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Some Factorizations
in Universal Enveloping Algebras
of Three Dimensional Lie Algebras
and Generalizations

This paper is dedicated to Robert V. Moody on the occasion of his 60th birthday

Stephen Berman, Jun Morita and Yoji Yoshii

Abstract. We introduce the notion of Lie algebras with plus-minus pairs as well as regular plus-minus

pairs. These notions deal with certain factorizations in universal enveloping algebras. We show that

many important Lie algebras have such pairs and we classify, and give a full treatment of, the three

dimensional Lie algebras with plus-minus pairs.

1 Introduction

All of our algebras will be over a field F of characteristic zero. We begin by recalling

the well known fact that if L is a Kac-Moody Lie algebra with the usual Chevalley

generators {ei , fi | 1 ≤ i ≤ l} satisfying L = [L, L] and l is finite, then every L-

module on which the elements ei , fi , 1 ≤ i ≤ l act locally nilpotently is integrable in

the sense that the elements hi = [ei , fi], 1 ≤ i ≤ l are simultaneously diagonalizable.

(cf. [10] Ex. 6.31, p. 585, or [11]). In other words, every weakly integrable module

for such an algebra is integrable. The usual proof of this fact uses that the three

dimensional Lie algebra with basis ei , fi , hi is isomorphic to the Lie algebra sl2 (so g

is generated by sl2-triples) together with the result which says that if V is any module

for sl2 on which the standard generators e, f of sl2 act locally nilpotently then the

element h = [e, f ] is diagonalizable on V . One can see this last fact as follows.

We denote by M(W ) the maximal integrable submodule of an sl2-module W . In

general, M
(

W/M(W )
)

= 0 for all sl2-modules W . If a vector v of an sl2-module W

satisfies that f v = 0, env 6= 0 and en+1v = 0, then we obtain h(env) = n(env), since
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f en
= en f − nen−1(h + n− 1) and

h(env) = (e f − f e)env

= e f env

= e
(

en f − nen−1(h + n− 1)
)

v

= −nen(h + n− 1)v

= −n(h− n− 1)env

= −nh(env) + n(n + 1)env.

This implies that M(V ) is nontrivial for every nonzero sl2-module V on which the

elements e and f are locally nilpotent operators. Therefore, M(V ) = V for such an

sl2-module V , that is, V is integrable.

We want to indicate another approach to the above fact about sl2-modules which

uses a factorization in the universal enveloping algebra. This method appears to be

new and was the starting point of this paper. For any Lie algebra g we let U (g) denote

its universal enveloping algebra. Then one knows that for the algebra sl2 = Fe⊕Fh⊕
Ff we have the factorization

U (sl2) = U (Fe) U (Ff ) U (Fe).(1)

Using this it is easy to see that if V is an sl2-module on which both e and f act locally

nilpotently then any vector v ∈ V generates a finite dimensional submodule. Thus h

acts semisimply on this submodule and so we obtain h acts semisimply on V . Also,

the proof of the factorization (1) is quite straightforward and follows easily from the

following formula in U (sl2):

f (ei f jek) =
j − i + 1

j + 1
ei f j+1ek +

i

j + 1
ei−1 f j+1ek+1 + i( j − i + 1)ei−1 f jek,(2)

for all i > 0, j, k ≥ 0. This formula can be established using the following: for any

k ≥ 0 we have

(Ak) f e f k
=

k
k+1

e f k+1 + 1
k+1

f k+1e + k f k,

(Bk) f ke f = 1
k+1

e f k+1 + k
k+1

f k+1e + k f k,

which is proved using f ei
= ei f − iei−1(h + i − 1) for i ≥ 1 and induction.

Next let H be the three dimensional Heisenberg Lie algebra with a basis x, y, z

satisfying [x, y] = z, [x, z] = [y, z] = 0. Then, in U (H), we obtain the following

factorization

U (H) = U (Fx) U (Fy) U (Fx).(3)

The proof of this is much like the sl2 case. It follows easily from the following formula

in U (H)

y(xi y jxk) =
j − i + 1

j + 1
xi y j+1xk +

i

j + 1
xi−1 y j+1xk+1,(4)

for all i > 0, j, k ≥ 0. Note that (4) is proved by establishing for any k ≥ 0 we have
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(A ′k) yxyk
=

k
k+1

xyk+1 + 1
k+1

yk+1x,

(B ′k) ykxy = 1
k+1

xyk+1 + k
k+1

yk+1x,

which in turn is proved using yxi
= xi y − ixi−1z for i ≥ 1 and induction. Thus,

the picture is similar for both algebras sl2 and H in that they both have a pair of

subalgebras P, M satisfying P + M is not the whole algebra and U (P) U (M) U (P) is

the whole enveloping algebra. This prompts the following definition which singles

out those Lie algebras having this type of factorization in their universal enveloping

algebras.

