SUBNORMAL SUBGROUPS OF $E_n(R)$ HAVE NO FREE, NON-ABELIAN QUOTIENTS, WHEN $n \ge 3$

by A. W. MASON (Received 2nd May 1989)

It is known that for certain rings R (for example $R = \mathbb{Z}$, the ring of rational integers) the group $GL_2(R)$ contains subnormal subgroups which have free, non-abelian quotients. When such a subgroup has finite index it follows that every countable group is embeddable in a quotient of $GL_2(R)$. (In this case $GL_2(R)$ is said to be SQ-universal.) In this note we prove that the existence of subnormal subgroups of $GL_2(R)$ with this property is a phenomenon peculiar to "n=2".

For a large class $\mathscr S$ of rings (which includes all commutative rings) it is shown that, for all $R \in \mathscr S$, no subnormal subgroup of $E_n(R)$ has a free, non-abelian quotient, when $n \ge 3$. $(E_n(R)$ is the subgroup of $GL_n(R)$ generated by the elementary matrices.) In addition it is proved that, if $R \in \mathscr S$ is an SR_t -ring, for some $t \ge 2$, then no subnormal subgroup of $GL_n(R)$ has a free, non-abelian quotient, when $n \ge \max(t, 3)$. From the above these results are best possible since $\mathbb Z$ is an SR_3 ring.

1980 Mathematics subject classification (1985 Revision): 20H25, 20E05.

Introduction

Throughout this note we use "free" as an abbreviation for "free, non-abelian". Newman [10] has proved that if N is a normal subgroup of $SL_2(\mathbb{Z})$, where \mathbb{Z} is the ring of rational integers, then, with finitely many exceptions, N/N_0 is free, where $N_0 = N \cap \{\pm I_2\}$. Grunewald and Schwermer [2] have proved that $SL_2(\mathcal{O}_d)$ has normal subgroups of finite index with a free quotient, where \mathcal{O}_d is the ring of integers of the field $\mathbb{Q}(\sqrt{d})$ of discriminant d < 0. (As usual \mathbb{Q} denotes the set of rational numbers.) Let $\mathscr{C} = \mathscr{C}(C, k, P)$ be the coordinate ring of the affine curve obtained by removing a closed point P from a projective curve C over a field k. (The simplest case is the polynomial ring k[x].) Lubotzky [4] has proved that $SL_2(\mathscr{C})$ has a normal subgroup of finite index with a free quotient when k is finite. The author [7], [8] has proved that "almost all" principal congruence subgroups of $SL_2(\mathscr{C})$ have a free quotient. (It follows from a result of P. M. Neumann [9] that $SL_2(R)$ is SQ-universal when $R = \mathbb{Z}$, \mathcal{O}_d or \mathscr{C} (with k finite).) All the above rings are Dedekind rings. One of the principal purposes of this note is to show that if D is such a ring then subnormal subgroups of $GL_n(D)$ with free quotients exist (if at all) only when n = 2.

From now on we assume that R is a commutative ring, a von Neumann regular ring or a Banach algebra. (We assume also that R has an identity.) For each $n \ge 2$ let $E_n(R)$ be the subgroup of $GL_n(R)$ generated by the elementary matrices. Suslin [12, Corollary

1.4] has proved that $E_n(R)$ is normal in $GL_n(R)$, for all $n \ge 3$. Vaserstein has proved that $E_n(R)$ is normal in $GL_n(R)$, for all $n \ge 2$, when R is von Neumann regular or a Banach algebra. (See [15, Theorem 1], [17, Theorem 1.1].) Using results of Vaserstein [16], [17] we prove that, for all $n \ge 3$, no subnormal subgroup of $E_n(R)$ has a free quotient. We also prove that if $GL_n(R)/E_n(R)$ is abelian for some $n \ge 3$, then no subnormal subgroup of $GL_n(R)$ has a free quotient. For example $GL_n(R)/E_n(R)$ is abelian when R is a GE_n -ring, i.e. $GL_n(R)$ is generated by elementary and diagonal matrices. Moreover $GL_n(R)/E_n(R)$ is abelian when R is an SR_s -ring, for some $s \ge 2$, and $n \ge \max(s, 3)$. (See [1, p. 231].)

Since every Dedekind ring is an SR_3 -ring [1, Theorem 3.5, p. 239] the above examples show that the restriction " $n \ge 3$ " in our results is necessary. In addition the subnormality condition is necessary even for SR_2 -rings. Let F be a field and suppose that either F has characteristic zero or that F has an element which is transcendental over a subfield. (Every field is an SR_2 -ring by [1, Theorem 3.5, p. 239].) It is known [18, pp. 30–32] that $E_2(F)$ has free subgroups. By means of the natural embedding it follows that $E_n(F)$ has free subgroups, for all $n \ge 2$. (Clearly this is not true when F is a finite field and it is not true for every infinite field. Suppose for example that F is an infinite algebraic extension of a finite field. Then $GL_n(F)$ is locally finite, for all $n \ge 2$.)

