A REMARK ON THE SHIMURA CORRESPONDENCE by WINFRIED KOHNEN

(Received 25 April, 1987)

Introduction. In [4] an identity is given which relates the product of two Fourier coefficients of a Hecke eigenform g of half-integral weight and level 4N with N odd and squarefree to the integral of a Hecke eigenform f of even integral weight associated to g under the Shimura correspondence along a geodesic period on the modular curve $X_0(N)$. This formula contains as a special case a refinement of a result of Waldspurger [6] about special values of L-series attached to f at the central point.

The purpose of this note is to show that the restriction to N squarefree can be lifted and that our identity in the more general case is essentially a consequence of results of Waldspurger ([8, 9, 10]).

Notation. We let $\Gamma(1) = SL_2(\mathbb{Z})$ operate on integral binary quadratic forms $[a, b, c](x, y) = ax^2 + bxy + cy^2$ by

$$[a, b, c] \circ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} (x, y) = [a, b, c](\alpha x + \beta y, \gamma x + \delta y).$$

The symbol \mathcal{H} denotes the upper half-plane.

The letters k and N denote positive integers, N is always assumed to be odd.

We write
$$N' \parallel N$$
 if $N' \mid N$ and $\left(N', \frac{N}{N'}\right) = 1$.

We let $M_{2k}(N)(S_{2k}(N))$ be the space of modular forms (cusp forms) of weight 2k on the group $\Gamma_0(N)$ and $S_{2k}^{\text{new}}(N) \subset S_{2k}(N)$ be the subspace of cuspidal newforms.

For a prime p we denote by $T_{2k}(p)$ the Hecke operator acting on $S_{2k}(N)$ by

$$T_{2k}(p) \sum_{n \ge 1} a(n)q^n = \sum_{n \ge 1} \left(a(pn) + \left(\frac{N^2}{p} \right) p^{2k-1} a\left(\frac{n}{p} \right) \right) q^n \qquad (q = e^{2\pi i z}, z \in \mathcal{H})$$

(with the convention $a\left(\frac{n}{p}\right) = 0$ if $p \nmid n$). The Hecke operators leave $S_{2k}^{\text{new}}(N)$ stable.

For $f, f' \in S_{2k}(N)$ we write

$$\langle f, f' \rangle = \frac{1}{[\Gamma(1) : \Gamma_0(N)]} \int_{\Gamma_0(N) \setminus \mathcal{X}} f(z) \overline{f'(z)} y^{2k-2} \, dx \, dy \qquad (z = x + iy)$$

for the Petersson product of f and f'.

We let $S_{k+1/2}(N)$ be the subspace of cusp forms of weight k+1/2 on $\Gamma_0(4N)$ whose *n*th Fourier coefficients at infinity vanish for $(-1)^k n \equiv 2$, $3 \mod 4$ ([5, 3]).

Glasgow Math. J. 30 (1988) 285-291.

For a prime p we write $T_{k+1/2}(p)$ for the Hecke operator acting on $S_{k+1/2}(N)$ given by

$$T_{k+1/2}(p) \sum_{n \ge 1, (-1)^k n = 0, 1/4} c(n)q^n$$

$$= \sum_{n \ge 1, (-1)^k n = 0, 1/4} \left(c(p^2n) + \left(\frac{N^2}{p}\right) \left(\frac{(-1)^k n}{p}\right) p^{k-1} c(n) + \left(\frac{N}{p}\right)^2 p^{2k-1} c(n/p^2) \right) q^n$$

(cf. [5], §1; [3], §3, Proposition and Remark, p. 46).

For $g, g' \in S_{k+1/2}(N)$ we denote by

$$\langle g, g' \rangle = \frac{1}{[\Gamma(1) : \Gamma_0(4N)]} \int_{\Gamma_0(4N) \setminus \mathcal{H}} g(z) \overline{g'(z)} y^{k-3/2} dx dy \qquad (z = x + iy)$$

the Petersson product of g and g'.