Definition 1.1 (i) A Lie algebra L is said to have a plus-minus pair if it has two

subalgebras P, M satisfying P + M 6= L and

U (L) = U (P) U (M) U (P).

In this case we say L has a plus-minus pair (P,M).

(ii) Let (P,M) be a plus-minus pair of L. We say this is a regular plus-minus pair if

P∩M = (0) and there is an automorphism σ of L of order two satisfying σ(P) = M.

Note that in this case we then have U (L) = U (P) U (M) U (P) = U (M) U (P) U (M).

It is clear that both Lie algebras sl2 and H have regular plus-minus pairs. Moreover

if L is any three dimensional Lie algebra with a plus-minus pair (P,M) then each

of P and M must be one dimensional. Indeed, P + M cannot be 3 dimensional as

P+M 6= L. Thus, P+M is two dimensional and so if one of P, M is 2 dimensional then

P+M is a subalgebra of L and so U (P+M) 6= U (L) but U (P) U (M) U (P) ⊆ U (P+M)

so (P,M) cannot be a plus-minus pair. Letting P = Fx, M = Fy we have that

U (L) =
∑

i, j,k≥0

Fxi y jxk.(5)

Moreover, the following result, which extends the situation discussed in the sl2 case,

is quite clear. Let L be a three dimensional Lie algebra with a plus-minus pair (P,M)

where P = Fx, M = Fy. Let V be any L-module on which the action of the elements

x, y is locally finite. Then any finitely generated submodule of V is finite dimensional.

Thus, one is led to ask just which three dimensional Lie algebras have plus-minus

pairs.

In Section 2 we will extend the methods used in the proofs for the sl2 and H cases

above and show that any three dimensional Lie algebra which is generated by two

elements has a plus-minus pair. Then we go on to see that there are only two isomor-

phism classes of three dimensional Lie algebras which do not have plus-minus pairs.

We also go on to study, when the base field F is algebraically closed, which of these

algebras have regular plus-minus pairs and are able to give a complete list of these.

Here we use some results from [6]. In the third and final section of this paper we

go on to investigate plus-minus pairs, or similar factorizations, in the universal en-

veloping algebras, of Borcherds Lie algebras as well as in some Z
n-graded Lie algebras

which satisfy some extra conditions.

Thanks go to the referee for simplifying the proof of Theorem 2.3 and other help-

ful comments.
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2 Three Dimensional Case

In this section we begin by showing a three dimensional Lie algebra has a plus-minus

pair if and only if it is generated by two elements. We then go on to investigate some

special cases as well as regular plus-minus pairs when the base field is algebraically

closed.

Throughout we let L be a three dimensional Lie algebra unless mentioned oth-

erwise. If (P,M) is a plus-minus pair for L then we know that each of P, M is one

dimensional so we let P = Fx, M = Fy. If x and y do not generate L then it must be

that P + M is a proper subalgebra of L and so since U (P) U (M) U (P) ⊆ U (P + M)

we get a contradiction. Thus L is generated by x and y so is two-generated. We want

to establish the converse of the above result.

We define subspaces Uk for k ≥ 0 of U (L) by saying

Uk =

∑

0≤m≤k

(Fxym + Fymx + Fym).(6)

Notice that U0 = Fx + F1 and that Uk ⊆ Uk+1 for all k ≥ 0.

Lemma 2.1 Let L be an arbitrary three-dimensional Lie algebra and x, y any two

elements of L. For k ≥ 0 the following statements hold,

(Ak) yxyk ≡ k
k+1

xyk+1 + 1
k+1

yk+1x mod Uk,

(Bk) ykxy ≡ 1
k+1

xyk+1 + k
k+1

yk+1x mod Uk,

(Ck) yUk ⊆ Uk+1, Uk y ⊆ Uk+1.

