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SOME REMARKS ON IA AUTOMORPHISMS OF
FREE GROUPS

J. McCOOL

1. Introduction. Let 4, be the automorphism group of the free group F,
of rank n, and let K, be the normal subgroup of A4, consisting of those
elements which induce the identity automorphism in the commutator
quotient group F,/F/. The group K, has been called the group of 1A
automorphisms of F, (see e.g. [1]). It was shown by Magnus [7] using
earlier work of Nielsen [11] that K, is finitely generated, with generating
set the automorphisms

XX, = xjx,-)_c/- (i #j)
xk i xk (k #* l),
and
Xkt X 7 XXX XX (#j<k#1i)
X, —> X, (m # i),
where x|, x,, ..., x, is a chosen basis of F,.

A presentation of the subgroup C, of K, generated by the x;; was found
in [10]; the case n = 3 is given already in [4] and [5]. In [4] Chein also
found a (rather awkward) presentation for K;(1), where K, (1) denotes the
intersection in A4, of K, with the subgroup S(x,, ..., x,) consisting of
those automorphisms which fix each of x,, ..., x,. In particular, Chein
showed that K;(1) is generated by the set {x,,, x;3, x|53}. The first result
we wish to report in the present paper is a description of K, (1) for all
n = 3, namely

THEOREM 1. Let Y, Z be free groups of rank n — 1, with bases y,, . . ., y,
and z,, ..., z, respectively, and let 0 be the homomorphism of the direct
product Y X Z onto the free abelian group with basis a,, . . ., a, given by
0(y;) = a,and 0z; = ;2 = i = n). Then

(a) K, (1) is isomorphic to the kernel of 0,
and

(b) K, (1) is finitely generated (by the set of all x,; and x,;), but is not
finitely presentable.
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Here in fact y, represents the automorphism which send x; to x,x; and
fixes all other x,, while z; maps x, to X,x; and fixes the other x,, so that

X); = vz and Xy = Ry
(our convention being that automorphisms of F,
right).

The theorem gives a reasonable description of the structure of K, (1),
namely that K, (1) is the semidirect product of the commutator subgroup
Y’ of the free group Y, by the free group on x5, ..., x,,, where each x,;
acts on Y’ just as the corresponding - In the case n = 3, the group has a
simple presentation:

are applied on the

COROLLARY 1. The group K;(1) has presentation
{a,, b,, (n,m € Z); ab

Let us write S(x .. ) for the elements of A, which fix each of
the conjugacy classes xO (2 =i = n), and K (1) for the intersection of
K, and S(xz, .. ) Then denoting by I, the group of inner automor-
phlsms, we have

= b =19, +1 (I’l m € Z)>

n-m

THEOREM 2.
(a) K()(l) is generated by the set of all x;; and X k-
(b) K1) is not f.p.

(c) The quotient Kg(l)/l3 is the free product of K;5(1) and the infinite cycle
generated by x,.

We note that K5(1) embeds in the quotient K;(l)/l;, since its intersec-
tion with /5 is trivial. Now K3 = K;/1I5 is generated by (the image of) the
set V' = X5, X33, X3}, X|23> X213, X312, and Theorems 1 and 2 enable us to
describe the relations satisfied by any subset of V' containing just one of
the x,,‘ Also, it has been shown by Bachmuth [1] that the subgroup
T; of K3 generated by x|,3, X513, X3, is free of rank three. It could be
asked therefore if we have obtained enough relations to present K; on
the generating set V. We shall show later that this is not the case, and then
make use of our result to disprove a conjecture of Chein [4]. The
conjecture, which is repeated as a question in problem 5 of [2], is to the
effect that the normal closure N of C; in Kj; has trivial intersection with
the subgroup T;. In view of the result of Bachmuth cited above, this is
equivalent to the assertion that the quotient group K;/N is isomorphic to
F3;. We show

THEOREM 3. The group K;/N is a quotient of the group L with pre-
sentation

=(x,y, z; [yx, XY = [29, Y] =[xz, Z/X") = 1 (r € ZL)).
The group L is not f.p.
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2. Presentations of S(x,, ..., x,) and S(x3, ..., x%). We shall need, in
order to obtain our main results, presentations of S(x,,...,x,) and
S(xg, R xg). These are given in the following results, whose proofs will
be given later:

PROPOSITION A. S(x,, ..., x,) has presentation with
generators: T, ¥,z (2=1i=n)
and
relations: 7 = 1, T =z, [V, zj] =1 =i j=n).

