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Endpoint Regularity of Multisublinear
Fractional Maximal Functions

Feng Liu and Huoxiong Wu

Abstract. In this paper we investigate the endpoint regularity properties of the multisublinear frac-
tional maximal operators, which include the multisublinear Hardy-Littlewood maximal operator.
We obtain some new bounds for the derivative of the one-dimensional multisublinear fractional
maximal operators acting on the vector-valued function f = (fi,..., fm) with all fj being BV-
functions.

1 Introduction

During the last several years, considerable attention has been given to investigating
the behavior of differentiability under a maximal operator. This program began with
Kinnunen [9] who showed that the centered Hardy-Littlewood maximal operator
M is bounded on the Sobolev spaces W"#(R?) for all 1 < p < co. It was noticed
that the W»?-bound for the uncentered Hardy-Littlewood maximal operator denoted
by M also holds by a simple modification of Kinnunen’s arguments or [8, Theorem
1]. This paradigm that an L?-bound implies a W"?-bound was later extended to a
local version in [10], to a fractional version in [11], to a bilinear version in [4], to a
multi(sub)linear version in [15], and to a one-sided version in [14]. Other interesting
works related to this theory are [1,6,7,16,17]. Due to the lack of reflexivity of L', results
for p = lare subtler; understanding the endpoint regularity seems to be a deeper issue.
A crucial question was posed by Hajlasz and Onninen in [8].

Question 1.1 ([8]) Is the operator f ~ |V M f| bounded from W!(R%) to L!(R%)?

A standard dilation argument reveals the true nature of this question: whether
the variation of the maximal function is controlled by the variation of the original
function, i.e., if we have
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Question 1.1 has been solved in dimension d = 1 and remains open in dimension
d > 2. The first work in this direction is due to Tanaka [19] in 2002 when he obtained
the bound (1.1) in dimension d = 1 for the noncentered maximal operator M with
constant C = 2. This result was later sharpened by Aldaz and Pérez Lazaro [2] who
proved that if f € BV(R), then M is absolutely continuous and

(1.2) Var(J\N/[f) < Var(f),

where Var(f) denotes the total variation of f and BV(R) is the set of all functions of
bounded variation on R. Observe that inequality (1.2) is sharp. Recently, Liu, Chen,
and Wu [13] also gave a simple proof of the bound (1.1) in dimension d = 1 for the
operator M with constant C = 1. In the remarkable work [12], Kurka showed that if
f € BV(R), then

Var(Mf) < 240,004 Var(f).

It was also shown in [12] that if f € W"!(R), then Mf is weakly differentiable and
(1.1) for d =1 also holds with constant C = 240, 004.
Very recently, Carneiro and Madrid [5] considered the endpoint regularity of the

uncentered fractional maximal operator M, for 0 < « < 1, which is defined by

— 1 x+s
Maf(x) = VS?ZPO m ‘/;4 lf()ldy.
r+s>0

Forafunction f:R - Rand1 < g < oo, motivated by the Riemann sums of a Riemann
integrable function, we define its g-variation by

N Xn+1) — Xn Y
§ ) =ty s

i Xee = x|

Varg(f) = sup

where the supremum is taken over all finite partitions P = {x; < x; < -+ < xy}. This
is also known as the Riesz g-variation of f (see, for instance, the discussion in [3] for
the object and its generalizations). In particular, Var,(f) = Var(f) if g = 1. We now
introduce the result of [5] as follows.

Theorem 1.2 ([5]) Let0 < a < land q = 1/(1 - «). Let f € BV(R) such that
Mef # oo. Then My f is absolutely continuous, and its derivative satisfies

|(Maf) lrage) = Varg(Ma f) < 874 Var(f).

The main purpose of this paper is to investigate the endpoint regularity of the mul-
tisublinear fractional maximal functions. More precisely, let m be a positive integer
and f = (fi,..., fin) with each fj € Lj (R?). For 0 < a < md, we define the centered
m-sublinear fractional maximal operator 9, by

Wa(F)e) =sup B GO T [ 1Ny

for any x € R¥, where B, (x) is the open ball in R centered at x with radius r and
|B,(x)| denotes the volume of B,(x). Observe that the centered Hardy-Littlewood
maximal operator M corresponds to the special case of M, for m = 1and a = 0.
Meanwhile, the centered fractional maximal operator denoted by M, corresponds

https://doi.org/10.4153/CMB-2016-044-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-044-9