Proof We prove this by induction on k noting that for k = 0 both (A0) and (B0) are

clear. Next, we show (A0), . . . , (Ak), (B0), . . . , (Bk) imply (Ck). Indeed, by definition

we have that

yUk =

∑

0≤m≤k

(Fyxym + Fym+1x + Fym+1)

and so by (A0), . . . , (Ak) we get that this is contained in Uk+1. Similarly we have

Uk y =
∑

0≤m≤k

(Fxym+1 + Fymxy + Fym+1)

and so by (B0), . . . , (Bk) we get this is contained in Uk+1. Hence (Ck) holds.

Next we show that (Ak), (Bk), (Ck) imply (Ak+1), (Bk+1). We assume k ≥ 1 as

when k = 0 the fact that L is three dimensional implies that (A1) and (B1) hold. Now

yxyk+1
= (yxyk)y so that (Ak) implies that the difference

yxyk+1 −
( k

k + 1
xyk+1 +

1

k + 1
yk+1x

)

y ∈ Uk y.

But (Ck) implies that Uk y ⊆ Uk+1 so we get that

yxyk+1 ≡
( k

k + 1
xyk+1 +

1

k + 1
yk+1x

)

y mod Uk+1.
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Similarly, using (Bk) and (Ck) we get that

yk+1xy ≡ y
( 1

k + 1
xyk+1 +

k

k + 1
yk+1x

)

mod Uk+1.

Thus, we finally get

yxyk+1 ≡
k

k + 1
xyk+2 +

1

(k + 1)2
yxyk+1 +

k

(k + 1)2
yk+2x mod Uk+1

which implies that

k(k + 2)

(k + 1)2
yxyk+1 ≡

k

k + 1
xyk+2 +

k

(k + 1)2
yk+2x mod Uk+1.

Therefore, we obtain

yxyk+1 ≡
k + 1

k + 2
xyk+2 +

1

k + 2
yk+2x mod Uk+1,

and we see that (Ak+1) holds.

Using a similar type of argument we have that

yk+1xy = y(ykxy)

≡ y
( 1

k + 1
xyk+1 +

k

k + 1
yk+1x

)

mod Uk+1

≡
1

k + 1
yxyk+1 +

k

k + 1
yk+2x mod Uk+1

≡
1

k + 1

( k

k + 1
xyk+1 +

1

k + 1
yk+1x

)

y +
k

k + 1
yk+2x mod Uk+1

≡
k

(k + 1)2
xyk+2 +

1

(k + 1)2
yk+1xy +

k

k + 1
yk+2x mod Uk+1

and
k(k + 2)

(k + 1)2
yk+1xy ≡

k

(k + 1)2
xyk+2 +

k

k + 1
yk+2x mod Uk+1.

Therefore, we obtain

yk+1xy ≡
1

k + 2
xyk+2 +

k + 1

k + 2
yk+2x mod Uk+1,

and we see that (Bk+1) holds. This completes our induction.

We apply this lemma in proving the following theorem.

Theorem 2.2 Let L be a three dimensional Lie algebra. Then L has a plus-minus pair

if and only if L is two generated. Moreover, if x and y generate L then (P,M) is a plus-

minus pair for L where P = Fx, M = Fy.
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Proof We need only show L has a plus-minus pair if L is generated by two elements

x, y. Let z = [x, y]. Now we want to show U (L) =
∑

i, j,k≥0 Fxi y jxk. Put X =
∑

i, j,k≥0 Fxi y jxk ⊆ U (L) and let Uk be defined as above. Clearly xX ⊆ X, Xx ⊆ X

and Uk ⊆ X for all k ≥ 0. We claim

y(x`ymxn) ∈ X,

z(x`ymxn) ∈ X.

and show this by induction on `. If ` = 0, then we see y(ymxn) ∈ X and using (Am)

we get

z(ymxn) = (xy − yx)(ymxn)

= xym+1xn − yxymxn

∈ Fxym+1xn + (Fxym+1 + Fym+1x + Um)xn ⊆ X.

Let ` > 0. Then, we obtain, using our inductive assumption, that

y(x`ymxn) = (xy − z)(x`−1 ymxn)

∈ xX + X ⊆ X

and, letting [z, x] = ax + by + cz for a, b, c ∈ F, we also get using our inductive

assumption that

z(x`ymxn) = (xz + ax + by + cz)(x`−1 ymxn)

∈ xX + X + X + X ⊆ X.