Here 7 is the automorphism sending x; to x; and fixing the other x,,
while y;, z; are as described previously. We note that S(x,, ..., x,) is the
semidirect product of Y X Z by the two-cycle 7.

Next we have
PROPOSITION B. S(x(z), cees xS) has presentation T, with

generators: 7T, Y, Z;, X, RQ=Ei,j=Enl=r+#s=n)

and
relations:
g = Xy by gl =1 ‘
[xo x5l = 1, Q2
[yj,x,-j- =1,[zj,x,-j =1 J
7] =1 (i #J) ‘
[Xij» X, =1 (i, J, r, s distinct) Q3
D Xl = LIz x, ) =1 (1, ) # r,5) )
X Xin = VXip XpZeXy = 23X (0 #5) yo4
VT =z X = Xy (J > 1), T = Xy }06
? =1 307
XV Xy = VY X2 Xy = Zzz, (J # 1,5 #)) Y09
VXslls = XXy 25X0125 = XXy }010.

The presentation given has a number of redundancies, which occur
naturally in the course of the proof. We note that the presentation exhibits
S (x(z), Cee, xg) as the semidirect product of the subgroup S +(x(z), e, x2
generated by the ), z; and x,,, by the cycle 7, and that a presentation of
S +(x(2), ey xg) is obtained from the above merely by deleting the gener-

ator 7 and the relations Q6 and Q7.
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3. Proof of theorem 1. To prove Theorem 1, we note that if

g=v(yy ...,y w2y ...,2,)
is any element of Y X Z, then

xX18 = w(Xy, ..., X)X WXy, ..., X,),
where if v(y,,...,y,) = yil... )} then V is the reverse word yi .. i
Since x,gr is x,g with x, replaced by X, it follows that S(x,, ..., x, N K,

consists of those g = vw in Y X Z as above such that, for each i(2 =
i = n), the exponent sum of z,; in w is equal to the exponent sum of y; in v.
This is precisely the kernel of the homomorphism # described in the
theorem, and hence part (a) has been established.

To show that K| (1) is the subgroup H (say) generated by the x,; = yz;
together with the x,; = [J}, ], we note that x; acts on Y just as y, so
that clearly H contains Y’. Now the subgroup generated by the x; and Y’
contains Z’ also. Hence H is a normal subgroup of Y X Z contained
in K, (1), and with the same quotient group as K, (1). It follows that
H = K,(1), proving the first statement in part (b) of the theorem.
The discussion of this paragraph also substantiates the remark that K, (1)
is the semidirect product of Y’ by the x,,.

To prove that K, (1) is not f.p., we may apply the result of Bieri (see e.g.
[3], p- 118) that if N is a f.p. normal subgroup of a finitely generated group
G of cohomological dimension two, then either N is free or N is of finite
index in G. Since K, (1) is clearly not free, and not of finite index in
Y X Z, it is not f.p.

To prove Corollary 1, we exploit the fact that when n = 3 the
homomorphism § splits, with e.g. the subgroup generated by y, and
z4 being a splitting subgroup. Thus we have the standard presentation

Du oy zlyzl=1 Q=46 j=3))

of Y X Z. We now add the generators a,, b;, where a; = y,z, and b, =
¥323, and delete the generators y;, z, to obtain the presentation

<y2, 23, a()a bOr [)’2, Z3] = [Y2, a()] = [23’ b()] = [aO)_/Q’ b()z3] = l>
Now if we define a, = z; "ayz; and b, = y, "byy; then the relation
[apy2, byZ3] = 1

can be rewritten as ayb; = bya,, and conjugation of this by y5z5' yields
a,b,.1 = b,a, . Thus Y X Z has presentation

generators:  y,, z3, a,, b, (ne Z)
relations: [y2, 23] = [y2. a,] = [23,5,] = 1
0,23 = Gy, Vobyys = by

anbm = bm*lan+] )
(n,m € Z).

https://doi.org/10.4153/CJM-1988-047-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-047-4

1148 J. McCOOL

This exhibits Y X Z as the semidirect product of the group H with
generators a,, b, and defining relations a,b,, = b,,_a,+, (n, m € Z),
by the free abelian group on y,, z3. Since ay, by € K;3(1), it is clear that
H = Kj(1). This proves the corollary.

We note that in H we have a, = b, "agb| and b, = a; "bya}. It is not
difficult to show that H can be presented on a, and the b,, by

(ao, bm (m (S Z); aOb'llbmbl_(rH—l)ao — bng*lbO*(nJrl)
(n,m € Z)),

and from this a presentation on the generators ag, b,, b; can be obtained.
The fact that the above presentation is an HNN-extension of the free
group on the b, can be used to give an easy direct proof of the fact that
K;5(1) is not f.p.

