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ON MINIMAL FAITHFUL PERMUTATION REPRESENTATIONS
OF FINITE GROUPS.

DAVID EASDOWN AND CHERYL E. PRAEGER

The minimal (faithful) degree p(G) of a finite group G is the least positive integer n
such that G < Sn. Clearly if H ^ G then n{H) < n(G). However if N < G then it is

possible for fi(G/N) to be greater than fi(G); such groups G are here called exceptional.
Properties of exceptional groups are investigated and several families of exceptional groups
are given. For example it is shown that the smallest exceptional groups have order 32.

0. INTRODUCTION

The minimal (faithful) degree fJ.(G) of a finite group is the least positive integer
n such that G can be embedded in Sn , the symmetric group on a set of size n, and
any such embedding is called a minimal (faithful) representation of G . It is part of the
folklore that n(G) is the least value of 22 \G : Hi\ where Hi,..., Ht are subgroups

of G for which f) fl Hf = 1 •
Ki^l g€G

Though we do not consider semigroups which are not groups, one may define
the minimal (faithful) degree /J,(S) of a finite semigroup S to be the least nonnegative
integer n such that S can be embedded in PTi X PTj , the direct product of a semigroup
and dual semigroup of partial mappings on disjoint sets / and J respectively, where
IU J contains n elements. It is easy to show this definition is equivalent to the earlier
one when 5 is a nontrivial group. Minimal degrees of semigroups which are not groups
have been studied by one of the authors in [1, 2], and [3].

In what follows G will always denote a nontrivial finite group. Clearly (i(H) ^
n(G) if H ^ G. However if N < G then it is possible for y,(G/N) to be greater
than /x(G); in such a case G will be called exceptional and we call N and G/N a
distinguished subgroup and quotient respectively of G. This paper is the result of our
investigations of exceptional groups and their distinguished subgroups and quotients.

We remark that if G is abelian, so G ~ Zpt
ai x .. . x ZPnan for some primes

Pi , . . . , pn and positive integers QJ , . . . , an , then by [7, 6] we have n(G) = £) p°' .

An abelian group cannot be exceptional since each quotient is isomorphic to a subgroup.

Received 6 November, 1987

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 SA2.00+0.00.

207

https://doi.org/10.1017/S0004972700027489 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027489
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Further a distinguished quotient G/N of an exceptional group G cannot be cyclic, for
if G/N = (Ng), for some g £ G, then p(G) > n((g)) > fi{{Ng)) = fi{G/N). The
following examples show that exceptional groups exist.

Example 0.1. Let d = (x,y\ x8 = y4 = 1, xy = z'1) and Ni = (x*y2) ~ Z2 ,
so that Ni is contained in the centre Z(Gi) — (x4,y2) of Gx . Then G] is a group
of order 32 and /.i(G]) = 12, a minimal representation <j>: G\ —> Si2 being induced
by x<f> = (1,2,3,4,5,6,7,8) and y<j> = (1,8)(2,7)(3,6)(4,5)(9,10,11,12). However
Gi/N\ ~ (x,y I x8 = I)!/2 = x*,xv = x-1) is a generalised quaternion group and
by [6,.Theorem 1] its minimal degree is |Gi/iVi| = 16. Thus G\ is exceptional with
distinguished subgroup N\ .

Example 0.2. Let G2 = (x,y,n | x8 = n2 = 1, y2 = x4, xv = x~1n, nx = ny =

n) and iV2 = (n) ~ Z2 , so N2 < Z(G2) = (n,x4). Again |G2| = 32 and /x(G2) = 12, a
minimal representation ^': G2 —» 5J 2 being induced by xtp = (1,2,3,4, 5,6,7, 8)(9,10),
yV = (l,2,5,6)(3,4,7,8)(9,ll)(10,12) and T # = (1,5)(2,6)(3, 7)(4,8)(9,10)(ll, 12).
As before G2/N2 is generalised quaternion so G2 is exceptional with distinguished
subgroup 7V2 .

In Section 1 we show that exceptional groups have order at least 32, and show that
the only exceptional groups of that order are those of the previous examples. We explore
properties of minimal exceptional groups: an exceptional group is called S-minimal,
Q-minimal or SQ-minimal if no proper subgroup, quotient or section respectively is
exceptional. For example, we show a distinguished subgroup N of an SQ-minimal
exceptional group G is contained in the Frattini subgroup $(G) and may be taken to
be elementary abelian.

In Section 1 we use the well-known fact that if G is a transitive imprimitive per-
mutation group, with G the permutation group induced on the blocks of imprimitivity,
and if G^ denotes the action of the set stabiliser GB restricted to some block B, then
G can be embedded in the wreath product Gg wr G.

