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On s-semipermutable or s-quasinormally
Embedded Subgroups of Finite Groups

Qingjun Kong and Xiuyun Guo

Abstract. Suppose that G is a finite group and H is a subgroup of G. H is said to be s-semipermutable
in G if HGp = GpH for any Sylow p-subgroup Gp of G with (p, |H|) = 1; H is said to be s-quasi-
normally embedded in G if for each prime p dividing the order of H, a Sylow p-subgroup of H is also
a Sylow p-subgroup of some s-quasinormal subgroup of G. In every non-cyclic Sylow subgroup P of G
we fix some subgroup D satisfying 1 < |D| < |P| and study the structure of G under the assumption
that every subgroup H of P with |H| = |D| is either s-semipermutable or s-quasinormally embedded
in G. Some recent results are generalized and unified.

1 Introduction

All groups considered in this paper are finite. We use conventional notions and nota-
tion. G always means a group, |G| is the order of G, π(G) denotes the set of all primes
dividing |G| and Gp is a Sylow p-subgroup of G for some p ∈ π(G).

Let F be a class of groups. We call F a formation, provided that

(i) if G ∈ F and H E G, then G/H ∈ F, and
(ii) if G/M and G/N are in F, then G/(M∩N) is in F for any normal subgroups M,

N of G.

A formation F is said to be saturated if G/Φ(G) ∈ F implies that G ∈ F. In this
paper, U will denote the class of all supersolvable groups. Clearly, U is a saturated
formation.

A subgroup H of G is called s-quasinormal (or s-permutable, π-quasinormal) in G
provided H permutes with all Sylow subgroups of G, i.e., HP = PH for any Sy-
low subgroup P of G. This concept was introduced by Kegel in [6] and has been
studied extensively by Deskins [2] and Schmidt [11]. More recently, Zhang and
Wang [15] generalized s-quasinormal subgroups to s-semipermutable subgroups.
A subgroup H is said to be s-semipermutable in G if HGp = GpH for any Sylow
p-subgroup Gp of G with (p, |H|) = 1. Clearly, every s-quasinormal subgroup of G
is an s-semipermutable subgroup of G, but the converse does not hold. Many au-
thors consider minimal or maximal subgroups of a Sylow subgroup of a group when
investigating the structure of G, such as in [1, 2] and [5–15], etc. For example, in [5]
Han proves the following result.
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Theorem 1.1 (Han) Let p be a prime dividing the order of a group G satisfying
(|G|, p − 1) = 1 and P a Sylow p-subgroup of G. Suppose there exists a nontrivial sub-
group D of P such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D|
or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-semipermutable
in G. Then G is p-nilpotent.

As another generalization of the s-quasinormality, Ballester-Bolinches et al. [1]
introduce the following concept: a subgroup H of G is said to be s-quasinormally
embedded in G if for each prime p dividing the order of H, a Sylow p-subgroup of H
is also a Sylow p-subgroup of some s-quasinormal subgroup of G. In [14], Wei and
Guo provide a result as follows.

Theorem 1.2 (Wei and Guo) Let p be the smallest prime dividing the order of a
group G and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if there is
a subgroup D of P such that 1 < |D| < |P| and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-
quasinormally embedded in G.

The aim of this article is to unify and improve the above theorems using s-semi-
permutable and s-quasinormally embedded subgroups. Our main theorem is as fol-
lows.

Theorem 3.5 Let F be a saturated formation containing U, the class of all super-
solvable groups and G a group with E as a normal subgroup of G such that G/E ∈ F.
Suppose that every non-cyclic Sylow subgroup P of F∗(E) has a subgroup D such that
1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P
is a nonabelian 2-group and |P : D| > 2) is either s-semipermutable or s-quasinormally
embedded in G, where F∗(E) is the generalized Fitting subgroup of E. Then G ∈ F.

2 Basic Definitions and Preliminary Results

In this section, we collect some known results that are useful later.

Lemma 2.1 Suppose that H is an s-semipermutable subgroup of G. Then the follow-
ing assertions hold.