588 F. Liuand H. Wu

to the special case of MM, for m = land 0 < a < d. It was shown in [15] that
Mz WEPH (R ) x- - -x WhPm (RT) > WL4(R?) isbounded, wherel < py, ..., py < 00
and Y1, 1/p; — a/d = 1/q < 1. For the endpoint regularity of 9)1,, there exists a con-
stant C = C(a, m,d) > 0 such that

- m
(13) IV (N s & S CJ,I]1 IV fill ey,
ifd>21<a<md-1)+La>(m-1)(d-1)and f = (fis..., fin) with
each f; € WH(R?) for i = 1,2,...,m. The same results hold for the uncentered
version of M,. To see this, let us consider, for instance, the centered case. By [15,
Theorem 2.3(ii)], there exists a constant C = C(«, m, d) > 0 such that
oM, (f

(14) H aff )

ey S C LIl oy

foralllslSd,lsoc<md,1<p1,p2,...,pmSoo,and
1 o1 (a-1)

0<—=S—-2"7

q ;Pi d

Taking p; =d/(d —1) forall1 < i < m, (1.4) leads to

vt ()] CILIAl, 1 gy

L m(d— l) +1(Rd)

ifd>2,a>1and (m-1)(d -1) < a < m(d —1) + 1. Combining this inequality with
the Sobolev embedding theorem gives (1.3). Specifically, if m = 1,d > 2,1 < a < d,
and f € WH(R?), then M, f is weakly differentiable, and there exists a constant
C = C(a,d) > 0 such that

[V 1, gy < CIV Sl cey

The same results hold for the uncentered version of M,.

Based on the above, it is then natural to consider the extension of Theorem 1.2 to
the multisublinear fractional case. This is the main motivation for this work. Here we
give a positive answer to above question. Let f = (fi, ..., fu) with each f; € L] _(R).
For 0 < a < m, we define the uncentered m-sublinear fractional maximal operator
E)Aﬁa by

()= swp o i[Oy

7,520
r+s>0

Obviously, M, = J\7[a when m = 1. Our main results can be listed as follows.

Theorem 1.3 (i) Let0 < a < land q; = 1/(1- ). Let f = (fi,..., fn) with
each f; € BV(R) such that My (f) # oo. Then My (f) is absolutely continuous and its
derivative satisfies

H(f’j?a(f)),Hm(R):Varql(ﬁa(f)<81/q'ZVaff1) I Afile=-

<] I<m
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(i) Let m—1< a < mand gy = 1/(m — «). Let f = (fir..., fm) with each
fj € BV(R) n L'(R). Then M, (f) is absolutely continuous and its derivative satisfies

(0 D) sy = Vot Fa(D) <85 i) T 1o

1<j#l<m

Theorem 1.4 (i) Leta=0and f = (fi,..., fm) with each f; e BV(R). Then

Var( 9, f)) SZVar(fl) H [ il w)-

1<j#l<m

(i) Leta=m—1and f = (fi,..., fin) with each f; e BV(R) n L'(R). Then

vmmﬁ»miwm>g il
=1 1<j#l<m

Remark  Theorem 1.3 extends Theorem 1.2, which corresponds to the case m = 1.
The problem of finding the corresponding results for m > 3and1 < o < m —1is
certainly an interesting one. Another inviting possibility is the investigation of the
validity of Theorem 1.3(i) for the case & = 0 and Theorem 1.3(ii) for the case & = m - L.

The rest of the paper is organized as follows. After presenting some preliminary
lemmas in Section 2, we prove Theorems 1.3 and 1.4 in Section 3. We remark that the
main ideas in our proofs are greatly motivated by [5], but our methods and techniques
are more delicate and direct than those in [5]. The main ingredients of our proofs
that bounds the g-variation of the maximal functions on monotone intervals by the
variation (times some L°°-norms) of the original functions on comparable intervals
are very interesting and technically difficult (see Lemmas 2.3-2.4). We expect the
centered case of our main results to hold as well. However, our methods here do not
adapt to the centered case. In what follows, we use the conventions [] jepaj =1 and
Y je @j = 0. For convenience, we denote by Lip(R) the set of all Lipshitz functions
onR.

2 Preliminary Lemmas

Let f = (fi,..., f) with each fie LIIOC(R). In what follows, for any x € R, we set

A6 = s B 1Oy

for any r, s > 0 with satisfying r +s > 0, and A, o(f)(x) =lim sup, o+ A Aps(f)(x).
Observe that Ag o (f) = 0 if each fj is locally bounded and « > 0.
Let us begin with the following preliminary lemma.