In Section 2 we give several families of examples of exceptional groups together with
two general constructions. All our nontrivial examples have distinguished quotients
with cyclic centres. As remarked earlier a distinguished quotient cannot be cyclic, but
the authors do not know whether it can be abelian. That it cannot be elementary
abelian is proved in [8] where also a characterisation is given of groups G with an
elementary abelian quotient G/N such that n(G) = n(G/N). In Section 3 we show
that f.i{T! x ... xTr) = At(Ti) + . . . + fi(Tr) for simple groups T1 ; . . . ,Tr, which is a
contribution to the investigations of Johnson [6] and Wright [12] of the minimal degree
of direct products of groups. It is always true that n(G x H) < n{G) + n{H), but it is
an open problem to characterise when equality occurs. For example equality occurs if
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G and H are nilpotent and non-trivial [12, Corollary 2].

Throughout D2r = (a,b\ar = b2 = 1, ab = a"1) and Q2" = (a, b | a2""1 =

1, a2"" — 62, ab = a"1) denote the dihedral group of order 2r and the generalised

quaternion group of order 2" respectively.

1. MINIMAL EXCEPTIONAL GROUPS

Throughout this Section, G will be an exceptional group with distinguished sub-

group N.

LEMMA 1.1.

(a) If G is S-minimal then N is contained in the Frattini subgroup $((?),
that is N is contained in each maximal subgroup of G .

(b) If M is a normal subgroup of G contained in N then either M is a
distinguished subgroup of G or G/M is exceptional with distinguished
subgroup N/M. In particular if G is Q-minimal then every nontrivial
normal subgroup of G contained in N is distinguished.

PROOF:

(a) Suppose that M is a maximal subgroup of G which does not contain N .
Then G = NM, so G/N ~ M/(M n N) and, since M is not exceptional,
H(G/N) = n{M/{MnN)) < ft(M) < fi(G), which contradicts the fact
that N is distinguished. Thus N is contained in every maximal subgroup
of G.

(b) Let M be a normal subgroup of G contained in N. If M is not distin-
guished then n{G/M) < fi{G) < n{G/N) = fi({G/M)/(N/M)). |

Thus if G is SQ-mininial we can take JV to be a minimal normal subgroup of G
contained in the nilpotent group $(G), so we can assume that JV is elementary abelian.
Next we look at the action of a distinguished subgroup in a minimal representation.

LEMMA 1.2. Suppose that an exceptionaJ group G is minimally represented on
X = IJ Xi with orbits X\, ..,Xr- Then a distinguished subgroup N is intransitive

on each Xi if G is S-minimal, and is nontrivial on each Xi if G is Q-minimal. In
particular if G is SQ-minimal then G acts imprimitively on each Xi so \Xi\ is a
number greater than 1 which is not prime.

PROOF: If G is S-minimal then JV ^ $(G) by Lemma 1.1. If further JV were
transitive on some Xt then G = NGX for x £ Xi, so G = Gx by [5, III 3.2]. In that
case \Xi\ — 1, contradicting the minimality of \X\.

Suppose now that G is Q-minimal and JV fixes some X; pointwise; put Y =
X\Xi. Then G is a subdirect product of GXi and GY. Since NXi ~ 1 we have
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N ~ NY and it follows that G/N < GXi x (GY /NY) . Also GY is not exceptional since

G is Q-minimal. Hence fJ,(G/N) ^ fi(Gx' x (GY/NY)) < ft(Gx*) + n{GY/NY) ^

n(Gx') + IM{GY) ^ \Xi\ + \Y\ = fi(G), contradicting the fact that N is distinguished.

Thus N is nontrivial on each Xi.

Thus if G is SQ-minimal then the N-orbits in Xi, for each i, are nontrivial blocks

of imprimivity for Gx< , so in particular \Xi\ > 1 and cannot be prime. |

PROPOSITION 1.3. Supppose that H is a finite group with a nontrivial abelian
normal subgroup K. Then H has an abelian normal subgroup L containing K for
which fj,(H/L) < /x(if) and the prime divisors of \L\ and \K\ are the same. If K is
elementary a-helian then L may be chosen to be elementary abelian.