(i) If H ≤ K ≤ G, then H is s-semipermutable in K.
(ii) Let N be a normal subgroup of G. If H is a p-group for some prime p ∈ π(G),

then HN/N is s-semipermutable in G/N.
(iii) If H ≤ Op(G), then H is s-permutable in G.

Proof (i) is [15, Property 1], (ii) is [15, Property 2], and (iii) is [15, Lemma 3].

Lemma 2.2 ([1]) Suppose that U is s-quasinormally embedded in a group G, and let
H ≤ G and K E G. Then the following assertions hold.

(i) If U ≤ H, then U is s-quasinormally embedded in H.
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(ii) U K is s-quasinormally embedded in G and U K/K is s-quasinormally embedded
in G/K.

(iii) If K ≤ H and H/K is s-quasinormally embedded in G/K, then H is s-quasi-
normally embedded in G.

Lemma 2.3 ([13]) Let G be a group, K an s-quasinormal subgroup of G and P a
Sylow p-subgroup of K, where p is a prime. If either P ≤ Op(G) or KG = 1, then P is
s-quasinormal in G.

Lemma 2.4 ([11]) If P is an s-quasinormal p-subgroup of a group G for some
prime p, then NG(P) ≥ Op(G).

Lemma 2.5 ([13]) Let G be a group and p a prime dividing |G|with (|G|, p−1) = 1.

(i) If N is normal in G of order p, then N ≤ Z(G).
(ii) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.
(iii) If M ≤ G and [G : M] = p, then M E G.

Lemma 2.6 ([12]) Let G be a group and P a Sylow p-subgroup of G, where p is the
smallest prime dividing |G|. If every maximal subgroup of P is s-semipermutable in G,
then G is p-nilpotent.

Lemma 2.7 ([3, III, 5.2, and IV, 5.4]) Suppose that p is a prime and G is a minimal
non-p-nilpotent group, i.e., G is not a p-nilpotent group but whose proper subgroups
are all p-nilpotent.

(i) G has a normal Sylow p-subgroup P for some prime p and G = PQ, where Q is a
non-normal cyclic q-subgroup for some prime q 6= p.

(ii) P/Φ(P) is a minimal normal subgroup of G/Φ(P).
(iii) The exponent of P is p or 4.

Lemma 2.8 ([7]) Let H be a nilpotent subgroup of a group G. Then the following
statements are equivalent:

(i) H is s-quasinormal in G;
(ii) H ≤ F(G) and H is s-quasinormally embedded in G.

Lemma 2.9 Let N be an elementary abelian normal p-subgroup of a group G. If
there exists a subgroup D in N such that 1 < |D| < |N| and every subgroup H of N
with |H| = |D| is s-semipermutable in G, then there exists a maximal subgroup M of N
such that M is normal in G.

Lemma 2.10 ([3, VI, 4.10]) Assume that A and B are two subgroups of a group G
and G 6= AB. If ABg = BgA holds for any g ∈ G, then either A or B is contained in a
nontrivial normal subgroup of G.

The generalized Fitting subgroup F∗(G) of G is the unique maximal normal quasi-
nilpotent subgroup of G. Its definition and important properties can be found in
[4, X, 13]. We would like to give the following basic facts we will use in our proof.
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Lemma 2.11 ([4, X, 13]) Let G be a group and M a subgroup of G.

(i) If M is normal in G, then F∗(M) ≤ F∗(G).
(ii) F∗(G) 6= 1 if G 6= 1; in fact, F∗(G)/F(G) = Soc

(
F(G)CG(F(G))/F(G)

)
;

(iii) F∗(F∗(G)
)

= F∗(G) ≥ F(G); if F∗(G) is solvable, then F∗(G) = F(G).

Lemma 2.12 ([10]) Let F be a saturated formation containing U, the class of all su-
persolvable groups and G a group with E as a normal subgroup of G such that G/E ∈ F.
Suppose that every non-cyclic Sylow subgroup P of F∗(E) has a subgroup D such that
1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P
is a nonabelian 2-group and |P : D| > 2) is weakly s-permutable in G, where F∗(E) is
the generalized Fitting subgroup of E. Then G ∈ F.

3 Main Results

In this section, we will prove our main results.