Hence, yX ⊆ X. Since X is a left ideal of U (L) containing 1, we obtain X = U (L).

Therefore, (P,M) with P = Fx and M = Fy is a plus-minus pair for L.

If our three dimensional Lie algebra L is abelian it clearly does not have a plus-

minus pair. Also, we let g be the three dimensional Lie algebra with basis x, y, z

satisfying

[x, y] = 0, [x, z] = x, [y, z] = y.

Then for any elements a, b, c, α, β, γ ∈ F we have the very special identity

[ax + by + cz, αx + βy + γz] = γ(ax + by + cz)− c(αx + βy + γz).

This clearly implies that g is not two generated so does not have a plus-minus pair.

Our next result shows that these are the only two kinds of three dimensional Lie

algebras which do not have plus-minus pairs.

Theorem 2.3 Let L be a three dimensional Lie algebra which is not two generated. Then

L is either abelian or is isomorphic to the algebra g above.
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Proof Assume L is not abelian. Choose a 1-dimensional subspace Fz of L which is

not an ideal. Every 2-dimensional subspace of L is a subalgebra. Hence there exist x,

y in L such that {x, y, z} is a basis of L and [z, x] = ax, [z, y] = by for some a, b in F.

As [z, x + y] belongs to Fx + Fy and F(x + y) + Fz, we must have a = b. As Fz is not

an ideal, a is not 0. We may assume that a = 1. As [x, y] = [x + z, y]− y belongs to

Fx + Fy and F(x + z) + Fy, we deduce that [x, y] is in Fy. Similarly, it is in Fx. Hence

[x, y] = 0 and L is isomorphic to g.

The special case when L = L−1⊕L0⊕L1 is a three graded Lie algebra of dimension

three with a plus-minus pair will be used in the final section of this work so will be

discussed now. Put L1 = Fx, L−1 = Fy, L0 = Fz. We can assume first that [x, y] is

either 0 or z. Suppose [x, y] = 0. If [x, z] = [y, z] = 0, then L is abelian so has no

plus-minus pair. If [x, z] = 0 and [y, z] 6= 0, then we can also suppose [z, y] = y and

hence, P = F(x + y) and M = Fz give a plus minus pair. If [x, z] 6= 0 and [y, z] = 0,

then we can suppose [z, x] = x and hence, again P = F(x + y) and M = Fz becomes

a plus-minus pair. If [x, z] = ax and [y, z] = by with ab 6= 0, then we can suppose

a = 1. In this case, P = F(x + y) and M = Fz give a plus-minus pair when b 6= 1.

Otherwise we have [x, z] = x and [y, z] = y and there is no plus-minus pair. Next

we suppose [x, y] = z. If [x, z] = [y, z] = 0, then L is a Heisenberg Lie algebra, and

hence, L has a plus-minus pair. If [x, z] = ax and [y, z] = by with a 6= 0 or b 6= 0,

then 0 = [z, z] =
[

[x, y], z
]

=
[

[x, z], y
]

+
[

x, [y, z]
]

= a[x, y] + b[x, y] = (a + b)z

and a + b = 0. Put x ′ = x, y ′ = −2y/a, z ′ = −2z/a. Then, [x ′, y ′] = −2[x, y]/a =
−2z/a = z ′, [z ′, x ′] = −[x ′, z ′] = 2[x, z]/a = 2x = 2x ′ and [z ′, y ′] = −[y ′, z ′] =
−4[y, z]/(a2) = 4y/a = −2y ′. This means that L is isomorphic to sl2. Therefore we

obtain the following result which gives a characterization of sl2 and H.

Proposition 2.4 Let L = L1 ⊕ L0 ⊕ L−1 be a three graded Lie algebra of dimension

three with dim L±1 = dim L0 = 1.

(1) If L has a plus-minus pair, then L is isomorphic to one of s`2, H and K(a, b), where

K(a, b) = Fx ⊕ Fy ⊕ Fz is the Lie algebra having the relations: [x, y] = 0,

[x, z] = ax, [y, z] = by with a 6= b.

(2) If L has (L1, L−1) for a plus-minus pair, then L is isomorphic to either sl2 or H.