PROOF: Let H be minimally represented on a set X with orbits X^,... ,XT . For
each i let Y{ be the set of /f-orbits in Xi, so the action of HXi induces a group
U ' ' ' of permutations of Yi. For each i choose some Bi £ Yi. Put Hi = HB' , the
restriction to Bi of the set-stabiliser of B{, and H* = H{ wr H^. Then Hi ^ KBi

and Hx' < H* . Since K is abelian, its action on each Bi is regular and KB' is

self-centralising in Hi, by [11, 4.4]. Hence \KB<\ = \Bt\, H{/K
Bi < Aut (JvB-) and

\Xi\ = I/S^'HY;!. Now let Li be the subgroup of H* generated by the conjugates of
KBi by elements of H, that is, Li is the direct product of |Yi| copies of KB' , so
Kxi <Li< H* . Put L* = fl Li and H* = ]J H? , so L* < H* and H < H* . Now put

~*' i i ~

L = H D L* (after identifying H with its image under the embedding), so L is abelian

and K ^ L. Then p{H/L) = ̂ {HL*/L*) < n{H*/L*) = JR (Hi/KBi) wr H

Mi II (Aut K ') wr 27**' 1 . Since K is noutrivial, at least one KB> is nontrivial,

in which case /a((Aut KB<) wr H^) ^ (|/^B'| - l)|Fi| < |ii:Bi|l^l = |* i | - T h u s

H(H/L) < T,\Xi\ = \X\ = n(H). Observe that \L\ and |/i"| have the same prime
i

divisors and if K is elementary abelian then so is L. |

We have immediately from Lemma 1.1 and Proposition 1.3 the following:

LEMMA 1.4. If G is an SQ-minimal exceptional group then G has elementary

abelian normal subgroups N and M for which N is distinguished, M is not distin-

guished and M properly contains N.

We now show that groups Gj and (?2 in the introduction are the smallest excep-
tional groups.

THEOREM 1.5. There are no exceptional groups of order less than 32. If G is

exceptional of order 32 then Gis isomorphic to {x,y \x8 = y4 = l ,xy = x~1) or
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{x,y,n \x8 = n2 = l,y2 = x4,xy = x^n^n1 = ny = n).

PROOF: It is sufficient to prove the theorem for SQ-minimal exceptional groups.
So let G be SQ-minimal of order < 32. By Lemma 1.4, G has a distinguished subgroup
N which is elementary abelian and properly contained in an elementary abelian normal
subgroup M. Note that G ^ M since G must be non-abelain.

We claim first that fJ-(G) > 8. If /i(G) ^ 8, then by Lemma 1.2 a minimal repre-
sentation of G on a set A' is transitive of degree 4, 6 or 8 or splits up into two transitive
constituents of degree 4. If n(G) = 4 then G < S4 and |G/iV| ^ n{G/N) > /n(G) = 4,

from which it follows easily that G = S4 and N = Z2 x Z2 , so fj,(G/N) = /x(53) = 3,
a contradiction. If n{G) = 6 then G is a transitive subgroup of 56 such that the
iV-orbits are nontrivial blocks of imprimivity of G, and since N < M < G it fol-
lows that |iV| — 2, 3, or 4. In this case let G* be the normaliser of N in 56 ,
so G ^ G*. If |JV| = 2 then G* ~ Z2 wr S3 and G*/N ~ S4, so n{G/N) ^ 4.
If \N\ = 3 then G* ~ l\ xi l\ and ft{G/N) ^ n(D12) = 5. If |JV| = 4 then
G* ~ Z2 wr 53 and G*/N ~ Z2 x 53 , so fi{G/N) ^ 5. Each of these con-
tradicts the fact that /.i(G/N) > 6. Finally suppose /LI(G) = 8, SO either G is
a transitive subgroup of 5s or a subgroup of 54 x 54 with two orbits of size 4.
If \N\ > 2 then |JV| ^ 4 so \G\ = |G/JV||JV| ^ n(G/N)\N\ > ix{G)\N\ > 32
which contradicts the fact that \G\ < 32. Hence \N\ = 2. Let G* be the nor-
maliser of N in 58, so G* = Z2 wr 54 and G*/N is isomorphic to the following
permutation group of degree 8, ((12)(34)(56)(78),(13)(24)(57)(68),(15)(48)(26)(37),
(25)(17)(46)(38),(28)(14)(67)(35),(358)(467),(12)(45)(78)(36)>, which shows that
/j,(G/N) ^ 8, a contradiction. This completes the proof that fi(G) > 8.

Thus 10 < n(G/N) s: \G/N\ < 16. Since G/N is not cyclic |G/iV| ^ 11, 13 or
15. If |G/iV| = 10 then n(G/N) = M(-DIO) = 5; if \G/N\ = 12 then G/N is one of
Z j x Z j , D12, Z3 X Z4 or A4, so n(G/N) < 7; if \G/N\ = 14 then G/N ~ D14 so.
n(G/N) = 7. Each of these leads to a contradiction. Hence |G/iV| = 16 and |JV| = 2,
and there are no exceptional groups of order less than 32.