Lemma 21 LetO<a <1landf = (fi,..., fn) with each fj € L=(R) such that
Ma(f) # oo
(i)  Then we have My (f)(x) < oo for all x € R.
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() IFM()(x) > Mo (f)(y) for some x, y € R with satisfying x > y, then there
exist 7, s > 0 such that r < x — y and Mq(f)(x) = Ar.o(f)(x). In particular, if
each f; € Lip(R), then

@1 Mo (f)(x) - Ma()(y) <
min{r+s,x—y—r}(r+s)“_llz_;fyx+s|fl'(z)|dz E( I £illLee ()

1<j#l<m

(iii) If Ma(f)(x) > Ma(f)(y) for some x, y € R with satisfying x < y, then there
exist r, s > 0 such that s < y — x and My (f)(x) = A,s(f)(x). In particular, if
each f; € Lip(R), then

e () (x) - Ma() () <
minfr+s,y—x =5} v ) [ " Ifi2)ldz 1 1ilimo

1<j#l<

Proof (i) Suppose that 90, (f)(x) = oo for some x € R. Then there exists a
sequence (rj,s;) such that rj, s; > 0, 7j +s; = coand A, ;;(f)(x) — oo as j — co.
Forany y € Rand j € Z with rj +s; > |x — y|, one can easily check that

(2.2) [ Ay, (F) () = Ay () ()] < 2mly = x|(rj +5)* 7 T Hlele(R)

Taking j - oo, (2.2) yields M, (f)(y) = oo, a contradiction.

(ii) We only prove (ii), as (iii) is analogous. Assume that M, ( f )(x) is not attained
by any average A, ,(f)(x) with r, s > 0. Then there exists a sequence (rj,sj) such
that rj, s; > 0, 7j +s; - oo and .Arj,sj(f)(x) — My (f)(x) as j - co. Combining
these facts with (2.2) yield

Ma(f)(x) < Ma(f)(3) + Jim 2my = x|(rj +5))* gl \IﬁHLw(R <Ma()(7),

which gives a contradiction. Thus, there exist r, s > 0 such that M. (f)(x) =
Ars(f)(x). Ifr = x — y + to for some ¢y > 0, then

1 m y+tx—y+s d
IT i(z)|dz
(x—y+s+1t)m* 21 Jy-to 5

ﬁta(f)(x) = ‘Ar,S(.f)(x) =
<Ma()(),
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which yields a contradiction. So r < x — y. Note that each f; € Lip(R); then all f; are
absolutely continuous. By Fubini’s theorem, we have that for any [ € {1,2,...,m},

ey | [ @ [T
< [::S|f1(z) —filz+r+y—x)|dz

gf“sfo (2 + 1)|dtdz
x-r Jrey—x
:min{ /r+0y—x f)::s |f,’(z+t)|dzdt,(r+s)/ywrs |f,’(z)\dz}
<min{(x-y-7r),r+s} fx+s lf/ (z)|dz.
y

Then (2.1) follows from (2.3) and the following inequality
(2.4)

Mo (f)(x) - Ma(£) (1)
<A, S(f)(x) - Ao, r+S(f)()’)|

<GS T US| [ i@ [ RG] .

1=11<j#1<m

Lemma 2.2 LetO<a<mand f=(fi,..., [m) with each f; € L'(R).

() Ifeach f; € L(R), then there exists M > 0 such that 9, (f)(x) < M for all
xeR.

() ML (f)(x) > M, (f)(y)forsomex y € Rwith x > y, then there existr, s > 0
such that r < x — y and My (f)(x) = Ars(f)(x). In particular, if each fi €

Lip(R), then
(25) Ma(f)(x) - Ma()(y) <
min{r+s,x—y—r}(r+s)* " ; [ny If{ (z)|dz E< £l L1 (r)-

1I<j#l<m

(iii) If9Ma(f)(x) > M, (f)(y)forsomex y € Rwith x < y, then there existr, s > 0

such that s < y — x and M, (f)(x) = Aro(f)(x). In particular, if fj € Lip(R),
then

T ()() - P (F) () <
min{res.y=x =)+ "% [ IGE T 1l

1<j#l<m
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Proof (i) One can easily check that

Mo (f)(x) < SuP0 W H |fj(2)ldz
0<,rs+25<1

1 f 3(2)ldz

+sup —————
rss0 (7 + S)”‘ @
r+s>1

m m
< 'H1 I £ill s (my + 'H1 Ifillz(my-
j= j=

for any x € R.