Remark If a = b is non-zero then we have K(a, b) = K(a, a) ' K(1, 1) and this is

nothing but our algebra g of Theorem 2.3 which does not have a plus-minus pair.

Next we will briefly discuss isomorphism classes among the Lie algebras K(a, b).

For this we will freely use the classification in Jacobson’s book [6] on page 12 where

he classifies the three dimensional Lie algebras having a two dimensional derived

algebra. This is listed there as (d) of his general classification. We have K(0, c) '
K(c, 0) ' K(0, 1) for nonzero c ∈ F. Thus if a or b is 0 then K(a, b) ' K(0, 1).

Next we suppose that both a, b are nonzero. Then, we also see K(a, b) ' K(a/b, 1).

The only isomorphisms between the algebras K(c, 1) for c non-zero are K(c, 1) '
K(1/c, 1) and none of these are isomorphic to K(0, c). Thus, the isomorphism classes

of the Lie algebras K(a, b), having plus-minus pairs, are parametrized by the set

P(F) =
{

{u, u−1} | u ∈ F, u 6= 0, 1
}

∪
{

{0}
}

.
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Here the isomorphism class of K(0, a) corresponds to {0} while that of K(a, 1) to

{a, a−1} = {a−1, a} for a ∈ F, a 6= 0.

We next assume that F is an algebraically closed field of characteristic 0, and will

study the three dimensional Lie algebras over F having a regular plus-minus pair. Let

L be such an algebra and let (P,M) be a regular plus-minus pair of L. Then we can

choose nonzero elements x ∈ P and y ∈ M as well as an involutive automorphism

σ of L such that [x, y] 6= 0 and σ(x) = y. Put z = [x, y], and set u = x + y and

v = x−y. Let L1 = Fu (the 1-eigenspace of σ) and L−1 = Fv⊕Fz (the−1-eigenspace

of σ). Then, [u, v] = [x+ y, x− y] = −2[x, y] = −2z. We write [z, x] = ax+by +cz.

Then we obtain [z, y] = −σ([z, x]) = −σ(ax + by + cz) = −bx− ay + cz and so the

Jacobi identity implies [bx + ay − cz, x] + [ax + by + cz, y] = 0. Therefore,

{−az − c(ax + by + cz)} + {az + c(−bx − ay + cz)} = 0

and c(a + b)x + c(a + b)y = 0, which implies c = 0 or a + b = 0.

Case 1 c = 0.

In this case, we have [x, y] = z, [z, x] = ax + by, [z, y] = −bx− ay. We write the

matrix of ad(z) restricted to the space Fx ⊕ Fy as

ad z =

(

a −b

b −a

)

.

Then, its characteristic polynomial is t2−a2 + b2. Hence, ad z |Fx⊕Fy is similar to one

of
(

λ 0

0 −λ

)

and

(

0 1

0 0

)

,

where λ = (a2 − b2)1/2. If λ 6= 0, that is a2 − b2 6= 0, then we have certain elements

x ′, y ′ ∈ Fx ⊕ Fy such that [z ′, x ′] = λ ′x ′, [z ′, y ′] = −λ ′y ′ with z ′ = [x ′, y ′] 6= 0

and λ ′ 6= 0. This means that L ' sl2. If a = b = 0, then we see L ' H. Now we

suppose a = b 6= 0. Thus, we have [z, u] = 0, [z, v] = 2au, [u, v] = −2z. Put

µ = (−a)1/4, and set z ′ = z/µ, u ′ = µu, v ′ = v/(2µ2). Then,

[v ′, u ′] = [v, u]/(2µ) = z/µ = z ′,

[v ′, z ′] = (−a)u/(µ3) = u ′,

[u ′, z ′] = 0.

As is easy to check, again from Jacobson’s book, [6], on page 12 under heading (d)

one finds our algebra here is just the one with α = 1 and we have

σ(v ′) = −v ′, σ(u ′) = u ′, σ(z ′) = −z ′.

We denote this algebra by L(α = 1).
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Next we suppose a = −b 6= 0. Thus, we have [z, v] = 0, [z, u] = 2av, [u, v] =

−2z. Put ν = a1/4, and set z ′ = z/ν, u ′ = −u/(2ν2), v ′ = νv. Then,

[u ′, v ′] = −[u, v]/(2ν) = z/ν = z ′,

[u ′, z ′] = −[u, z]/(2ν3) = νv = v ′,

[v ′, z ′] = 0.