1. Statement of results. In [4] for every fundamental discriminant D with $(-1)^k D > 0$ we defined a Shimura lifting ζ_D mapping $S_{k+1/2}(N)$ to $M_{2k}(N)$ (to $S_{2k}(N)$) if $k \ge 2$ or if N is cubefree) and a Shintani lifting ζ_D^* mapping $S_{2k}(N)$ to $S_{k+1/2}(N)$, and ζ_D and ζ_D^* were shown to be adjoint maps with respect to the Petersson products. Explicitly, for

$$g = \sum_{n \ge 1, (-1)^k n = 0, 1(4)} c(n) q^n \in S_{k+1/2}(N)$$

one has

$$\zeta_{D}g = \sum_{n \ge 1} \left(\sum_{d \mid n, (d, N) = 1} \left(\frac{D}{d} \right) d^{k-1} c(|D| n^{2} / d^{2}) \right) q^{n}$$

and for $f \in S_{2k}^{\text{new}}(N)$ a newform (the case we will be interested in) one has

$$\zeta_D^* f = (-1)^{[k/2]} 2^k \sum_{m \ge 1, (-1)^k m = 0, 1(4)} r_{k, N, D}(f; |D| m) q^m.$$

Here for any positive integer Δ satisfying $\Delta \equiv 0, 1 \mod 4$ and $D \mid \Delta$ we have put

$$r_{k,N,D}(f;\Delta) = \sum_{Q \in q_{N,\Delta} \cap T_0(N)} \omega_D(Q) \int_{C_O} f(z) Q(z,1)^{k-1} dz,$$
 (1)

where $\mathfrak{q}_{N,\Delta}/\Gamma_0(N)$ is the set of $\Gamma_0(N)$ -classes of integral binary quadratic forms Q=[a,b,c] with $b^2-4ac=\Delta$ and $N\mid a$, and where C_Q is the image in $X_0(N)(\mathbb{C})=\Gamma_0(N)\mid \mathcal{H}\cup\mathbb{P}^1(\mathbb{Q})$ of the semicircle $a\mid z\mid^2+b$ Re z+c=0 oriented from $\frac{-b-\sqrt{\Delta}}{2a}$ to $\frac{-b+\sqrt{\Delta}}{2a}$, if $a\neq 0$ or of the vertical line b Re z+c=0, oriented from $\frac{-c}{b}$ to i^∞ if b>0 and from i^∞ to $\frac{-c}{b}$ if b<0, if a=0. Furthermore, ω_D is the genus character given by

$$\omega_D(Q) = \begin{cases} 0 & \text{if } (a, b, c, D) \neq 1 \\ \left(\frac{D}{n}\right) & \text{if } (a, b, c, D) = 1, \text{ where } Q \text{ represents } n, (n, D) = 1. \end{cases}$$

REMARK. In [4], p. 240 the factor $(-1)^{\lfloor k/2 \rfloor} 2^k$ is missing in the definition of ζ_D^* , and the orientation of C_O should be the opposite one for a = 0, b < 0.

Recall that for any positive integer N' with $N' \parallel N$ we have an Atkin-Lehner involution $W_{N'}$ on $S_{2k}(N)$ leaving $S_{2k}^{\text{new}}(N)$ stable and defined by

$$W_{N'}f = N'^{k}(Nz + N'\delta)^{-2k}f\left(\frac{N'z + \beta}{Nz + N'\delta}\right) \quad (\beta, \ \delta \in \mathbb{Z}, \ N'^{2}\delta - N\beta = N').$$

Now let f be a normalized Hecke eigenform in $S_{2k}^{\text{new}}(N)$ with $T_{2k}(p)f = \lambda_p f$ for all primes p, and let ε_p be the eigenvalues of f under $W_{p^{\nu}}(p \text{ prime}, p^{\nu} || N)$. We shall impose the assumption that $\varepsilon_p = 1$ whenever ν is even.

Let n_0 be an integer mod N such that $\left(\frac{(-1)^k n_0}{p^v}\right) = \varepsilon_p$ for all primes p with $p^v \parallel N$. We set

$$S_{k+1/2}(N; f, n_0) = \{g \in S_{k+1/2}(N) \mid T_{k+1/2}(p)g = \lambda_p f \text{ for all primes } p; \text{ the } n\text{th Fourier coefficients of } g \text{ at infinity vanish unless } nn_0 \text{ is a square mod } N\}$$

(cf. [2, 6, 8, 3]). Note that if $g = \sum c(n)q^n \in S_{k+1/2}(N; f, n_0)$ and $p^2 \mid N$, then c(n) = 0 whenever $p \mid n$. In fact, since $p^2 \mid N$ it is well-known that $\lambda_p = 0([1])$, hence c(n) = 0 for $p^2 \mid n$. However, if $p \mid | n$, then nn_0 cannot be a square mod p^2 , since $p \nmid n_0$ by assumption, so c(n) = 0 also in this case.