(ii) We will only prove (ii), as (iii) is analogous. The proof of (ii) is similar to
the proof of Lemma 2.1(ii). Assume that 901, (f)(x) is not attained by any average
Ars(f)(x) with 7, s > 0. Then there exists a sequence (rj,sj) such that rj, s; > 0,
rj+sj— oo, and A, g (f)(x) = Ma(f)(x) as j - oo. Using a similar argument to
the one used for (2.2) we get

iy () () = Ary; (F) ()] < 2mly = x|(rj +57) " il
i=
for any j € Z such that r; + s; > |x — y|. It follows that
—~ - ~ - m —~ .
Ma(f)(x) <M (£)(y) + lim 2my = x|(rj+ ;) T fill oy < Mal(£)(),

which is a contradiction. Thus, there exist 7, s > 0 with M, (f)(x) = A.s(f)(x).
One can easily check that r < x — y. Using a similar argument as in (2.4) we obtain

Ma(f)(x) = Ma(f)(y) <
(r+s)*™S T Hfj”Ll(]R)| [)::5 Ifi(2)|dz - fyﬂms foldl,

1=11<j#1<m
which together with (2.3) yields (2.5). [ |

The following two lemmas are the heart of our proofs. Its bound the g-variation
of M, (f) in a monotone interval.

Lemma 2.3 Let0 < a <landq =1/(1- ). Let f = (fis..., fm) with each
fi € BV(R) nLip(R).
(i) Let x1 < x5 < --- < xn be a sequence of real numbers such that

M (f)(x1) < Ma(f)(x2) <+ < Ma(F) (xv-1) < Ma(f) (1)
Then there exist 1, s > 0 such that ﬁ?a(f)(xN) = Ar,s(f)(xN) and

o) 5 PalHln) = Tal)ona)l”

n=1 %0 = Xpa] 77
(% I Ifilm@ o) (z T Ufli=co [ i olax).
[=11<j#1<m

In particular, if x§ < xn+1 and M, (f)(xN) > Ema(f)(xNH), then s < X411 — XN.
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(ii) Let x; < x5 < --- < x be a sequence of real numbers such that

Mo () (1) > Ma(f)(x2) 2 -+ 2 Ma () (xn-1) 2 Ma(f) (x)-
Then there exist r, s > 0 such that 9, (f) (x1) = Ar,s(f) (x1) and

4(li Il nfjnm(mnf;nwm) (x I Ifile=ce [ i),

<j#l< 1=11<j#l
In particular, if xo < x; and Mo () (x1) > Mo (f) (x0), then r < x; —

Proof We only prove (i), as (ii) is analogous. By Lemma 2.1, there exist 7, s > 0 such
that r < xy — x1, s < xn+1 — XN, Mo () (xn) = A s(f)(xn) and

) Fu(Har) - T ) < ¢+9° % T fillimey [ 1F (@l
I=11<j#l<m
Let M be the smallest integer with 2 < M < N such that
Ma (f) Cear) = Ma(f) Genat)

XM — XM-1

e { Tl ) = T ()5,

2<n<N}
Xn — Xn-1

By Lemma 2.1 again there exist u,v > 0 such that u < xp — xp-1, M, (f) (xm) =

Auy(f)(x3) and
(28) ﬁtw(f)(x;\/f):ijtu(f)(le) <

@Y T il [ @z

1=11<j#l<m

Case 1. Assume that u + v > r + 5. Using (2.7) and (2.8) we obtain

N-1 |95 f xn_~aﬁ Xni1)|?
Z|9ﬁa(f)( ) = Mo (f) (xns1)|

Xp — xn+1|q—1

n=1

R AGICH L AGIE

XM — XM-1

< ()= DD e(3 T HfJHLm(R)/ " (@)ldz)”

1=11<j#l<m

)" () o)~ Ta( ) (1))

(3 T 1o 1 )

I=11<j

(%1 |m||Lm(R>uﬂ||p<R))’(; T Ufll= [ fi@lax),
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which yields (2.6).