Theorem 3.1 Let p be the smallest prime dividing the order of a group G and P be a
Sylow p-subgroup of G. If every maximal subgroup of P is either s-semipermutable or
s-quasinormally embedded in G, then G is p-nilpotent.

Proof Assume that the theorem is not true and let G be a counterexample of mini-
mal order. We derive a contradiction in several steps.

By Lemmas 2.1 and 2.2, the following two steps are obvious.
Step 1. Op′(G) = 1.
Step 2. G has a unique minimal normal subgroup N and G/N is p-nilpotent.

Moreover, Φ(G) = 1.

Step 3. Op(G) = 1: If Op(G) 6= 1, then step 2 yields N ≤ Op(G) and
Φ
(

Op(G)
)
≤ Φ(G) = 1. Therefore, G has a maximal subgroup M such that

G = MN and G/N ∼= M is p-nilpotent. Since Op(G) ∩ M is normalized by N
and M, we conclude that Op(G) ∩ M is normal in G. The uniqueness of N yields
N = Op(G). Clearly, P = N(P∩M). Furthermore, P∩M < P, and, thus there exists
a maximal subgroup P1 of P such that P ∩M ≤ P1. Hence, P = NP1. By hypoth-
esis, P1 is s-semipermutable or s-quasinormally embedded in G. Suppose first P1 is
s-semipermutable in G. Then P1Mq is a group for q 6= p. Hence

P1〈Mp,Mq|q ∈ π(M), q 6= p〉 = P1M

is a group. Then P1M = M or G by maximality of M. If P1M = G, then

P = P ∩ P1M = P1(P ∩M) = P1,

a contradiction. If P1M = M, then P1 ≤ M. Therefore, P1∩N = 1 and N is of prime
order. Then the p-nilpotency of G/N implies the p-nilpotency of G, a contradiction.
Therefore, we may assume that P1 is s-quasinormally embedded in G. Then there is
an s-quasinormal subgroup K of G such that P1 ∈ Sylp(K). If KG 6= 1, then N ≤ K.
Since N is a normal p-subgroup of K and P1 ∈ Sylp(K), we have that N ≤ P1, a
contradiction. Hence KG = 1, and so by Lemma 2.3 P1 is s-quasinormal in G. By
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Lemma 2.4, Op(G) ≤ NG(P1), P1EG. Then N∩P1 = 1 and |N| = p. By Lemma 2.5,
N ≤ Z(G) and hence G is p-nilpotent, a contradiction.

By Step 1 and Step 3, we have the following.
Step 4. There is no p-nilpotent minimal normal subgroup of G.

Step 5. The final contradiction: If N∩P ≤ Φ(P), then N is p-nilpotent by Tate’s
theorem [3, Satz 4.7, p. 431], contrary to Step 4. Consequently, there is a maximal
subgroup P1 of P such that P = (N∩P)P1. By the hypothesis, if P1 is s-quasinormally
embedded in G, there is an s-quasinormal subgroup K of G such that P1 ∈ Sylp(K).
If KG 6= 1, then N ≤ K and P1 ∩ N ∈ Sylp(N). Clearly, P ∩ N ∈ Sylp(N). Thus
P ∩ N ≤ P1 ∩ N ≤ P1, contrary to the choice of P1. Therefore, KG = 1, P1 is s-
quasinormal in G by Lemma 2.3, then P1 E G. This leads to P1 = 1 and |P| = p, G is
p-nilpotent by Lemma 2.5(ii), a contradiction. Now we can assume that all maximal
subgroups of P are s-semipermutable in G. Then G is p-nilpotent by Lemma 2.6, a
contradiction.

Theorem 3.2 Let p be the smallest prime dividing the order of a group G and P be
a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P| and every
subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group
and |P : D| > 2) is either s-semipermutable or s-quasinormally embedded in G, then G
is p-nilpotent.

Proof Suppose that the theorem is false and let G be a counterexample of minimal
order. We will derive a contradiction in several steps.

Step 1. Op′(G) = 1: If Op′(G) 6= 1, Lemmas 2.1(ii) and 2.1(iii) guarantee that
G/Op′(G) satisfies the hypotheses of the theorem. Thus G/Op′(G) is p-nilpotent by
the choice of G. Then G is p-nilpotent, a contradiction.