Since \G\ = 32 , by Lemma 1.2 we have that fJ,(G) is a multiple of 4, so /i(G) ^ 12,
and hence fj,(G/N) > 12. There are 13 non-cyclic groups of order 16 (see [10]). The
only group on this list with minimal degree more than 12 is Q16 . Indeed fJ,(Qi«) = 16.
Thus G is an extension of N = {n} ~ Z2 by Qyg , which is not a direct product and
does not contain an element of order 16 or subgroup isomorphic to Qi6 . There are only
the following possibilities for G:

G1 = (x,y,n\x8 =n2 = 1, y2 = x4n, xy = x~l, n» = n» = n);

G2 - {x,y,n\x8 = n2 = 1, y2 = x4, xy = x^n, nx = ny = n);

G3 = {x,y,n\xs = n2 = 1, y2 = x4n, xy = x^n, nx=ny = n).
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But G'j is the exceptional group of Example 0.1; to see this observe that n = x4y2 so
y4 = 1. Further G'2 is the exceptional group of Example 0.2 and G3 ~ G^ ; to see this
observe, for x,y,n G G'3, that (yx) = x4 and xyx = x^ 1 n . This completes the proof
of the theorem. |

We complete this section by proving:

PROPOSITION 1.6. Any S-minimal exceptional group with nilpotent distinguished

quotient is a p-group for some prime p.

PROOF: Let G be S-miniraal, so N < $(G) by Lemma 1.1. If G/N is nilpo-
tent then G is also nilpotent by [5, III. 3.5]. Let p be a prime divisor of \G\. If
G is not a p-group then G — P x Q where P and Q are nontrivial and have
coprime order. As G is S-minimal neither P nor Q is exceptional, and as JV is
nilpotent N = (N n P) x (N D Q). Thus n(G/N) = fi{P/{N n P) x <?/(iV D <?)) <
H(P/(N n P)) + v(Q/(N n <?)) < M(P) -I- /x(g) = M(G), by [6, Proposition 2], contra-
dicting the inequality fi(G/N) > n(G). Thus G is a p-group. |

Also the smallest example G, if it exists, of an exceptional group with abelian
distinguished quotient G/N must be a p-group; for by the proof of Lemma l. l(a) N
is contained in $ (G) , and as in the proof of Proposition 1.6, G is a p-group.

2. EXAMPLES OP EXCEPTIONAL GROUPS

In this Section we give examples of classes of exceptional groups. We begin with a
general class of examples of exceptional p-groups.

THEOREM 2.1. Let p be a prime and let G\ , G2 be non-cyclic p-groups with

cyclic centres Zj = (aj) and Z2 = (02) respectively of the same order.

(a) If p is odd then G\ x G2 is an exceptional group with distinguished

subgroup N - <(ai,a2)).
(b) If p = 2, /x(Gi) > n{G-i) and G2 is not a generalised quaternion group,

then Gi x G'2 is exceptional with distinguished subgroup N = {(01,02)) .

PROOF: First we claim that H = (G'i x G2)/N has cyclic centre (Zi x Z2)/N =
((oi,l)JV) = ((l,a2)N). This is true since (u,v)N € Z(H) if and only if, for all
(g,h) e G] x G2, we have [(u,v),(g,h)] - {[u,g],[v,h]) € N, that is for all (g,h) £
G'i x G2 there is some integer i for which [u,g] = a\ and [v,h] = a2 • Taking h = 1
this condition becomes [u, g] = 1 for all j G C i , that is u € Z\ , wliile taking g = 1
yields v G Z2 .

Thus Gj , G2 and H have cyclic centres and so by Johnson [6, Theorem 3] all
minimal representations of G i , G2 and H are transitive so that /x(Gi) = p"1 , fi{G2) =
p"2 and n{H) = p" for some n\ , n2 and n.
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We may assume that /u(Gi) ^ I*{G2) • Since G2 is neither cyclic nor (if p = 2)

generalised quaternion, G'2 has a subgroup B = (6) ^ 1 such that B C\ Z2 = 1 (see

Gorenstein [4, 5.4.10]). Then Gj x 5 ~ (Gj x B)N/N ^ H so that /*(ff) > /x(Gi x B)

and n(Gi x B) = M(<?I) + KB) hY Wright [12, Theorem 2]. Thus n(H) > M ( G J ) ,

that is, n > ni so that n(H) ^ p^j(Gi). For p odd we have n(H) > 2^/.(Gi) ^

M(G'I) + ^.(G2) = M(GI x G 2 ) , proving part (a). For p = 2 , if /x(Gi) > fi(G2) we again

have fi(H) > M ( G I ) + M ( G 2 ) = M(GI X G 2 ) , proving part (b). |

Remarks 2.2. The theorem shows that the following classes of 2-groups are excep-

tional:

(a) D2" x D2™ for n > m > 3 , with distinguished quotient the central
product Z?2n * Z?2m ) a n d

(b) Q2n x Z>2m for n ^ ru ^ 3 , with distinguished quotient Q2n * £>2m .