Case 2. Assume that u+v < r+sand xy —xp < v. In this case note that x;;+v < Xy +s
(which is clear if M = N, and if M < N, we note that r < xy — xp). By Lemma 2.1
again we have u < xpr — x; and

o (F)Cow) =T ) < 0+ "5 T Uflamesy [ 7 (I

I=11<j

which, combining (2.8) with the similar argument as in Case 1, implies

ML 197, (F) (%0 Xn41)|?
5 D% () () = Da (F)( )|

(2.9)
n=1 X0 = Xp4a[971

m
(X I Uil [ IfG)ldx)"
1=11<j#l<m
On the other hand, we get from (2.8) that

(2.10) N 90 (f) () = M () (i)

eyt |x,, —xn+1|q_1
g ( Mo (f)(xpmr) —fma(f)(xM—l))q NZI |Xn41 — %]

XM — XM-1

) (ST flege fo,l f1(@)ldz)"

1=11<j#l<m

s ( ;lSjQS | fill = () f |fl (z)|dz

It follows from (2.9) and (2.10) that

Z |9ﬁ (f)(xn) éﬁa(f)(xnﬂﬂ

|xn - xn+l|q_1

( i: 314—13 ||fjHL°°(R) £IXN+S |fl’(Z)|dz) ‘1,

which gives (2.6).

Case 3. Assume that u + v < r + s and xy — x» > v. Let i; be the unique integer such
that x;, <xp +v < x40 and M < ip < N —1. By (2.9) and the fact that xpr + v < x;,41,
we get

(2.11) MZI 19 (1) () = M () Crnan)*_

n=1 X0 = xnaa|17

m Xij+1 q
(X 1 Il [ 1fiG)lax)"
1=11<j#l<m X1
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By a similar argument to the one used to obtain (2.9) we have

Z L9 () (xn) ~ Ma (f)(xn+1)|"

n=M [0 = X171

(2.12)

(51 15l [ liceae)”

Combining (2.11) with (2.12) yields that

i) 5 TelDs) =Ml Conn)l?

|Xn = Xpaa|17

n=1
m

Xip+1 q
AX T flim [ If2Ndz) "
1=11<j#l<m X1
Let M; be the smallest integer with i; < M; < N such that

ﬁt“(f)(le) - S55(06(]2:)(361\’11*1) _

XM; — XM;-1

Mo () () = MalH0) <N} >0

Xn = Xn-1

max {

Then by Lemma 2.1 again there exist u,, vy, > 0 such that up, < xp, — Xp-15

5510( (J?)(le) = ‘A‘MMI,VMI (.]?) (le)’ and

214)  Ma(f)(xn) - DMa(F)(x7,) <
(r+5)° ;K]er il ®) f ()|

(2.15) f')’:\”‘tlﬁt(f)(361\41) - mlx(f)(xil) <
(=) T im0 1 Gl

1=11<j#l<m
16 Dal)n) - Ma(f) ()
.X'M —le
le-H/Ml
(s, +van)* 121 0 Ufile [ 1 @ldz.
1=11<j#l<m XM;-1

Ifup, +vm, 2r+soruy, +vay, <r+sand xy — xp, < vy, then by (2.14)-(2.16) and
similar arguments as in Cases 1 and 2, we get

N1 |9 f Xn _Nzx f xn+1 o
3 [P () (xn) = Ma (F)( (;

|xn - -’Cn+1|q_1

! q_l
I 1leol )

x(;lgjgs 1l ey [ i (0)ldx).

When upy, + vy, <7+ sand xy — xpm, > Vi, let i be the unique integer such that
Xi, < Xy, + VM, < Xip41 and My < ip < N — 1. Then by a similar argument as in (2.13)
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we have

! {)‘)’Ta f Xn _gjta f Xn+1 1
Z' (f)(xn) (f) Cena)

|xn - xn+1|q4

n=iy
m

AT T Ul [ )’

1=11<j#l<m

_2m il Lo Ml o d
<(;Mlth<thmﬁ (z I Mh<mf fi(2)ldz).

Reasoning as above, we can obtain { (ix, M, ta,, Var, ) }=_, such that

() uare Vi 2 0, ung, < Xag, = Xat-1 ik < My, Mo (f) (xar,) = Ay vu, (F) (a1,
fork=12,...,L;
(i) My <irsg SN -1, ip +1< iy and

o S el 0) - Fa (D)l

|Xn = Xpia|97!

n*ik
(3 1 =l flow)” (X T mmmm]“ 1A (2)dz).
1=11<j#l<m I=11<j#l<m
fork=12,...,L -1

(iii) wpm, +vm, 2T +soruy, +vu, <r+sand xy — xp, < vy,. Inboth cases we
have

(2.18) Nzl 1D (1) () = M () a1 _

|Xn = Xpaa |17

nlL

(z I @l o)’ (z I Mhﬂm[ i (0)ldx).