Step 2. |D| > p: Suppose that |D| = p. Since G is not p-nilpotent, G has
a minimal non-p-nilpotent subgroup G1. By Lemma 2.7(i), G1 = [P1]Q, where
P1 ∈ Sylp(G1) and Q ∈ Sylq(G1), p 6= q. Let X/Φ(P1) be a subgroup of P1/Φ(P1)
of order p, x ∈ X\Φ(P1) and L = 〈x〉. Then L is of order p or 4 by Lemma 2.7(iii).
By the hypotheses, L is either s-semipermutable or s-quasinormally embedded in G,
thus in G1 by Lemmas 2.1(i) and 2.2(i). First, suppose that L = 〈x〉 is s-quasinormally
embedded in G1 for every element x ∈ P1, then by Lemma 2.8 〈x〉 is s-quasinormal
in G1. Thus LQ ≤ G1. Therefore, LQ = L× Q. Then G1 = P1 × Q, a contradiction.
Therefore, L = 〈x〉 is s-semipermutable in G1 for every element x ∈ P1. Thus LQ ≤
G1. Therefore, LQ = L× Q. Then G1 = P1 × Q, a contradiction.

Step 3. |P : D| > p: This follows from Theorem 3.1.

Step 4. P has a subgroup D such that 1 < |D| < |P| and every subgroup H
of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-semipermutable in G: Assume that H ≤ P such that |H| = |D|
and H is s-quasinormally embedded in G. Then there exists a normal subgroup M
such that |G : M| = p and G = MH. Since |P : D| > p by Step 3, M satisfies the
hypotheses of the theorem. The choice of G yields that M is p-nilpotent. It is easy to
see that G is p-nilpotent, contrary to the choice of G.
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Step 5. If N ≤ P and N is minimal normal in G, then |N| ≤ |D|: Suppose that
|N| > |D|. Since N ≤ Op(G), N is elementary abelian. By Lemma 2.9, N has a
maximal subgroup which is normal in G, contrary to the minimality of N.

Step 6. Suppose that N ≤ P and N is minimal normal in G. Then G/N
is p-nilpotent: If |N| < |D|, G/N satisfies the hypotheses of the theorem by
Lemma 2.1(ii). Thus G/N is p-nilpotent by the minimal choice of G. So we may
suppose that |N| = |D| by Step 5. We will show that every cyclic subgroup of P/N
of order p or order 4 (when P/N is a non-abelian 2-group) is s-semipermutable in
G/N. Let K ≤ P and |K/N| = p. By Step 2, N is non-cyclic, so are all subgroups
containing N. Hence there is a maximal subgroup L 6= N of K such that K = NL.
Of course, |N| = |D| = |L|. Since L is s-semipermutable in G by the hypotheses,
K/N = LN/N is s-semipermutable in G/N by Lemma 2.1(ii). If p = 2 and P/N
is non-abelian, take a cyclic subgroup X/N of P/N of order 4. Let K/N be maximal
in X/N. Then K is maximal in X and |K/N|=2. Since X is non-cyclic and X/N is
cyclic, there is a maximal subgroup L of X such that N is not contained in L. Thus
X = LN and |L| = |K| = 2|D|. By the hypotheses, L is s-semipermutable in G. By
Lemma 2.1(ii), X/N = LN/N is s-semipermutable in G/N. Hence G/N satisfies the
hypotheses. By the minimal choice of G, G/N is p-nilpotent.

Step 7. Op(G) = 1: Suppose that Op(G) 6= 1. Take a minimal normal sub-
group N of G contained in Op(G). By Step 6, G/N is p-nilpotent. It is easy to see
that N is the unique minimal normal subgroup of G contained in Op(G). Further-
more, Op(G) ∩ Φ(G) = 1. Hence Op(G) is an elementary abelian p-group. On the
other hand, G has a maximal subgroup M such that G = MN and M ∩ N = 1. It is
easy to deduce that Op(G)∩M = 1, N = Op(G) and M ∼= G/N is p-nilpotent. Then
G can be written as G = N(M ∩ P)Mp′ , where Mp′ is the normal p-complement
of M. Pick a maximal subgroup S of Mp = P ∩M. Then NSMp′ is a subgroup of G
with index p. Since p is the minimal prime in π(G), we know that NSMp′ is normal
in G. Now by Step 3 and the induction, we have NSMp′ is p-nilpotent. Therefore, G
is p-nilpotent, a contradiction.

