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CONSIDER the n-dimensional wave equation

* . - £ . <o
Then the Cauchy, or initial value problem requires a solution u(P, t) of (1)

at the point P subject to the initial conditions:

n(P, 0) =/(/>),

(2)

where f(P), g{P) are defined everywhere. In our case we suppose g(_P) = 0.
Then the appropriate solution of the Cauchy problem is given by Courant
and Hilbert (1) as

when n is odd, and as
(p •, _ 2f / 3 V / 2 [' „_ , . . . „ , rdrnil ft1 I (4)

when n is even (although the factor It is inadvertently omitted in (1)). Here
r = r(P, Q) is the Euclidean distance between the points P and Q, and M(P, r)
is denned as the mean value of the function u(Q, 0) taken over the surface
S(r) of the n-sphere B(r) with centre P and radius /•. Thus

M(P, r) = — I u(Q, O)dco, (5)' = - f u
Wn Jl(r)

where da> is the element of area and wn = 2nnl2/r(nj2) is the surface area of
the «-dimensional unit sphere.

For (3) and (4) to be formal solutions of (1) Courant and Hilbert require
u(P, 0) to be continuously differentiable in all n arguments, (n+3)/2 times
for n odd, and (n + 4)/2 times for n even. In cases of physical interest however,
where solutions of the Cauchy problem are known to exist, then (3), (4) are
these solutions and hence u(Q, 0) need only be sufficiently differentiable to
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make the expressions meaningful, and satisfy the wave equation. Thus in
the rest of this paper we will omit a rigorous discussion of the conditions
sufficient for the establishment of the formulae, and assume that necessary
and sufficient conditions can be determined individually for each properly
posed Cauchy problem.

While (3) and (4) are perfectly general, in some cases of physical interest
the function u(P, 0) may be difficult to derive or the integrals not easily handled.
It seems of interest to find formulae equivalent to (3) and (4) involving V2u(P, 0)
rather than u(P, 0). We shall see also that the new forms demonstrate more
clearly the nature of the wave.

We begin with the Green's function for the potential equation V2« = 0
in the case of the ^-sphere of radius r0:

G(P,Q; r0) = ;flog^, («=2);
2n r

(n-2)con
From the equations

V2G(/>, Q; r0) = -S(P, Q),

V2M(Q, 0) = F(Q),

(5 is the Dirac delta function) we arrive at the identities

M(P, r0) = u(P, 0) + i - f log ^ f(Q)dSaf (n = 2)
2 " Js(ro) r

(8a)

(«-2)a>nJB(ro
M(P,ro)=u(P,0)+ \ f (r2~"-r2

o-")F(Q)dVQ, (n>2) (8b)
(«-2)a>nJB(ro)

where in (8b) dVQ is the element of volume at the variable point Q, while in
(8a) S(r0) is the circle (2-sphere) centre P, radius r0, and dSQ is the element
of area.

From (8b) and (3), setting r = /, it follows for n odd that

fi (»-i)/2

= «(P,0)+ \ f
(n-2)GJnJB

1 r "i
u(P,0)+—±—\ (r2-"-t2-)FdVQ)\

Fr2-"dVQ. (9)

For n = 3 a>2 = 4n and so

u(P, /) = u(P, 0)+ ~ [ r^FdVQ, (10)

a form of solution already used by Randall (2).
After substituting (8b) in (4) and changing the order of integration we
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obtain for n even and # 2

nFdVQ

PI-
0

nilz
it = 1

°n,

!-r2

_n-2*-2

-v2.

-r2

•*dv,

y-idvQ, (11)

where the an> k are constants determined from the recurrence relationship:

^ — = — — — , aBtl = l. (lla)

In (11), for the case n = 4 the differentiation has been performed explicitly;
but for higher values of n, such differentiation is not possible because of the
singularity at r — t.

The same process, employing (8a) and (4), yields for n = 2.

u(P, 0 = u(P, 0 ) - — sech"1 - . FdSQ. (12)

Equations (9), (11), (12) show explicitly how the time-dependent potential
is the sum of a static potential and a time-dependent wave; the formulae also
demonstrate clearly that if initially V2w = 0 everywhere, then the potential
remains at its initial value for all time. Also it may be noted that in (3) and (4)
differentiation with respect to t cannot be performed completely, while in
(9), (11), (12) this differentiation has already been carried out for odd values of
n and for n — 2, 4.

If use is made of the generalised Helmholtz theorem:

= —^— f
(n-2)coj

u(P) = —^— f G(P, Q)F(Q)dVQ> (13)
(n-2)cojo o

where G(P, Q) is the Green's function for the infinite domain and the integration
is over all space, then u(P, t) may be expressed entirely in terms of the Laplacian
V2u(Q, 0), that is, the divergence of the static field grad u. In physical applica-
tions where V2u but not grad u has been obtained this may prove a more
appropriate formula.
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