 2.1(1). Let z = f (x) ∈ h(X) = f (X) ∩ g(X)
for some x ∈ X, then x ∈ f −1(z) ⊆ Kz( f , g) and h(x) = h(Kz( f , g)) = z = f (x) which
means that h, f satisfy Theorem 2.1(2). As seen above, h, f satisfy Theorem 2.1(3).
Hence, h ≤ f . Similarly, h ≤ g. Therefore, h ≤ inf{ f , g}. It follows from h(X) =

f (X) ∩ g(X) = inf{ f , g}(X) and Corollary 2.2 that h = inf{ f , g}. �

We allow Y to be X and have the following corollary by a modification in
Lemma 3.6 and Theorem 3.7.

C 3.8. Let f , g ∈ TX and Z = f (X) ∩ g(X) , ∅ (|Z| ≥ 2). Then h = inf{ f , g}
exists if and only if the following statements hold:

(1)
⋃
Kz∈Z( f , g) = X;

(2) Kz( f , g) ∩ Ku( f , g) = ∅ for all distinct z, u ∈ Z;
(3) if f (x), g(x) ∈ Z for some x ∈ X, then f (x) = g(x).

E 3.9. Let X = {1, 2, . . . , 24} and Y = {6, 12, 18, 24}. Choose f , g ∈ S (X, Y)
to be

f =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 2 3 3 3 12 5 5 9 8 6 12 13 13 15 15 15 18 17 17 19 19 19 24

)
,

and

g =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 4 2 2 4 12 7 7 5 7 14 12 12 14 14 14 16 18 20 20 17 17 20 12

)
.

Obviously, f , g ∈ S (X, Y) and

f (X) ∩ g(X) = {1, 2, 5, 12, 17, 18}, f (Y) ∩ g(Y) = {12, 18}.

Also
f −1(1) ∪ g−1(1) = {1}, complete
f −1(2) ∪ g−1(2) = {2, 3, 4}, not complete
f −1(5) ∪ g−1(5) = {7, 8, 9}, not complete
f −1(12) ∪ g−1(12) = {6, 12, 13, 24}, not complete
f −1(17) ∪ g−1(17) = {19, 20, 21, 22}, not complete
f −1(18) ∪ g−1(18) = {18}, complete.

Then

K2( f , g) = {2, 3, 4, 5}, K5( f , g) = {7, 8, 9, 10},

K12( f , g) = {6, 11, 12, 13, 14, 15, 16, 17, 24}, K17( f , g) = {19, 20, 21, 22, 23}
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and

K1( f , g) ∪ K2( f , g) ∪ K5( f , g) ∪ K12( f , g) ∪ K17( f , g) ∪ K18( f , g) = X,

Y ⊆ K12( f , g) ∪ K18( f , g).

Let

h =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 2 2 2 2 12 5 5 5 5 12 12 12 12 12 12 12 18 17 17 17 17 17 12

)
.

Then h = inf{ f , g}.

R. In Lemma 3.6 and Theorem 3.7, the condition |W = f (Y) ∩ g(Y)| ≥ 2 cannot
be omitted. When inf{ f , g} exists and |W | = 1 (say W = {w}), we see that h(X) =

f (X) ∩ g(X),
⋃
Kz∈Z( f , g) = X and Y ⊆ Kw( f , g) may not be true.

E 3.10. Let X = {1, 2, . . . , 24} and Y = {6, 12, 18, 24}. Choose f , g ∈ S (X, Y)
to be

f =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
8 8 8 8 8 6 6 7 7 10 10 12 10 10 7 7 7 12 7 7 7 7 7 12

)
,

and

g =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
7 7 7 7 7 18 7 7 7 9 9 12 10 10 7 7 7 12 7 7 7 7 7 12

)
.

Obviously,
f (X) ∩ g(X) = {7, 10, 12}, f (Y) ∩ g(Y) = {12}

and

K7( f , g) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 19, 20, 21, 22, 23}(∩Y = {6}),

K10( f , g) = {10, 11, 13, 14}, K12( f , g) = {12, 18, 24}.

Let

h =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
12 12 12 12 12 12 12 12 12 10 10 12 10 10 12 12 12 12 12 12 12 12 12 12

)
.

Then h = inf{ f , g}. However,

h(X) = {10, 12} ⊂ f (X) ∩ g(X) and K12( f , g) = {12, 18, 24} ⊂ Y.

Choose f ′, g′ ∈ S (X, Y) to be

f ′ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
8 8 8 8 8 12 7 7 7 10 10 12 10 10 7 7 7 12 6 6 6 6 6 12

)
,

and

g′ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
7 7 7 7 7 12 7 7 7 9 9 12 10 10 7 7 7 12 18 18 18 18 18 12

)
.
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Obviously,
f ′(X) ∩ g′(X) = {7, 10, 12}, f ′(Y) ∩ g′(Y) = {12}

and

K7( f ′, g′) = {1, 2, 3, 4, 5, 7, 8, 9, 15, 16, 17}, K10( f ′, g′) = {10, 11, 13, 14},

K12( f ′, g′) = {6, 12, 18, 24}.