Step 8. The minimal normal subgroup L of G is not p-nilpotent: If L is p-
nilpotent, then it follows from the fact that Lp′ char L C G that Lp′ ≤ Op′(G) = 1.
Thus L is a p-group. Whence L ≤ Op(G) = 1 by Step 7, a contradiction.

Step 9. G is a non-abelian simple group: Suppose that G is not a simple group.
Take a minimal normal subgroup L of G. Then L < G. If |L|p > |D|, then L is
p-nilpotent by the minimal choice of G, contrary to Step 8. Hence |L|p ≤ |D|. Take
P∗ ≥ L ∩ P such that |P∗| = p|D|. Hence P∗ is a Sylow p-subgroup of P∗L. Since
every maximal subgroup of P∗ is of order |D|, every maximal subgroup of P∗ is s-
semipermutable in G by hypotheses, thus in P∗L by Lemma 2.1(i). Now applying
Theorem 3.1, we get P∗L is p-nilpotent. Therefore, L is p-nilpotent, contrary to
Step 8.

Step 10. The final contradiction: Suppose that H is a subgroup of P with |H| =
|D| and Q is a Sylow q-subgroup with q 6= p. Then HQg = QgH for any g ∈ G by the
hypotheses that H is s-semipermutable in G. Since G is simple by Step 9, G = HQ
from Lemma 2.10, the final contradiction.
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The following corollary is immediate from Theorem 3.2.

Corollary 3.3 Suppose that G is a group. If every non-cyclic Sylow subgroup of G
has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order
|H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is
either s-semipermutable or s-quasinormally embedded in G, then G has a Sylow tower
of supersolvable type.

Theorem 3.4 Let F be a saturated formation containing U, the class of all supersolv-
able groups, and G a group with E as a normal subgroup of G such that G/E ∈ F. Sup-
pose that every non-cyclic Sylow subgroup of E has a subgroup D such that 1 < |D| < |P|
and every subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian
2-group and |P : D| > 2) is either s-semipermutable or s-quasinormally embedded
in G. Then G ∈ F.

Proof Suppose that P is a non-cyclic Sylow p-subgroup of E, ∀p ∈ π(E). Since P
has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with or-
der |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2)
is either s-semipermutable or s-quasinormally embedded in G by hypotheses, thus
in E by Lemmas 2.1(i) and 2.2(i). Applying Corollary 3.3, we conclude that E has
a Sylow tower of supersolvable type. Let q be the maximal prime divisor of |E| and
Q ∈ Sylq(E). Then QEG. Since (G/Q, E/Q) satisfies the hypotheses of the theorem,
by induction, G/Q ∈ F. For any subgroup H of Q with |H| = |D|, since Q ≤ Oq(G),
H is s-permutable in G by Lemmas 2.1(iii) and 2.8. Since s-permutable implies
weakly s-permutable and F∗(Q) = Q by Lemma 2.11, we get G ∈ F by applying
Lemma 2.12.

Theorem 3.5 Let F be a saturated formation containing U, the class of all super-
solvable groups, and G a group with E as a normal subgroup of G such that G/E ∈ F.
Suppose that every non-cyclic Sylow subgroup P of F∗(E) has a subgroup D such that
1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order 2|D| (if P
is a nonabelian 2-group and |P : D| > 2) is either s-semipermutable or s-quasinormally
embedded in G. Then G ∈ F.

Proof We distinguish two cases:

Case 1. F = U.
Let G be a minimal counter-example.

Step 1. Every proper normal subgroup N of G containing F∗(E) (if it exists)
is supersolvable: If N is a proper normal subgroup of G containing F∗(E), then
N/N ∩ E ∼= NE/E is supersolvable. By Lemma 2.11(iii), F∗(E) = F∗(F∗(E)

)
≤

F∗(E∩N) ≤ F∗(E), so F∗(E∩N) = F∗(E). For any Sylow subgroup P of F∗(E∩N) =
F∗(E), P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with
order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is
either s-semipermutable or s-quasinormally embedded in G by hypotheses, thus in N
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by Lemmas 2.1(i) and 2.2 (i). So N and N ∩H satisfy the hypotheses of the theorem,
the minimal choice of G implies that N is supersolvable.