The smallest of these examples is Qg X D$ of order 64 (which is larger than the
examples given in the introduction). By repeated applications of the theorem we can
obtain other classes of exceptional 2-groups, for example:

(c) (-D16 * (*Ds)n) x Ds with distinguished quotient Dle * (*D8) , where
(*A")n denotes the n-fold central product K * . . . * K.

(d) (Qs * {*DS)") x D8 with distinguished quotient Q8 * {*D8)
n+1

In fact the groups D2n x £>2m , Q2n x D^™ , and Q2n x Q2m are exceptional for
all values of n and m at least 3, but this does not follow from Theorem 2.1. First we
make the following observation:

LEMMA 2.3. Suppose that G is an abelian group generated by x and y, and that

H is a subgroup of G for which H n (x) = H D (y) = 1. Then H — (xlyl) for some i,

j for which |x*| = |yJ'|.

PROOF: If H = 1 then the statement of the lemma holds. Suppose H ^ 1, and

let i be the least positive integer such that xly> 6 H for some j . If also xkyl G G then

x* = xia for some a , so xky'(xiy^)~a = j / ' - ' ' a € / / . Thus yl~ia = 1, so yl = y'a

and xky' G (xlyj). This shows that F = (xlyj). If |a;'| 9̂  IJ/-7'! then some nontrivial

power of xly* lies in (x) or (3/), which is impossible. Hence, \x'\ = \yi\. I

PROPOSITION 2.4. Suppose that n and m are integers greater than 2. Then

D2n x P2m , Q2" x D2m , and (?2n x Q2™ are aii exceptional groups with distinguished

quotients D2n * D2m , Q2n * D2m and Q2
n * Q2"1 respectively. Further the direct

products have minimal degrees 2 " " 1 + 2 m - 1 , 2" + 2 m ~ 1 and 2" + 2 m respectively,
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while the central products have minimal degrees as follows:

2 m + 1 i / n ^ m,

PROOF: The minimal degrees of the direct products follow from Wright [12, The-
orem 2] and from the facts that n{D2™) = 2m~1 and n(Q2*) = 2 n (see Wright [12,
pp.901-902] and Johnson [6, Theorem 1]). We need to determine the minimal degrees
of the central products.

First suppose that n ^ m and embed D2n naturally in D2m . Define

by (g,h)<f>: x H-> g~1xh for all x G D2m . Then <f> is a permutation representation

with kernel {(g,g) \g € Z(D2m)} and hence D2n * D2m ~ (D2n x D2m)/ KeT(j> <

Sym(D 2 m) . Thus n(D2n * D2m) ^ 2 m . On the other hand Z2 x D2"» < D2n * D2™

and so 2"l~1 < /^(Z2 x D2™) < fi(D2n * £>2m); by Johnson [6, Theorem 3] and since
Z?2n * .D2m has cyclic centre, D2

n * D2™ has a transitive minimal representation so
that n{D2n * D2m) is a power of 2. It follows that fi(D2n * D2m) = 2 m . If 71 < m a
similar argument shows that fi(Q2n * Q2

m) = 2 m (noting that Q2m < Q2n * Q2
TO gives

2 m = At(<?2™) < M<?2" * Qjm)) .

For the remaining case we shall denote H = Q2» * £>2"> by H = (a, 6, c, d \a? =

c2"1"1 = d2 = 1, a2""2 = 62 = c2"1"2, 6a = a~H, dc = c~U, [a,c] = [a,d] =

[b,c] = [6,d] = 1). Now Q2n x Z2 < H so that n{H) > 2 n + 2 > 2" . Further

(62) ~ Z2 is the unique minimal normal subgroup of H since [a'6-7cfcd',6] = a ± 2 ' and

[o'6-'cfcti', d] = c± 2 f c . It follows that a minimal faithful representation for H must be

transitive (by Johnson [6, Theorem 3] for Z(H) must be cyclic). Thus n{H) is a power

of 2 and hence n(H) ^ 2 " + 1 . Also n(H) = \H: K\ where K is a subgroup maximal

such that b2 fi K. Taking K ^ (ac2™ ") ~ Z2n-2 if m > n or K > (a2" ™c) ~ Z2m-2

if m ^ n , we obtain n(H) ^ 2 m + 1 and fi(H) < 2 n + 1 respectively. If m < n we

conclude that fj,(H) = 2 n + 1 .