Let

h′ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
7 7 7 7 7 12 7 7 7 10 10 12 10 10 7 7 7 12 12 12 12 12 12 12

)
.

Then h′ = inf{ f ′, g′}. However,

K7( f ′, g′) ∪ K10( f ′, g′) ∪ K12( f ′, g′) = X − {19, 20, 21, 22, 23} ⊂ X.

4. Abundant semigroups S(X, Y)

Let S be a semigroup and a, b ∈ S . We say that a, b are L∗-related if they are
L-related in a semigroup T such that S is a subsemigroup of T . We have the dual
definition of the relation R∗. The relations L∗ and R∗ are equivalence relations. They
were studied by Fountain [2] and others. A semigroup S is called abundant if any
L∗-class and any R∗-class contains an idempotent of S . The word abundant comes
from the fact that such a semigroup has a plentiful supply of idempotents. Umar [13]
proved that the semigroup S −n of nonbijective, order-decreasing transformations on the
set X = {1 < 2 < · · · < n} is abundant but not regular. Araujo and Konieczny [1] proved
that the semigroup

TE(X, R) = { f ∈ TX : f (R) ⊆ R and (x, y) ∈ E⇒ ( f (x), f (y)) ∈ E}

where E is an equivalence relation on X and R is a cross-section of the partition X/E
induced by E, is abundant if and only if it is regular. Pei and Zhou [9] proved that the
semigroup

TE(X) = { f ∈ TX : (x, y) ∈ E⇒ ( f (x), f (y)) ∈ E}

is abundant and not regular when the equivalence relation E is simple or 2-bounded.
In this section, we prove that each semigroup S (X, Y) is abundant.

The following lemma gives a characterisation of L∗ and R∗ in S (X, Y).

L 4.1. Let f , g ∈ S (X, Y). Then the following statements hold:

(1) ( f , g) ∈ L∗ if and only if π( f ) = π(g);
(2) ( f , g) ∈ R∗ if and only if f (X) = g(X).

P. (1) Certainly if π( f ) = π(g), then ( f , g) ∈ L(TX) and so ( f , g) ∈ L∗(S (X, Y)).
Conversely, if ( f , g) ∈ L∗, then for all h, k ∈ S (X, Y), f h = f k if and only if gh = gk.

Let f (x) = f (y) for some distinct x, y ∈ X. There are two cases to consider.
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Case 1: x, y ∈ X − Y or x, y ∈ Y . Define kx,y : X→ X by

kx,y(z) =

{
y if z = x,
z otherwise.

Clearly, kx,y ∈ S (X, Y) and f kx,y = f idX . Then gkx,y = gidX and so g(x) = g(y). Thus,
π( f ) refines π(g). By symmetry, π(g) refines π( f ). Thus, π( f ) = π(g).

Case 2: x ∈ X − Y, y ∈ Y . We also define kx,y as in Case 1 and π( f ) = π(g).

(2) If f (X) = g(X), then ( f , g) ∈ R(TX) and so ( f , g) ∈ R∗(S (X, Y)). We now suppose
( f , g) ∈ R∗. Take x < f (X) and y ∈ Y ∩ f (X). Define hx,y : X→ X by

hx,y(z) =

{
y if z = x,
z otherwise.

Clearly, hx,y ∈ S (X, Y) and hx,y f = idX f . So hx,yg = idXg. We can deduce that x < g(X).
Indeed, if g(x′) = x for some x′ ∈ X, then hx,yg(x′) = idXg(x′) and y = x, a
contradiction. Hence, g(X) ⊆ f (X). Similarly, f (X) ⊆ g(X). Consequently, f (X) =

g(X). �

T 4.2. Let f ∈ S (X, Y). Then the following statements hold:

(1) (e, f ) ∈ L∗ for some idempotent e ∈ S (X, Y);
(2) (e′, f ) ∈ R∗ for some idempotent e′ ∈ S (X, Y).

Consequently, the semigroup S (X, Y) is abundant.

P. (1) We use the notation

f (x) =

(
Xi Y j

xi y j

)
to mean that f ∈ S (X, Y) and take as understood that the subscripts i, j belong to
some (unmentioned) index sets I, J, respectively, the abbreviations {xi}, {y j} denote
{xi : i ∈ I}, {y j : j ∈ J}, respectively, and that Y ⊆

⋃
Y j, f (Xi) = xi ∈ X − Y, f (Y j) =

y j ∈ Y, f −1(xi) = Xi, f −1(y j) = Y j.
Take ai ∈ Xi and b j ∈ Y j ∩ Y (b j ∈ Y j if Y j ∩ Y = ∅). Define e : X→ X by

e(x) =

{
ai if x ∈ Xi,
b j if x ∈ Y j.

Then e ∈ S (X, Y) is an idempotent and π(e) = π( f ). By Lemma 4.1(1), we have
(e, f ) ∈ L∗.

(2) Take a ∈ f (X) ∩ Y and define e′ : X→ X by

e′(x) =

{
x if x ∈ f (X),
a otherwise.

Then e′ ∈ S (X, Y) is an idempotent and e′(X) = f (X). By Lemma 4.1(2), we have
(e′, f ) ∈ R∗. �
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