=11< ] ] <m
It follows from (2.13), (2.17), and (2.18) that

N ﬁtu f Xn _ﬁta f Xn+1 1
Z' (f)(xn) (f)(xnn)|

n=1 |X _xﬂ+1|q_l
IZ (9 (f) (xn) = Mo (f) ()| Lz”ki’l 19 (f) (xn) = M (f) ()|
n=1 |0 = Xp4a]77 k=1 n=i; %0 = Xp4a]77
T () () = T )
n=ip |X _xn+1|q
m , q-1
(z o 1 fill= @) L )
I=11
m XN+S ,
(E I Il [ 1 @lax).
1=11<j#l<m X1
This yields (2.6) and finishes the proof. [ |

Applying Lemma 2.2 and the similar arguments as in the proof of Lemma 2.3, we
can obtain the following lemma. The details are omitted.
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Lemma 24 Letm-1<a<m q=1/(m-a)and f = (fi,..., fm) with each
fie LY(R) nLip(R).
(i) Let x1 < x5 <--- < xn be a sequence of real numbers such that

Ma () (1) < Ma(f)(x2) <+ < Ma(F) (xn1) < Ma(F) (xn)-
Then there exist r, s > 0 such that My (f) (xn) = Ars(f) (xy) and

N Xn Xn+1)]?
Z 19 (f) (%) = Ma(F)( I

n= ‘X _xﬂ+1|q
/ -1 &
(X 0 Iflewlflee) (X 10 e [ i lax).
j#l<m I=11<j#l<m

1<j#I<
In particular, if xn < xn4+1 and M, (]?)(xN) > M, (f) (xN+1) then s < xy41 — XN.
(ii) Let x; < x5 < --- < xn be a sequence of real numbers such that

Mo () (1) > Ma(f)(x2) 2 -+ 2 Ma () (xn-1) 2 Ma () (x)-
Then there exist r, s > 0 such that My (f)(x1) = Ar.s(f)(x1) and

S 190 () () = D (f)(xm)lq

n=1 |xn = Xpaa|17!

(T T Ifleliloe) (X 1 1flse [ @),

1=11<j#l 1=1 1<j#1

M=

I
—

In particular, if xo < x1 and Mo () (x1) > Mo (f) (x0), then r < x; —

The following proposition is a classical result of E. Riesz (see [18, Chapter IX 4,
Theorem 7]), which plays a key role in the proof of Theorem 1.3.

Proposition 2.5 Let f:R — R be a given function and1 < q < co. Then Vary(f) < oo

ifand only if f is absolutely continuous and its derivative f' belongs to L1(R). Moreover,
in this case, we have that | f'| pa(r) = Varg(f).

We end this section by presenting the g-variation of 0, (/) with each fj € Lip(R).

Proposition 2.6 (i) LetO < a <land g = 1/(1-a). Let f = (fis ..., f) with
each f; € Lip(R). Then

(2.19) Varg, (M (f)) S81/‘“Z\’ar(fz)l g | fillz> -
1=1 <JFl<m

(i) Lee m -1 < a < mand gy = 1/(m — «). Let f = (fi..., fn) with each
fi € L"(R) nLip(R). Then

(2.20) Var,, (M, (f))<81/qZZVar(fl) n I£ill oy

<] I<m
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Proof First we prove (i). We can assume that all f; € BV(R) and Mo (f) is not
constant (since (2.19) is obvious in other cases). Let x; < x5 < --- < xy. For a generic
function g : R — R and a partition P = {x; < x, < --- < xy}, we say that an interval
[xn,x1] is a string of local maxima of g if

g(xn1) < g(xn) == g(x1) > g(x141),

provided n # 1and | # N. When n # [, we say that the leftmost point x,, is a left
local maximal of g. Respectively, the rightmost point x; is a right local maximum of
g When n = [, we say that x,, is a left local maximum and a right local maximum
of g. We define string of local minima, left local minimum and right local minimum
analogously. Fix a partition P = {x; < x, < --- < xx}. Without loss of generality
we can assume that {[x;-, x;+ ] }_, and {[xjr>xj¢] }_, are the ordered strings of local

minima and local maxima of M, (f) (relative to the partition %), i.e.,

1<ip <if <jy <jf<iy <iy <j; <jy<--<ip<ip<j;<jp<N.
Obviously, M, ( f) (xjr) > My (f) (i ). By Lemma 2.3 there exist r, r > 0 such that
rp <Xxjr = X and
(2 21)

z T () ) = T () o) _

x5 = x| D7

(5 I 1l lfilom)" (z 0 fle [ I)le);