Here we have once again that our algebra is just L(α = 1) and

σ(u ′) = u ′, σ(v ′) = −v ′, σ(z ′) = −z ′.

Case 2 c 6= 0, a + b = 0.

In this case, we have [x, y] = z, [z, x] = [z, y] = ax − ay + cz, and hence

[u, v] = −2z, [z, u] = 2av + 2cz4, [z, v] = 0. Set u ′ = −u/(2c), v ′ = cv, z ′ = z.

Then,

[u ′, v ′] = −[u, v]/2 = z = z ′,

[u ′, z ′] = −[u, z]/(2c) = av/c + z = av ′/(c2) + z,

[v ′, z ′] = 0.

This time we get that our algebra is the one from [6] page 12 having β = a/c2, which

we denote as L(β = a/c2), and so have

σ(u ′) = u ′, σ(v ′) = −v ′, σ(z ′) = −z ′

With the notation developed above we see that the preceding arguments, together

with the results in [6] about isomorphisms between these algebras, establish the fol-

lowing result.

Theorem 2.5 Let F be an algebraically closed field of characteristic 0. Let L be a three

dimensional Lie algebra with a regular plus-minus pair. Then L is isomorphic to one of

sl2, H, L(α = 1) or L(β = r) for any r in F. Moreover no two distinct algebras in this

list are isomorphic.

Remark Finally we want to point out that the Lie algebra K(u, 1) with u ∈ F is

isomorphic to L(α = 1) if u = −1, and is isomorphic to L(β = − u
(u+1)2 ) if u 6=

−1. As a consequence of our work we see that a three dimensional three graded Lie

algebra has a regular plus-minus pair or no plus-minus pair at all.

3 Plus-Minus Pairs in Some General Classes of Lie Algebras

In this section we will show that Borcherds Lie algebras have plus-minus pairs. Since

these generalize the well-known Kac-Moody Lie algebras our results apply to these
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as well. We next go on to investigate Zn-graded Lie algebras and see that with cer-

tain other assumptions these also have plus-minus pairs. Our method is to estab-

lish slightly more general factorization results in the universal enveloping algebras of

these Lie algebras and then show how this gives rise to plus-minus pairs. The tech-

niques are quite general and no doubt apply to other situations as well.

Let g be a rank l Borcherds Lie algebra over F with the standard Cartan subalgebra

h and Chevalley generators {e1, . . . , el, f1, . . . , fl}, and let g ′ = [g, g] the derived

subalgebra of g. Put h ′ = h∩g ′, and take a complement h ′′ of h ′ in h with h = h ′′⊕h ′.

Then, g = h ′′ ⊕ g ′. Let g+ be the subalgebra of g generated by e1, . . . , el, and g− the

subalgebra of g generated by f1, . . . , fl (cf. [4], [7], [8], [9], [10], [12]).

Proposition 3.1 Let g be a rank l Borcherds Lie algebra, and let I ∪ J = {1, 2, . . . , l}
be a partition of {1, 2, . . . , l} into disjoint subsets. Then,

U (g) =
(

∏

i∈I

U (Fei)
)

U (g−)U (h ′ ′)U (g+)
(

∏

j∈ J

U (Ff j)
)

.

Proof Let gi
+ be the standard homogeneous complementary subalgebra of Fei in g+,

and gi
− the standard homogeneous complementary subalgebra of Ffi in g−. For each

k = 1, . . . , l we put hk = [ek, fk] and hk = Fhk+1 ⊕ · · · ⊕ Fhl, and we set Ik =

I ∩ {1, . . . , k} and Jk = J ∩ {1, . . . , k}. We make free use of the PBW Theorem as

well as the fact that Fei ⊕ Ffi ⊕ Fhi is either sl2 or H so has a regular plus-minus pair.