Step 2. E = G: If E < G, then E ∈ U by Step 1. Hence F∗(E) = F(E) by
Lemma 2.11. It follows that every Sylow subgroup of F∗(E) is normal in G. By Lem-
mas 2.1(iii) and 2.8, every non-cyclic Sylow subgroup P of F∗(E) has a subgroup D
such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with
order 2|D| (if P is a nonabelian 2-group and |P : D| > 2) is s-permutable in G.
Applying Lemma 2.12 for the special case F = U, G ∈ U, a contradiction.

Step 3. F∗(G) = F(G) < G: If F∗(G) = G, then G ∈ F by Theorem 3.4,
contrary to the choice of G. So F∗(G) < G. By Step 1, F∗(G) ∈ U and F∗(G) = F(G)
by Lemma 2.11.

Step 4. The final contradiction: Since F∗(G) = F(G), each non-cyclic Sylow
subgroup P of F∗(G) has a subgroup D such that 1 < |D| < |P| and every subgroup
H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-group and
|P : D| > 2) is s-permutable in G by Lemmas 2.1(iii) and 2.8. Applying Lemma 2.12,
G ∈ U, a contradiction.

Case 2. F 6= U.
By hypotheses, every non-cyclic Sylow subgroup P of F∗(E) has a subgroup D such

that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| or with order
2|D| (if P is a nonabelian 2-group and |P : D| > 2) is either s-semipermutable or
s-quasinormally embedded in G, thus in E by Lemmas 2.1(i) and 2.2(i). Applying
Case 1, E ∈ U. Then F∗(E) = F(E) by Lemma 2.11. It follows that each Sylow
subgroup of F∗(E) is normal in G. By Lemmas 2.1 (iii) and 2.8, each non-cyclic
Sylow subgroup of F∗(E) has a subgroup D such that 1 < |D| < |P| and every
subgroup H of P with order |H| = |D| or with order 2|D| (if P is a nonabelian 2-
group and |P : D| > 2) is s-permutable in G. Applying Lemma 2.12, G ∈ F. These
complete the proof of the theorem.

The following corollaries are immediate from Theorem 3.5.

Corollary 3.6 Let F be a saturated formation containing U. Suppose that G is a
group with a normal subgroup E such that G/E ∈ F. Then G ∈ F if and only if every
maximal subgroup of any Sylow subgroup of F∗(E) is s-semipermutable in G.

Corollary 3.7 Let F be a saturated formation containing U. Suppose that G is a group
with a normal subgroup E such that G/E ∈ F. Then G ∈ F if and only if every cyclic
subgroup of any Sylow subgroup of F∗(E) of prime order or order 4 is s-semipermutable
in G.

Corollary 3.8 Let F be a saturated formation containing U. Suppose that G is a
group with a normal subgroup E such that G/E ∈ F. Then G ∈ F if and only if every
maximal subgroup of any Sylow subgroup of F∗(E) is s-quasinormally embedded in G.
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Corollary 3.9 Let F be a saturated formation containing U. Suppose that G is a group
with a normal subgroup E such that G/E ∈ F. Then G ∈ F if and only if every cyclic
subgroup of any Sylow subgroup of F∗(E) of prime order or order 4 is s-quasinormally
embedded in G.

Corollary 3.10 ([8, Theorem 3.4]) Let F be a saturated formation containing U.
Suppose that G is a group with a normal subgroup E such that G/E ∈ F. Then G ∈ F

if and only if every maximal subgroup of any Sylow subgroup of F∗(E) is s-quasinormal
in G.

Corollary 3.11 ([9, Theorem 3.3]) Let F be a saturated formation containing U.
Suppose that G is a group with a normal subgroup E such that G/E ∈ F. Then G ∈ F

if and only if every cyclic subgroup of any Sylow subgroup of F∗(E) of prime order or
order 4 is s-quasinormal in G.