1. Principal results

Let H, K be subgroups of a group L. We denote by [H, K] the subgroup generated by all the commutators $[h, k] = h^{-1}k^{-1}hk$, where $h \in H$ and $k \in K$. We denote the t-th derived subgroup of H by H'. We require the following properties of free groups.

Lemma 1.1. Let F be a free group.

(i) If $x, y \in F$, where $x, y \ne 1$ and [x, y] = 1, then

$$x^{\alpha} = v^{\beta}$$

for some non-zero integers α, β .

- (ii) If $N \triangleleft F$ and $N \neq 1$, then N is not abelian (equivalently not cyclic).
- (iii) If N_1 , $N_2 \triangleleft F$, and $[N_1, N_2] = 1$, then either $N_1 = 1$ or $N_2 = 1$.

Proof. Part (i) follows from [5, Proposition 2.17, p. 10] and part (ii) follows from [5, Proposition 2.19, p. 10].

For part (iii) suppose that $[N_1, N_2] = 1$ and that $N_1, N_2 \neq 1$. Choose $x_i \in N_i$, where $x_i \neq 1$ (i = 1, 2). Then $x_1^{\alpha} = x_2^{\beta}$, for some non-zero α , β , by (i). Hence $M = N_1 \cap N_2 \neq 1$ and so $M^1 \neq 1$ by (ii). But $[N_1, N_2] = 1$. Part (iii) follows.

We recall that throughout this note R is commutative, von Neumann regular or a Banach algebra. Let q be a two-sided R-ideal. For each $n \ge 2$, Let $E_n(R, q)$ be the normal subgroup of $E_n(R)$ generated by the q-elementary matrices. Let $f: GL_n(R) \to GL_n(R/q)$ be

the natural map. We put $GL_n(R, q) = \ker f$ and $H_n(R, q) = f^{-1}(Z)$, where Z is the centre of $GL_n(R/q)$. (By definition $E_n(R, R) = E_n(R)$ and $GL_n(R, R) = H_n(R, R) = GL_n(R)$.)

The order o(S) of a subgroup S of $GL_n(R)$ is the smallest (two-sided) R-ideal q_o with the property that $S \leq H_n(R, q_o)$.

We record some basic properties.

Theorem 1.2. For all R-ideals q and for all $n \ge 3$,

- (i) $E_n(R, \mathfrak{q}) \triangleleft GL_n(R)$,
- (ii) $[E_n(R), H_n(R, q)] = E_n(R, q)$.

Proof. For (i) see [12, Corollary 1.4], [15, Theorem 1] and [17, Theorem 1.1]. For part (ii) see [14, Corollary 14], [15, Theorem 1] and [17, Theorem 1.1].

Theorem 1.3. Let N be a subnormal subgroup of a subgroup G of $GL_n(R)$, where $E_n(R) \subseteq G$ and $n \supseteq 3$. Then

$$E_n(R, \mathfrak{q}^t) \leq N$$

for some positive integer t, where q = o(N).

Proof. See [16, Theorem 1] and [17, Theorem 1.3].

We require a number of lemmas.

Lemma 1.4. (i) Let S be a subgroup of $GL_n(R)$ and let q = o(S). Then for all $n \ge 2$,

$$\lceil GL_n(R), S \rceil \leq GL_n(R, \mathfrak{q}).$$

(ii) Let S_i be a subgroup of $GL_n(R, q_i)$, where i = 1.2. Then for all $n \ge 2$,

$$[S_1, S_2] \leq GL_n(R, \mathfrak{q}^*),$$

where $q^* = q_1q_2 + q_2q_1$.

Proof. See [6].

We denote by E_{ij} the $n \times n$ matrix where (i,j) entry is 1 and whose other entries are zero, where $1 \le i, j \le n$.

Lemma 1.5. Let q_1, q_2 be R-ideals. Then for all $n \ge 3$, the quotient group

$$\bar{E}_n(R,\mathfrak{q}_1)/H_n(R,\mathfrak{q}_2),$$

is not free, where $\overline{E}_n(R, q_1) = E_n(R, q_1) \cdot H_n(R, q_2)$.

Proof. Since $E_n(R, q_1) \cdot E_n(R, q_2) = E_n(R, q_1 + q_2)$ we may assume therefore that $q_2 \le q_1$ and that $q_1 \ne q_2$. Suppose then that for some such q_1, q_2 and some $n \ge 3$ the quotient group is free.