1=11<j#1< <jtl<
(2.22)

NZ_I |§jvttx(.f)(xn) - ﬁta(f)(xnﬂ)wl <

|xn - xn+1|q_1 B

—it
n=jp

m , q@-1, M XN ,
XL Uil filom)” (X T 16l [ Ifz)az).
I=11 1=11<j#I<m ij*TL

Since ﬁ?a(f)(xj;) > ﬁ?a(f)(x,-:ﬂ) foranyl < k < L —1and ﬁ?a(f)(sz) >
M, (f)(xn). By Lemma 2.3 again there exists a sequence {sx}-_, such that s; <

Xif, = Xjp

’f s (f)(xn) ()l

(2.23)
|Xn = Xpa1 |11

-1, m
iy 0 fl@lfilow)” (%I Wil f I (2)ldz)
=1 1<j#l<m

1= 11<] I<m
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foralll< k< L-1andsg <XN =X

(2.24) ]Li [Me (f)(xn) Ma (f)(x,,+1)|qn

|Xn = Xp41| D71

q1-1 m x}.Z
iy Ul lfilee)” (X 1 ke /
=1 xiz

1=11<j# I<j#l<m

It follows from (2.23) and (2.24) that

(2.25) ijf [ () (5a) = M (F) Cona)|

k=1n= 1k |X _x"+1|q !

599

) ldz).

= / -l & N 7
(2 I il filoe)" (5 T 1le [ IR @)dz).
I1=11<jFl<m 1=1 xil_

1<j#l<m

Similarly, we obtain

(2.26) Lz:_li;*z‘fl M () (xn) = Ma (f)(xn+1)|‘1‘

k=1 n=j; X = Xpia |27

Y 0 Ulewlfiloe)" (3 T ilee [ ).

1=11<j#l<m 1=11<j#l<m

It follows from (2.21), (2.22), (2.25), and (2.26) that

N m Xn m Xn+1 o
Z::I () (xn) = Da () Genin)|

|Xn = Xpia |71

m Xn D}Ia f Xn+1 £
Z' () (xn) = Ma (f) Gnin)|

|xn - xn+1|ql_1

L] f Xn _~rx f Xn1)| !
+k2=:§ (M (F) (xn) = Ma () (1) 14

|xn - xn-’-1|qﬁ1

S ) () = B (D) )

k=1 n=j} [Xn = xpaa |27
M () () = I (F) ()|
n= ];_' |x xn+1‘q1

m

(Z . il o)

Combining this with the fact that || /|| ;1) = Var(f;) for any 1 < I < m yields (2.19).
Using Lemma 2.4 and similar arguments as in leading to (2.19) we get (2.20).
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3 Proofs of Main Results

This section is devoted to proving Theorems 1.3 and 1.4. In what follows, let f =
(fis---» fm) with each f; e BV(R). Without loss of generality we assume that all f; >
0, since Var(|f]) < Var(f). Let ¢ € C(R) be a nonnegative smooth function such
that supp(¢) = [-1,1] and |[¢| 11 (r) = 1. For € > 0, we define ¢.(x) = 2¢(%). For e >

0,let fo = (fier- - > fm,e) with each fie = @e * fj. Note that for any € > 0, all functions
fj.e are Lipschitz continuous, Var(fj ) < Var(f) and | fj el 1<) < [ fillz=(®)-
We now proceed with the proofs of Theorems 1.3 and 1.4.

Proof of Theorem 1.3 We first claim that
(3-1) ig%?ﬁttx(fs)(x):ﬁta(f)(x)

forall x € Rand 0 < a < m. Note that limo fic(x) = f(x) a.e. x € R for all
1< 1< m. Fix x € R. We assume that D, (f)(x) > 0, since M, (f)(x) = 0 implies
f1,e =0forall1 <[ < m and then (3.1) is obvious. By Fatou’s lemma, for any r,s > 0
withr +s >0,

Ars(f) () < liminf Ar(fe) (x) < liminf e (fe) (x),
which leads to
(32) () (x) < limminf D () ).
Thus, to prove (3.1), it suffices to show that

(3.3) lim sup My (f) (x) < Mo (f)(x).

e—0

We now prove (3.3) by contradiction. Assume that there exists # > 0 such that
1imS;lP9A5fa(fe)(X) > (14 37)Ma (f) (x).
€—>

It follows that there exists a sequence {€x }x»1 such that 0 < e, < 1and ¢4 — 0 as
k — oo and

(3.4) M (fo) () > (1+21) M () (x).