Acknowledgements The authors are very grateful to the referee who read the man-
uscript carefully and provided a lot of valuable suggestions and useful comments. It
should be said that we could not have polished the final version of this paper well
without his or her outstanding efforts. The paper is dedicated to Professor Geoffrey
Robinson for his 60th birthday.

References
[1] A. Ballester-Bolinches and M. C. Pedraza-Aquilera, Sufficient conditions for supersolvability of finite

groups. J. Pure Appl. Algebra 127(1998), 113–118. http://dx.doi.org/10.1016/S0022-4049(96)00172-7
[2] W. E. Deskins, On quasinormal subgroups of finite groups. Math. Z. 82(1963), 125–132.

http://dx.doi.org/10.1007/BF01111801
[3] B. Huppert, Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York, 1967.
[4] B. Huppert and N. Blackburn, Finite Groups III. Springer-Verlag, Berlin-New York, 1982.
[5] Z. Han, On s-semipermutable subgroups of finite groups and p-nilpotency. Proc. Indian Acad. Sci.

(Math. Sci.) 120(2010), 141–148. http://dx.doi.org/10.1007/s12044-010-0026-z
[6] O. H. Kegel, Sylow Gruppen und subnormalteiler endlicher Gruppen. Math. Z. 78(1962), 205–221.

http://dx.doi.org/10.1007/BF01195169
[7] S. Li, Z. Shen, and J. Liu et al., The influence of SS-quasinormality of some subgroups on the structure

of finite groups. J. Algebra 319(2008), 4275–4287. http://dx.doi.org/10.1016/j.jalgebra.2008.01.030
[8] Y. Li, H. Wei, and Y. Wang, The influence of π-quasinormality of some subgroups of a finite group.

Arch. Math. 81(2003), 245–252. http://dx.doi.org/10.1007/s00013-003-0829-6
[9] Y. Li and Y. Wang, The influence of minimal subgroups on the structure of a finite group. Proc. Amer.

Math. Soc. 131(2002), 337–341. http://dx.doi.org/10.1090/S0002-9939-02-06547-4
[10] A. N. Skiba, On weakly s-permutable subgroups of finite groups. J. Algebra 315(2007), 192–209.

http://dx.doi.org/10.1016/j.jalgebra.2007.04.025
[11] P. Schmid, Subgroups permutable with all Sylow subgroups. J. Algebra 207(1998), 285–293.

http://dx.doi.org/10.1006/jabr.1998.7429
[12] L. Wang and Y. Wang, On s-semipermutable maximal and minimal subgroups of Sylow p-groups of

finite groups. Comm. Algebra 34(2006), 143–149. http://dx.doi.org/10.1080/00927870500346081
[13] H. Wei and Y. Wang, On c∗-normality and its properties. J. Group Theory 10(2007), 211–223.
[14] X. Wei and X. Guo, On finite groups with prime-power order S-quasinormally embedded subgroups.

Monatsh. Math. 162(2011), 329–339. http://dx.doi.org/10.1007/s00605-009-0175-2
[15] Q. Zhang and L. Wang, The influence of s-semipermutable subgroups on the structure of a finite group.

Acta Math. Sinica 48(2005), 81–88.

Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, People’s Republic of China
e-mail: shkqj2929@163.com

Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China

https://doi.org/10.4153/CMB-2014-073-1 Published online by Cambridge University Press

http://dx.doi.org/10.1016/S0022-4049(96)00172-7
http://dx.doi.org/10.1007/BF01111801
http://dx.doi.org/10.1007/s12044-010-0026-z
http://dx.doi.org/10.1007/BF01195169
http://dx.doi.org/10.1016/j.jalgebra.2008.01.030
http://dx.doi.org/10.1007/s00013-003-0829-6
http://dx.doi.org/10.1090/S0002-9939-02-06547-4
http://dx.doi.org/10.1016/j.jalgebra.2007.04.025
http://dx.doi.org/10.1006/jabr.1998.7429
http://dx.doi.org/10.1080/00927870500346081
http://dx.doi.org/10.1007/s00605-009-0175-2
mailto:shkqj2929@163.com
https://doi.org/10.4153/CMB-2014-073-1