Choose $q \in q_1$, with $q \notin q_2$ and consider the matrices $S = I_n + qE_{12}$ and $T = I_n + qE_{13}$. Then by Lemma 1.1(i) it follows that $S^{\alpha} \equiv T^{\beta} \pmod{q_2}$, for some non-zero α , β . Hence $S^{\alpha} \equiv I_n \pmod{q_2}$. But $S \notin H_n(R, q_2)$. The result follows.

In Lemma 1.5 the restriction " $n \ge 3$ " is necessary. For example, for all but two \mathbb{Z} -ideals q,

$$\bar{E}_2(\mathbb{Z},\mathfrak{q})/H_2(\mathbb{Z},\{0\})\cong E_2(\mathbb{Z},\mathfrak{q})$$

which is free by [10].

We now come to our principal result.

Theorem 1.6. Let N be a subnormal subgroup of a subgroup G of $GL_n(R)$, where $E_n(R) \subseteq G$ and $n \supseteq 3$, and let $N_0 \triangleleft N$.

If $N/N \cap E_n(R)$ is abelian, then N/N_0 is not free.

Proof. Let $q_0 = o(N_o)$, $M = N \cap E_n(R)$ and $P = N \cap H_n(R, q_o)$. By Theorems 1.2, 1.3 and Lemma 1.4 there exists a positive integer r such that

$$[M, P^r] \leq N_o$$
.

Suppose now that N/N_0 is free. Then by Lemma 1.1(iii) either $M \le N_o$ or $P = N_o$. The first possibility is excluded since N/N_o is not abelian. It follows that $\bar{N}/H_n(R, q_o)$ is free, where $\bar{N} = N \cdot H_n(R, q)$.

Let q = o(N). Then, for some positive integer t, $E_n(R, q^t) \le N$ and so $q^t \le q_o$, by Lemmas 1.1(ii) and 1.5. It follows that

$$\lceil M, N^s \rceil \leq N_a$$

for some integer s, by Theorems 1.2, 1.3 and Lemma 1.4, and hence that

either
$$M \leq N_o$$
 or $N^s \leq N_o$,

by Lemma 1.1(iii). Either possibility contradicts the fact that N/N_o is free.

Corollary 1.7. Let N be a normal subgroup of $E_n(R)$, where $n \ge 3$, and let $N_o < N$. Then N/N_o is not free.

Proof. Obvious.

We recall that R is said to be a GE_n -ring if and only if $GL_n(R)$ is generated by elementary and diagonal matrices.

Corollary 1.8. Suppose that R is a GE_n -ring for some $n \ge 3$ and that N is a subnormal subgroup of a subgroup G of $GL_n(R)$, where $E_n(R) \le G$. If $N_o \le N$ then N/N_0 is not free.

Proof. By the Whitehead lemma [1, Proposition 1.7] it follows that $GL_n(R)/E_n(R)$ is abelian.

By virtue of a result of Suslin [12, Corollary 7.9] Corollary 1.8 holds for all $n \ge 3$ when R is a polynomial (or a Laurent polynomial) ring over a field or \mathbb{Z} .

Corollary 1.9. Suppose that R is an SR_s -ring for some $s \ge 2$. Let N be a subnormal subgroup of a subgroup G of $GL_n(R)$, where $E_n(R) \le G$ and let $N_o < N$. If $n \ge \max(s, 3)$ then N/N_o is not free.

Proof. By a well-known theorem of Bass and Vaserstein [13, Theorem 3.2] $GL_n(R)/E_n(R)$ is isomorphic to $K_1(R)$ which is abelian.

In particular if R is a Dedekind ring and hence an SR_3 -ring by [1, Theorem 3.5, p. 239] it follows that when $n \ge 3$ no subnormal subgroup of $GL_n(R)$ has a free quotient.

2. Concluding remarks

For some R no subnormal subgroup of a subgroup G of $GL_2(R)$, where G contains $E_2(R)$, has a free quotient. We record two examples (both of which are SR_3 -rings by [1, Theorem 3.5, p. 239]).

Theorem 3.1. Let k be a field. Let N be a subnormal subgroup of a subgroup G of $GL_2(k)$, where $E_2(k) \leq G$, and let $N_0 < N$. Then N/N_0 is not free.

Proof. We may assume that k is infinite. It is well-known that $SL_2(k) = E_2(k)$ and that $PSL_2(k)$ is simple. In addition $SL_2(k)$ is perfect (by, for example, [1, Proposition 9.4, p. 268]).

Let S be any subgroup of $GL_2(k)$, normalized by $E_2(k)$. Then by the above either $E_2(k) \le S$ or $S \cap SL_2(k) \le \{\pm I_2\}$. In the former case it follows that $S^1 = E_2(k)$ and in the latter case that S consists of scalar matrices.