THEOREM. Let $k \ge 1$ and let N be odd. Let f be a normalized Hecke eigenform in $S_{2k}^{\text{new}}(N)$, and let n_0 and $S_{k+1/2}(N; f, n_0)$ be as above. Then:

(i) $\dim_{\mathbb{C}} S_{k+1/2}(N; f, n_0) = 1$.

(ii) For any generator $g = \sum_{n \ge 1, (-1)^k n = 0, 1(4)} c(n)q^n$ of $S_{k+1/2}(N; f, n_0)$ the formula

$$\frac{c(m)\overline{c(n)}}{\langle g,g\rangle} = \frac{(-1)^{\lfloor k/2\rfloor}2^k}{\langle f,f\rangle} r_{k,N,(-1)^k n}(f;mn)$$
 (2)

 $(m, n \in \mathbb{N}; (-1)^k m, (-1)^k n \equiv 0, 1 \mod 4; (-1)^k n \text{ a fundamental discriminant; } (-1)^k n n_0 \text{ congruent to a square } \mod N)$

holds, where $r_{k,N,(-1)^k n}(f;mn)$ is the cycle integral defined by (1).

As already mentioned above the proof of (i) strongly depends on results of Waldspurger ([8, 9, 10]). In certain cases (i) can also be derived from [6, Chap. 4] by using an isomorphism between modular forms of half-integral weight and Jacobi modular forms and then applying the "multiplicity 1" theorem proved in [7]. Assertion (ii) can be deduced as in [4] using (i) and the fact that the Shimura liftings and the Shintani liftings are adjoint maps with respect to the Petersson products.

For a fundamental discriminant D with (D, N) = 1 let

$$L(f, D, S) = \sum_{n \ge 1} \left(\frac{D}{n} \right) a(n) n^{-s} (\operatorname{Re} s \gg 0)$$
(3)

be the L-series of $F(z) = \sum_{n \ge 1} a(n)q^n$ twisted with the quadratic character $\left(\frac{D}{n}\right)$. Recall that L(f, D, s) has a holomorphic continuation to $\mathbb C$ and that

$$L^*(f, D, s) = (2\pi)^{-s} (ND^2)^{s/2} \Gamma(s) L(f, D, s)$$

satisfies the functional equation

$$L^*(f, D, s) = (-1)^k \left(\frac{D}{-N}\right) L^*(W_N f, D, 2k - s).$$

As in [4], letting m = n in (2) we can deduce a refined version of a result of Waldspurger ([8]).

COROLLARY. Suppose that the hypotheses of the Theorem are satisfied. Let D be a fundamental discriminant and suppose that $(-1)^k D > 0$, (D, N) = 1 and that Dn_0 is a square modulo N. Then

$$\frac{c(|D|)^2}{\langle g,g\rangle} = 2^{\nu(N)} \frac{(k-1)!}{\pi^k} |D|^{k-1/2} \frac{L(f,D,k)}{\langle f,f\rangle},$$

where v(N) denotes the number of different prime divisors of N.

Of course, Corollaries 2-6 in [4] also have natural generalizations to the more general situation here. However, we leave their explicit formulation to the reader.

2. Proofs.

PROPOSITION. For all primes p and all fundamental discriminants D with $(-1)^k D > 0$ one has

$$\zeta_D^* T_{2k}(p) f = T_{k+1/2}(p) \zeta_D^* f \quad (\forall f \in S_{2k}^{\text{new}}(N)).$$
 (4)

Proof of Proposition. We shall give the proof only for (D, N) = 1, leaving the more general case which is similar but more tedious to the reader. We may assume that f is a normalized Hecke eigenform.

If $p \nmid N$, then $T_{2k}(p)$ and $T_{k+1/2}(p)$ are hermitian, and since ζ_D and ζ_D^* are adjoint maps and ζ_D commutes with the action of Hecke operators (immediate verification), identity (4) is obvious in this case.

Next assume $p \mid N$. Then by definition of ζ_D^* and $T_{k+1/2}(p)$ we must show that

$$r_{k,N,D}(f;|D|mp^2) = r_{k,N,D}(T_{2k}(p)f;|D|m)$$
 $(\forall m \ge 1 \text{ with } (-1)^k m \equiv 0,1 \pmod{4}).$