So suppose that m > n. Since 62 ^ A" we have that A" Pi (a) = / ( n ( c ) = l . Hence

K n (a, c) = (a,lc3) for some i , j by Lemma 2.3. If K ^ («, c) , then, since the largest

cyclic, subgroups not containing 62 have order 2n~2 , it follows that \K\ = 2 n ~ 2 and

fj,(H) = 2 m + 1 . So suppose that K contains an element of H\{a,c), say y = bsdeakcl

where 8 and e are 0 or 1 and 8 + e ^ 1. Then K n (a, c) contains (a ' c J ) y = a* cJ
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where i' = ( -1)*J , j ' = (-l)'j; since K f\(a,c) = ( a V ) it follows that 6 = e = 1 and

K contains (bdakcl) = b2 which is a contradiction. |

All our examples so far in this Section of exceptional 2-groups have been direct

products. Our final class of examples of exceptional 2-groups is not a class of direct

products and its smallest member, #2,3 is Example 0.1, of order 32, given in the

Introduction.

P R O P O S I T I O N 2.5. The groups

Hm,n = (x,y\x2" = / " = 1 , xy = x-*)

are exceptional of order 2 m + n if 2 ^ m < n.

PROOF: Put N = (a;2" 3/2)<-ffm,n- Then Hm<njN is genaralised quaternion of

order 2 n + 1 , so has minimal degree 2 n + 1 . On the other hand, p(Hm<n) < 2m + 2n since

i f r a , n ~ ( ( l , 2 , . . . , 2 " ) , ( l , 2 n ) ( 2 , 2 n - l ) . . .

(2"- 1 ,2 n - 1
 + ^ ( 2 " + 1,2" + 2 , . . . ,2" + 2m)).

This shows that Hm,n is exceptional if 2 < m < n. |

We now turn to exceptional p-groups where p is odd. It follows from Theorem 2.1

that if G — Zp wr Zp then G x G is exceptional of order p2(P+1). (In fact a minimal

representation for the central product G * G is induced by <f>: G x G —> SymG where

(g,h)<f>: x H-> g~1xh.) A smaller class of groups is given by G x G of order p6 where G

is an extraspecial group of order p3 , that is, G' = Z(G) — $((?) ~ Zp. (Such groups

are described in [4, 5.5.1]). The authors do not know if there are any exceptional

p-groups of order less than p6 , for p odd.

We now describe a class of exceptional p-groups, for p odd, which are not the

direct product of groups with cyclic centres.

PROPOSITION 2.6. For p an odd prime and n an integer ^ 1, define

G = Z£," xi Zj£ * Zpn

= ( 3 i , . . . , V > y i » - - - i J / p " » z W i = V i - z " n = l for a l i i ,

[x{, Xj\ = [x{,z] = [yi,yj] = 1 for all i, j ,

x^ = Xi+i for all i < pn and all j ,

xyjn = X! for all j , y\ = yi+1 for i < pn, yz
pn = yx)

Then G is an exceptional group of order pn(2p + 1 ) with distinguished subgroup N =
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PROOF: First fi(G) < 2p2n since we have a mononiorphism <j>: G —• S2p2n defined

by

Xi4> = (ipn -pn + l,ipn - pn + 2 , . . .,ipn) for i = 1 , . . . ,pn,

yi<j> = b. (p2" + ip" -pn + l ,p 2 n + ipn - pn + 2 , . . . ,p2n + ip")

for t = 1 , . . . ,pn where

b= H (i,pn + i,2pn + i,...,(pn-l)pn + i)

and

Moreover since G/N ^ (xiN) x . . . x {xpnN) x (zN) ~ Z£n
+1 we have fi(G/N) ^

p2" + p " . Also G/7V has centre {xA ...xp*N) ~ Zpn , so by [6, Theorem 3] (JL(G/N)

is a power of p and hence n(G/N) > p 2 n + 1 > n(G), which proves that G is
exceptional. |

Next we look for exceptional groups which are not p-groups. We find first of all a
trivial construction.

PROPOSITION 2.7. If G and H are groups and G is an exceptional group then
G x H is also an exceptional group if either

(a) (\G\,\H\) = \,or
(b) G and H are both nilpotent.

PROOF: The result is clearly true if H is trivial, so suppose H is non-trivial. Let
N < G be a distinguished subgroup for G. Then since (G x H)/(N x 1) ~ (G/N) x H
we have /*((G x H)/(N x 1)) = »((G/N) x H) = /x(G/iV) + M(fT) > M(G) + /i(ff) =
/Lt(G' x / / ) by Johnson [6, Proposition 2] and Wright [12, Corollary 2]. |

Less trivial examples are provided by direct products of dihedral groups.