It is clear that this holds for the case where S=N or N_0 . If N consists of scalar matrices N is abelian and hence N/N_0 is not free. We may assume therefore that $N^1=E_2(k)$. If $N_0^1=E_2(k)$, then N/N_0 is abelian. If N_0 consists of scalar matrices, then $M^1=M$ and $M^1\neq 1$, where $M=\bar{N}_0/N_0$ with $\bar{N}_0=N_0\cdot N^1$. In either case N/N_0 is not free.

Suppose now that D is the ring of S-integers in a global field K, where S is a finite set of places of K containing all the archimedean places (if any) of K. Then D is a Dedekind ring sometimes called a *Dedekind ring of arithmetic type*. (See [11, p. 489].) By a theorem originally due to Dirichlet D has (at most) finitely many units if and only if $D = \mathbb{Z}$, $D = \mathcal{O}_d$ or $D = \mathcal{C}(C, k, p)$, for some d, C, P and finite k.

Suppose in addition that D has infinitely many units. Liehl [3] has proved that $SL_2(D) = E_2(D)$. Let N be a subnormal subgroup of a subgroup G of $GL_2(D)$, where $G \ge E_2(D)$. It follows from the proof (slightly adapted) of a result of Serre [11, Proposition 2, p. 492] that, either N consists of scalar matrices or $E_2(D, q) \le N$, for some non-zero D-ideal q. In the former case N is abelian. In the latter case N^1 is non-scalar and, so repeating the above argument for N^1 , N/N^1 is finite by [3] and [11, Corollaire 1, p. 499]. In either case N has no free quotient. Combining this with the results discussed in the introduction we have:

Theorem 3.2. If D is a Dedekind ring of arithmetic type then $GL_2(D)$ has subnormal subgroups with free quotients if and only if D has finitely many units.

REFERENCES

- 1. H. Bass, Algebraic K-theory (Benjamin, New York, Amsterdam, 1968).
- 2. F. J. Grunewald and J. Schwermer, Free non-abelian quotients of SL_2 over orders of imaginary quadratic numberfields, J. Algebra 61 (1981), 298-304.
- 3. B. Liehl, On the group SL_2 over orders of arithmetic type, J. Reine Angew. Math. 323 (1981), 153-171.
- 4. A. Lubotzky, Free quotients and the congruence kernel of SL_2 , J. Algebra 77 (1982), 411-418.
- 5. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory (Springer-Verlag, Berlin, 1977).
- 6. A. W., MASON, A note on subgroups of GL(n, A) which are generated by commutators, J. London Math. Soc. (2) 11 (1975), 509-512.
- 7. A. W. Mason, Free quotients of congruence subgroups of SL_2 over a Dedekind ring of arithmetic type contained in a function field, *Math. Proc. Cambridge. Philos. Soc.* 101 (1987), 421–429.
- 8. A. W. Mason, Free quotients of congruence subgroups of SL_2 over a coordinate ring, *Math.* Z. 198 (1988), 39-51.
- 9. P. M. NEUMANN, The SQ-universality of some finitely presented groups, J. Austral. Math. 16 (1973), 1-6.
- 10. M. Newman, Free subgroups and normal subgroups of the modular group, *Illinois J. Math.* 8 (1964), 262–265.
- 11. J-P. Serre, Le problème des groupes de congruence pour SL_2 , Ann. of Math. 92 (1970), 489-527.
- 12. A. A. Suslin, On the structure of the special linear group over polynomial rings, *Math. USSR Izv.* 11 (1977), 221–238.
- 13. L. N. VASERSTEIN, On the stabilization of the general linear group over a ring, *Math. USSR Sb.* 8 (1969), 383-400.
- 14. L. N. VASERSTEIN, On the normal subgroups of GL_n over a ring, in (Lecture Notes in Mathematics, 854, Springer-Verlag, 1981), 456-465.

- 15. L. N. VASERSTEIN, Normal subgroups of the general linear groups over von Neumann regular rings, *Proc. Amer. Math. Soc.* 96 (1986), 209-214.
- 16. L. N. VASERSTEIN, The subnormal structure of general linear groups, Math. Proc. Cambridge Philos. Soc. 99 (1986), 425-431.
- 17. L. N. VASERSTEIN, Subnormal structure of the general linear groups over Banach algebras, J. Pure Appl. Algebra 52 (1988), 187-195.
 - 18. B. A. F. WEHRFRITZ, Infinite Linear Groups (Springer-Verlag, Berlin, 1973).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GLASGOW UNIVERSITY GARDENS GLASGOW G12 8QW