If 1 ∈ I, then

U (g) = U (g−) U (h) U (g+)

= U (g1
−) U (Ff1) U (h ′ ′) U (h1) U (Fh1)U (Fe1)U (g1

+)

= U (g1
−) U (h ′′) U (h1) U (Ff1) U (Fh1)U (Fe1)U (g1

+)

= U (g1
−) U (h ′′) U (h1) U (Fe1) U (Ff1)U (Fe1)U (g1

+)

= U (Fe1)U (g1
−) U (h ′ ′) U (h1) U (Ff1)U (Fe1)U (g1

+)

= U (Fe1)U (g−)U (h ′ ′) U (h1)U (g+).

In the other case when 1 ∈ J by using the same type of argument we have

U (g) = U (g−) U (h ′ ′) U (h1)U (g+) U (Ff1).

If we began with

U (g) =
(

∏

i∈Ik

U (Fei)
)

U (g−)U (h ′ ′) U (hk) U (g+)
(

∏

j∈ Jk

U (Ff j)
)

,

then, again using the same method, we can obtain

U (g) =
(

∏

i∈Ik+1

U (Fei)
)

U (g−)U (h ′ ′) U (hk+1) U (g+)
(

∏

j∈ Jk+1

U (Ff j)
)

.
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Thus after several applications of this process we reach the stated result.

We next see that this gives the desired plus-minus pair.

Corollary 3.2 Let g be a Borcherds Lie algebra of finite rank. Then,

U (g) = U (g±)U (g∓)U (h ′ ′)U (g±).

Hence, Borcherds Lie algebras have plus-minus pairs. In particular, perfect Kac-Moody

Lie algebras or, more generally, perfect Borcherds Lie algebras have regular plus-minus

pairs.

Proof We just take one of I and J to be empty. This leads to the result. Then, for

example, let P = h ′′ ⊕ g+ and M = g−. This gives a plus-minus pair.

We next generalize the previous discussion by considering Zn-graded Lie algebras.

Thus, let Q =
⊕n

i=1 Zαi be a free abelian group of rank n generated by α1, . . . , αn,

and let g =
⊕

α∈Q gα be a Lie algebra graded by Q. Put∆ = {α ∈ Q | gα 6= 0}. We

also assume that Zα1 ∩∆ = {0,±α1}, and that L = gα1
⊕ [gα1

, g−α1
] ⊕ g−α1

is a

subalgebra with a plus-minus pair (gα1
, g−α1

) in L. (Thus, if L is three dimensional

Proposition 2.4 implies L is isomorphic to either sl2 or H.) We also suppose that there

exists a complementary subalgebra g ′0 of [gα1
, g−α1

] in g0 with g0 = [gα1
, g−α1

]⊕ g ′0.

An element α =
∑n

i=1 ciαi ∈ Q is called positive (resp. negative), that is α > 0 (resp.

α < 0), if there is an index i satisfying ci > 0 (resp. ci < 0) and ci+1 = ci+2 =

· · · = cn = 0. Put ∆+ = {α ∈ ∆ | α > 0} and ∆− = {α ∈ ∆ | α < 0}. Let

g± =
⊕

α∈∆±
gα, and g ′± =

⊕

α∈∆±\{α1}
gα. Then, g± = g±α1

⊕ g ′±, and we see

that g±α1
⊕ g ′∓ are subalgebras. In this situation we have the following result.

Proposition 3.3 Let g =
⊕

α∈Q gα be a graded Lie algebra with the extra conditions

as above. Then,

U (g) = U (gα1
) U (g−)U (g ′0)U (g+).

Moreover, letting P = g+ ⊕ g ′0 and M = g− gives a plus-minus pair for g.

Proof Using our assumptions we see that

U (g) = U (g−)U (g0) U (g+)

= U (g ′−)U (g−α1
)U (g ′0)U ([gα1

, g−α1
])U (gα1

) U (g ′+)

= U (g ′−)U (g ′0) U (g−α1
)U ([gα1

, g−α1
]) U (gα1

) U (g ′+)

= U (g ′−)U (g ′0) U (gα1
)U (g−α1

) U (gα1
) U (g ′+)

= U (gα1
)U (g ′−) U (g ′0)U (g−α1

) U (gα1
) U (g ′+)

= U (gα1
)U (g ′−) U (g−α1

)U (g ′0)U (gα1
) U (g ′+)

= U (gα1
)U (g−) U (g ′0)U (g+).
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Remark It can be seen that many EALA’s and some of the root-graded Lie algebras

(cf. [1], [2], [3], [13]) satisfy the hypothesis of Proposition 3.3.
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