PROPOSITION 2.8. For any integer k = pf1 . . .p"' > 1, wiiere the p< are distinct

primes, define 4>(k) = V p°' and set V'(l) = 0- Then the following hold:

(a) the dihedral group D2-nq, where q is odd, has minimal degree

{ 2" ifq = 1, 1 ^ n < 2

2 " - 1 ifq=l,n>2

4>(q) ifq > 1, n = 1
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(b) Suppose that 2 < n ^ m, q and r are odd, and 2nq > 4 , 2mr > 4.

Then

2"»-i -j- y,(g) 4. y,(r) if n = 2

••0(7-) i f n > 2 ;

(c) tiie group D2nq x D2mr > where TO, n , g, r are as in (b), is exceptional

if and only if 2 < n < m .

PROOF: Part (a) is proved in Wright [12, pp.901-902]. Let H = D2nq * D2™r =

{a,d,c,d la2""1 ' = b2 = d2 = I,a2""2« = c j m~ l p ,a6 = a~\cd = c~\[a,c) = [a,d] =

[b,c] = [b,d] = 1), where m , n , q, r are as in (b). If n = 2 then H ~ Z?2g x -D2mr>

so /tt(fi') = n(D2q) + n{D2™r) = i/>(q) + 2 m - 1 + V>(r), using (a) and [12, Proposition 2].

Suppose that n > 2. Since the map

(a,b,cr)j

defines a monomorphism H into (£>2n * D2
m) x Z>2? x Z?2r, we have ^(/T) < 2 m +

+ V"(r)> by Proposition 2.4. Suppose Hi,... ,Ht are subgroups of # such that

E l-ff: ^«l a n d n # < = ! where F^ = f| H$. for each i. We first prove that

\H: Hio\ is divisible by 2 m for some i0 .

Suppose that, for each i, 2m does not divide \H: Hi\. Then since \H\ =

2n+m~iqr, we have 2" divides each \Hi\. Hence each Hi has a subgroup Si of order
2". Put z = a2""2q = c2"1"2"". We will prove that z e Si. Suppose to the contrary
that z £ Si. Put Ti = Si D (a«, c r ) . By Lemma 2.3, T̂  = (aa<"c^"r) for some a0 , /90

where |aa°9| = \c^r\, so |T;| < 2n~2 . Put U{ = {h G St | h = aabc^d for some a,/3}.

li g = aabc0d and h - a^bcsd are elements of Ui then <//i = aa~'1c&~6 € Ti, which
shows either |t/<| = 0 or | ^ | = \1\\. Thus 1 (^ ,^ )1 = \T{\ + \U{\ < 2|r{| < 2" - 1 < 2".
Hence 5,- must contain an element of the form g — aabc^r or h = ayqc6d for some
a , /?, 7 , S. U g £ Si then <?2 = C

2"r e 5 ; , so c2^r = 1, that is c"r = z
and g G (a, 6). Put V; = 5£ n (a, 6). If a"6, â fc G F{ then a""" G V{, so
a*1 = a", since z £ Si, which shows Vj = (a706) = Z2 for some y0. Similarly,
if h G Si then /i G W{ = S{ n (c,d) = (c*°d) for some 50 • If |T;| = 1 then
\Si\ ^ | ( ^ ,Wi ) | ^ 4 < 2 n , contradicting the fact that |S<| = 2 n . Thus |T;| ^ 1.
If |Vi| ^ 1 then z G (a2a<" = [a-ao9C-/3°r,aT<'6]> < 5; (for a2Q<" = 1 implies
aQ°« = 2 = c^or and T{ = 1). Similarly if |W<| ^ 1 then z e Si, both leading to
contradictions. This proves indeed that z £ Si. But (z) < H so (~l.ff; ^ 1, a contradic-
tion. This shows 2m divides |if: Hig \ for some to .
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Put \H: Hi\ — 2Viqi where qi is odd, so

In particular, since m > 2 , \H: Hi<3\ > 2m + 2^>(g,0). Denote all the distinct odd

prime divisors of \H\ by pi,... ,p, . Put x = a2 and y = c2 , so {x,y} ~

( n ) x . . . x (xs) x (j/n) x . . . x (y.) where, for each i , xi € (a;), yi € (j/), |xi| = p? ,

l'J/t| = Pi ' for some c*i, /?£. Put 7 = {i \ui ^ 1} .