According to Proposition 7 in [4]

$$r_{k,N,D}(f; |D| m) = \alpha_k(|D| m)^{k-1/2} \langle f, f_{k,N,D,(-1)^k m} \rangle,$$

where α_k is a constant depending only on N and k and $f_{k,N,d,(-1)^k m}(z)$ $(m \ge 1, (-1)^k m \equiv 0, 1 \mod 4; z \in \mathcal{H})$ is the modular form (cusp form if N is cubefree or if $k \ge 2$)

in $M_{2k}(N)$ defined by

$$f_{k,N,D,(-1)^k m}(z) = \begin{cases} \sum_{Q \in \mathfrak{q}_{N,|D|m}} \omega_D(Q) Q(z, 1)^{-k} & \text{if } k > 1\\ \lim_{s \downarrow 0} \sum_{Q \in \mathfrak{q}_{N,|D|m}} \omega_D(Q) Q(z, 1)^{-1} |Q(z, 1)|^{-s} & \text{if } k = 1 \end{cases}$$

(cf. [4, §1]). In the following we will assume $k \ge 2$ (the case k = 1 is entirely similar). We will distinguish two cases.

Case (i): $p^2 \mid N$. Then $T_{2k}(p)f = 0([1])$, hence we must show

$$\langle f, f_{k,N,D,(-1)^k m p^2} \rangle = 0.$$
 (5)

Since $p^2 \mid N$, the conditions $b^2 - 4ac = |D| mp^2$, $N \mid a$ imply $p^2 \mid a, p \mid b$, hence

$$f_{k,N,D,(-1)^k mp^2}(z) = \sum_{[a,b,c] \in q_{N'}, |D|M} \omega_D(p^2 a, pb, c) (p^2 az^2 + pbz + c)^{-k}$$

where $N' = N/p^2$.

Since $p \nmid D$, we have $\omega_D(p^2a, pb, c) = \omega_D(a, b, c)$; in fact, (a, b, c, D) = 1 is equivalent to $(p^2a, pb, c, D) = 1$, and if [a, b, c] represents n, then $[p^2a, pb, c]$ represents p^2n .

Hence

$$f_{k,N,D,(-1)^k mp^2}(z) = f_{k,N',D,(-1)^k m}(pz),$$

and since f is in $s_{2k}^{\text{new}}(N)$, (5) follows.

Case (ii): $p \parallel N$. By [1] we have $T_{2k}(p)f = -p^{k-1}W_pf$, hence we have to show that

$$\langle f, f_{k,N,D,(-1)^k m p^2} \rangle = -p^{-k} \langle W_p f, f_{k,N,D,(-1)^k m} \rangle. \tag{6}$$

If $a, b, c \in \mathbb{Z}$ with $b^2 - 4ac = |D| mp^2$ and $N \mid a$, then it follows that $p \mid b$ and either $p^2 \mid a$ or $p \mid a$ and $p \mid c$. Hence setting N' = N/p we have

$$f_{k,N,D,(-1)^k mp^2}(z) = \sum_{[a,b,c] \in \mathfrak{q}_{N',|D|m}} \omega_D(p^2a,pb,c)(p^2az^2 + pbz + c)^{-k}$$

$$+p^{-k}\sum_{\substack{a,b,c\in\mathbb{Z},N'\mid a,p\,\nmid\,a\\b^2-4ac=|D|m}}\omega_D(pa,pb,pc)(az^2+bz+c)^{-k}.$$
 As in case (i) the first sum equals $f_{k,N',D,(-1)^km}(pz)$. Since $\omega_D(pa,pb,pc)=$

As in case (i) the first sum equals $f_{k,N',D,(-1)^k m}(pz)$. Since $\omega_D(pa,pb,pc) = \left(\frac{D}{p}\right)\omega_D(a,b,c)$ the second sum equals

$$p^{-k}\left(\frac{D}{p}\right)(f_{k,N',D,(-1)^k m}(z)-f_{k,N,D,(-1)^k m}(z)),$$

hence since $f \in S_{2k}^{new}(N)$ it follows that

$$\langle f, f_{k,N,D,(-1)^k m p^2} \rangle = -p^{-k} \left(\frac{D}{p} \right) \langle f, f_{k,N,D,(-1)^k m} \rangle.$$

By definition

$$W_p f_{k,N,D,(-1)^k m}(z) = \sum_{Q \in \mathfrak{Q}_N, |D| | m} \omega_D(Q \circ W_p) (Q \circ W_p) (z, 1)^{-k}.$$

Since acting by W_p is a permutation of $\mathfrak{q}_{N,|D|m}$ and $\omega_D(Q \circ W_p) = \left(\frac{D}{p}\right)\omega_D(Q)$ for $p \nmid D$ we conclude that

$$W_p f_{k,N,D,(-1)^k m} = \left(\frac{D}{p}\right) f_{k,N,D,(-1)^k m},$$

and (6) follows, since W_p is hermitian. This concludes the proof of the Proposition.