This yields that there exists a subsequence {€, k }x>1 Of {€x }x»1 such that 0 <€, <1
and e, x — 0as k — oo and

(3.5) M (fe, )(x) = sup Aps(fe,)(x) V21
02}53&1

or

(3.6) Mo (for,)(x) = sup Ars(fo)(x) VE21
r+s_21
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Assume that (3.5) holds. Fix k > 1; we can write
(M (fe,,) (x) = Mo () (x)]
< sup |‘Ar,s (f;k )(x) = Ars (J?) (x)|

r,s>0
0<r+s<1

b ,Z (r+5) “f oy T [ e 0Ny

0<r+s<1

< [ Vs ) = Ay
m 1 xX+s
<Y I Uil=@ w0 [ a0 = Ay

1=11<j#l<m rs>0 T'+S
0<r+s<1

Fix I € {1,2,...,m} and a pair (r,s) satisfying r,s > 0 and 0 < r +s < 1. Since
e ) = frDXper,x0s1(9) < 20fi (7)) X101 (¥) 2. y € R, by Fatou’s lemma,

. 1 X+s _
khm sup m[x_r fre.e (7) = fi(y)ldy =0,

0 rs>0
0<r+s<1

which implies lim, o D, (f;. D(x) = M, (f)(x) and yields a contradiction. Assume
that (3.6) holds. Then by (3.4), fix k € Z; there are rg, s > 0 such that ry + s > 1and
(37) Ars e ) () > (14 )M () ().

For any fixed 1 < | < m and k € Z, by Fubini’s theorem,
X+Sk Xtk €Lk
[ hen@ldzs [ [z Dlgn (D dtdz
X—Tk X—Tk —€,k

€k X+Sgk
- [ ) = tldzge, ()t
€,k JXTk

X+Sk+e€,
< [T io)ldzg (e
—€,k X—

Tk—€,k
X+SK+eELk
- [ )l
X—Tk—€,k
It follows that
1 m X+Sk+€, &
Ars (fer) (%) < W}—Ilfx e fi(u)du
< (M)
Tk + Sk

" () (),

which together with (3.7) implies

( Tk + Sk +2€, &

m-«u
>1+7.
Tk + Sk ) g

This implies 7y + sx < 2((1+ 1) 7= —1)~". We can choose two subsequences {r, s} of
{rr} and {s, 1} of {sx} such thatr, ; — roand s, > spas k > oo and ry + 59 > L

https://doi.org/10.4153/CMB-2016-044-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-044-9

602 F. Liuand H. Wu

From (3.7) we get
Mo () (%) 2 Aryyso () (%) = Jim A, (feu) (%) 2 (14 ) Ma(f) (%),

which is a contradiction, and (3.3) holds. Equation (3.1) follows from (3.2) and (3.3).
We first prove Theorem 1.3(i). Let 0 < & < 1and g = 1/(1 - «). Fix a partition
P ={x <x3 <+ <xy}. We get from Proposition 2.6(i) that

3 D (fe) () = T (fe) G

|xn - xn+1|q_1

Lw(R))q-

<8(MoVar(fi) T Ifil
-1 1<j#l<m

n=1
Combining this inequality with (3.1) implies

(S [P () () = Dl () (s

[Xp = X1 |17

1/q =
) <8y var(fi) T |filli=y-
1=1 lSj#lSm

n=1

This yields that

Varq(ﬁjtu(f))ggl/qIZ:Var(ﬁ)l g 1fillLes (=)
=1 <jFl<m

since the original partition P was arbitrary. By Proposition 2.5 and the fact that g > 1,
we know that 91, (f) is absolutely continuous with

1D (£)) 2y = Varg(Ma(f))-
Theorem 1.3(i) follows from this. Similarly, we can get Theorem 1.3(ii) by Propositions
2.5-2.6 and (3.1). [ |

Proof of Theorem 1.4 We first prove (i). Fix a partition P = {x; < x5 < --- < xn}-
We get from (i) of Proposition 2.6 that

Z=_1 |9’5?a(]?€)(xn) - S’I’vtot (ﬁ)(xn+l)| <8 :l Var(fl,e) 1<]_E<m ”fj)EHL‘”(R)’

which together with (3.1) implies that

5 [ (F) () = Ma () () < sliVar(m T 1limcey
n=1 =1 1<j#l<m

This yields Theorem 1.4(i), since the original partition P was arbitrary. Similarly, we
can get Theorem 1.4(ii) by Proposition 2.6(ii) and (3.1). [ |
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