Then

For each z = 1 to 5 both (x{) and (j/;) are normal subgroups of H, so we can find

ji and fc; such that Hj{ n (XJ) = /ffc; n (j/i) = 1. Hence \H: ^ ^ | is divisible by

p°* and |-ff: -ff̂ ^ | by pf* . From the previous inequality, in order to prove part (b)

it is sufficient to show that either ji ^ k{, or that ji = A; and either p"i+ divides

\H: f f j j or ji £ / . So suppose ji - ki and p"i+Pi does not divide |if: Hjt\. Put

Ji = F ^ n (a;i,yi), so K ^ 1. By Lemma 2.3 we have # = (xfyf) for some a , ^

where \xf\ = \yf | ^ 1. If 6 G J5T,-. then 1 ^ x?a = [ir ' -yf",*] £ JTA , which contradicts

the fact that Hj{ n(.T;) = 1. Hence 6 £ ff̂  so 2 divides |.ff: ff̂ . |, wliich shows j t £ I.

This completes the proof of part (b).

Part (c) follows immediately, using /Lt(£>2"g X I?2mr) = p{D2"q) + /Lt(Z?2mr) and
parts (a) and (b). |

3. D I R E C T PRODUCTS OF SIMPLE GROUPS.

If H, K are nontrivial groups then clearly n(H x K) ^ fJ-(H) + (i(K). Johnson
and Wright considered several cases of the question: when is n(H x A") = fi(H)+fi(K) ?
The answer is affirmative for example if H and K have coprime orders, or if H and
K are nilpotent (see [6, Theorem 2] and [12, Corollary 2]), or more generally if H and
K contain nilpotent subgroups H\ and K\ respectively such that fi(H) = fj,(Hi) and
/Lt(A") = fi(Ki) (see [12, remark following Corollary 2]). However there are examples
where the answer is negative [12, Section 5]. The following result wliich has been used
in [9] to investigate the inclusion problem for finite primitive permutation groups, gives
an affirmative answer if H and K are direct products of simple groups.
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THEOREM 3.1. Let Si be a simple group with minimal degree \ii for i = 1 , . . . , r .
Then if G = 5j x . . . x Sr we have n{G) = £ > i •

PROOF: In what follows we use the fact that /x(5) < |5 | /2 for a nonabelian simple
group 5 : this is easily seen by considering the (faithful) representation of S on the
cosets of a subgroup of odd prime order.

There is nothing to prove if r = 1, so assume inductively that r ^ 2 and that
the result is true for fewer factors. Since f-i(G) ^ X) Mi we need to prove the reverse
inequality, that is fJ.(G) ^ J2 /X{. Let G be minimally represented on X, so |Ar| =
(i(G). If G is intransitive on X then X = X\ U X2 where each Xi is nonempty and
fixed setwise by G. Let Ki be the kernel of the action of G on Xi, i = 1,2. Then
G/Ki is isomorphic to a product of some of the Si and K\ to the product of the other
Si. By the inductive hypothesis n(G) = \Xi\ + \X2\ > n(G / K-^) + ̂ {K-i) ^Y,Vi-

Suppose then that G is transitive on X. If each 5; is transitive on X then it
follows from [11, 4.3 and 4.4] that G = 5j x S2 where Si is nonabelian and |X| —

\Si\ — \S2\. In this case n(G) = \X\ > 2 ma.x{ni,n2} ^ ^Z A4*) a contradiction. Thus at
least one of the Si is intransitive on X. Choose S to be one of the 5; with the shortest
orbits in X and let Y be the set of S -orbits in X, B 6 Y, and K the kernel of G on
Y . Now K is the direct product of some nonabelian simple factors of G and a subgroup
of Z(G). Thus the kernel L of K on B , being a normal subgroup of K , is also a direct
product of nonabelian simple factors of G and a subgroup of Z(K). In particular L is
normal in G and so is ~ -transitive on X. Thus L = 1, that is K ~ KB . If S j= K,
say A' ^ S x S', where 5 ' is another simple factor of G , then KB > SB x 5 B ,

and by the minimality of \B\, S' is transitive on B. Thus, by [11, 4.3 and 4.4], 5 is
nonabelian, K ~ 5 x S' and \B\ = \S\ = \S'\ > 2ma.x{/j.{S),n(S')} > n(S) + v(S"). So
/i(G) = |F| \B\ > \Y\(»(S) + M(5')) ^ \Y\ + fi(S) + M(5') ^ fi(G/K) + fi(S) + M(5') =
Y^fJ-i, by the inductive hypothesis, a contradiction. Thus 5 = K and /x(<?) = | F | |B| ^
n(G/K)fi(S) ^ [i(G/K) + (i(S) — ̂ 2 \ii, by the inductive hypothesis, which completes
the proof. H

We remark that, in the last stage of the proof, fi(G/K)iu,(S) > fj,(G/K) + n{S),
giving a contradiction, unless G/K ~ 5 ~ Z2 • Thus the proof shows that, unless
Z2 x Z2 is a factor of G, a minimal representation of C? must have the same number
of orbits as simple factors.
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