We now turn to the proof of the Theorem. Suppose that D is a fundamental discriminant such that $(-1)^k D > 0$ and $|D| n_0$ is congruent to a square mod N. The above Proposition and the definition of ζ_D^* then show that $\zeta_D^* f$ is in $S_{k+1/2}(N; f, n_0)$.

Let p be a prime with $p^* \parallel N$. If (D, N) = 1, then from $\left(\frac{(-1)^k n_0}{p^*}\right) = \varepsilon_p$ and $\left(\frac{(-1)^k D n_0}{p^*}\right) = 1$ it follows that $\left(\frac{D}{p^*}\right) = \varepsilon_p$, and the same computations as in [4, p. 243] give

$$r_{k,N,D}(f;D^2) = 2^{\nu(N)}(-1)^{[k/2]}(2\pi)^{-k}\Gamma(k)|D|^{k-1/2}L(f,D,k), \tag{7}$$

where L(f, D, s) is the L-function defined for Re s > 0 by (3) and v(N) is the number of different prime factors of N. But according to [9, Theorem 4] there is a fundamental discriminant D_0 with $(-1)^k D_0 > 0$, $\varepsilon_p = \left(\frac{D_0}{p^\nu}\right)$ for all primes p with $p^\nu \parallel N$ and $L(f, D_0, k) \neq 0$. Hence $\zeta_{D_0}^* f$ is a non-zero function in $S_{k+1/2}(N; f, n_0)$, and it follows that $\dim_{\mathbb{C}} S_{k+1/2}(N; f, n_0) \geq 1$. On the other hand, Waldspurger [10] kindly informs the author that for N odd it follows from his Theorem 1, (ii) in [8, p. 378] and the explicit description of the sets $U_p(e, f)$ ([8, p. 454]) that $\dim_{\mathbb{C}} S_{k+1/2}(N; f, n_0) \leq 1$.

Let us now prove the second assertion of the Theorem. Since f and $\zeta_{(-1)^k n}g$ have the same eigenvalues under all Hecke operators, $\zeta_{(-1)^k n}g$ is a cusp form and is a multiple of f by the "multiplicity 1" theorem valid for $S_{2k}^{\text{new}}(N)$. Comparing the Fourier coefficients at q we find that

$$\zeta_{(-1)^k n} g = c(n) f. \tag{8}$$

From what was proved above,

$$\zeta_{(-1)^k n}^* f = \beta_n g$$

for some $\beta_n = \mathbb{C}$.

Now

$$\beta_n c(m) = \text{coefficient of } q^m \text{ in } \zeta_{(-1)^k n}^* f = (-1)^{\lfloor k/2 \rfloor} 2^k r_{k,n,(-1)^k n}(f;mn).$$

On the other hand

$$\beta_n c(m) \langle g, g \rangle = c(m) \langle \zeta_{(-1)^k n}^* f, g \rangle$$

$$= c(m) \langle f, \zeta_{(-1)^k n} g \rangle$$

$$= c(m) \overline{c(n)} \langle f, f \rangle,$$

where in the last line we have used (8). Comparing these two formulas we obtain (2). The Corollary to the Theorem, of course, follows from (7).

ACKNOWLEDGEMENT. I would like to thank J.-L. Waldspurger for a helpful discussion.

REFERENCES

- 1. A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134-160.
- 2. Y. Flicker, Automorphic forms on covering groups of GL(2), Invert. math. 57 (1980), 119-182.
 - 3. W. Kohnen, Newforms of half-integral weight, J. reine angew. Math. 333 (1982), 32-72.
- 4. W. Kohnen, Fourier coefficients of modular forms of half-integral weight, *Math. Ann.* 271 (1985), 237–268.
 - 5. G. Shimura, On modular forms of half-integral weight, Ann. Math. 97 (1973), 440-481.
- 6. N.-P. Skoruppa, Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts, (Dissertation, Bonn. Math. Schr. 159, 1985).
 - 7. N.-P. Skoruppa and D. Zagier, A trace formula for Jacobi forms preprint (1986).
- 8. J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484.
 - 9. J.-L. Waldspurger, Correspondances de Shimura et quaternions, (preprint, 1985).
 - 10. J.-L. Waldspurger, Letter to the author of March 11, 1987.

Universität Münster, Fachbereich Mathematik, Einsteinstr. 62, 4400 Münster, Federal Republic of Germany

Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, 5300 Bonn 3, Federal Republic of Germany