4 Proof of theorem 2. It is clear that Ko(l) is contained in the subgroup
S (xz,... 0)ofS(xz,.. x) and that thexj andxlkaremK (1). It
now follows that K° (1) contains the subgroup L of S (x2 R )
generated by the X, Y’ and (therefore) Z'. We show that L is a normal
subgroup of ST(x9, ..., xY). Since S*(xJ, ..., x)) is generated by the x
and y, it is enough to show that L is closed under conjugation by the yji'.
Now the following relations are obtained easily from the indicated
relations of Proposition B:

ijls)_’j" = [}"/, yx]xls (from Q2)

VXV = Xy ifl,j#rs (03)

ij,,)Z- = XX, if j#r (04

VXY, = [ Vslxj ifs#1,j#s (Q9)

Yj 11)9 1%y, (Q10),
and the desired result follows. Thus L is a normal subgroup, and the
corresponding quotient group is obviously free abehan of rank n — 1.
Since this is also the quotient of S+(x2 ey X ) by K (1) it follows that

L = KO(I) and thls proves part (a) of Theorem 2.

To prove that KY (1) is not f.p., we note that the natural homomorphism
from F, to F, | with kernel the normal closure of x, induces a homo-
morphlsm ¥, from Ko(l) to Kn, 1(1), and that each Xy and X, -1s in ker ¥,
as is each X1y and x;, (1 = j = n — 1). Now the remamrng X, and x
generate K —1(1), so that clearly ker ¥, is the normal closure in K0 of the
fmlte set of Xins Xpjpp X1y and xp, (1 = j = =n- 1). Hence it will follow that
K° .(1) 1s not f.p. provided this is true when n = 3. Thus part (b) of the
theorem will follow once we have established part (c).
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We now take the presentation of $¥(xJ, xJ) obtained from the presenta-
tion of Proposition B (with n = 3) by deleting the generator 7 and the
relations Q6 and Q7. To this presentation we add the relations

X31X3] = XppX3p = X3Xp3 = 1

in order to factor out the group /; of inner automorphisms. If we then
eliminate x,;, x;, and X2 usmg the above relations, we obtain the
following presentation of st (xz, x3)/ I;:

generators:  y,, V3, 2, 23, X2, X135 X3

and
relations: [y, z;] = 1, yjz; = xy; 2=iLj=3)
X312X31 = YoX1p X312pX3] = ZpXp
X31Y3X31 = Y3Xi3, X3123X3) = Z3X)3.

Here the first line of relations comes from the first lines of 02 and Q3; the
remaining lines of Q2 and Q3 are superfluous. The second line above
arises from Q4 with i = 3 and s = 2, while the third line arises from Q4
with i = 2,5 = 3, and x,, replaced by X3,. This yields all Q4 relations. The
relations from Q9 and Q10 are easily seen to be superfluous.

We note that the presentation obtained exhibits S*(xJ, xg)/I3 as
an HNN-extension with base Y X Z and stable letter x;,, where
X31V2X31 = Z, and x3,23X3; = Ys; i.e., the ‘associated subgroups’ are the
(free abelian) groups (y,, z3) and (z,, ¥3). In terms of the presentation of
Y X Z on the generating set yz, 23, a,, b, (n € Z) which we obtained in
section 3, we can describe S (x(z), xg)/ 13 as having the following presen-
tation:

generators: y,, z3, a,, b,, X3 (ne 2z
and
relations: {a,, y,] = 1b,, 23] = [yy, 23] = 1
ayby = bpy18, 4
238,23 = Gyips Yobpyy = byyy
Zixy 2y = boxyy, FoXyy = dgxy (n,m € Z).

This exhibits §* (xz, x3)/ I, as the semidirect product of the free product
{x31) * K5(1) by the free abelian group on y,, z;. Thus K3(1)/I3 is the
free product of K;(1) and the cycle generated by x3;, as claimed.

5. Proof of theorem 3. Let us write y; for the element of 4, which maps
x; to x;x; and fixes the other x;’s, and z;; for the element sending x; to X;x;

https://doi.org/10.4153/CJM-1988-047-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-047-4

1150 J. McCOOL

and fixing the remaining x,’s (so that our previous y;, z; are now denoted
by y,;, z;; respectively). We have

a, = z;3"xp213, b, = y" X139

We now define elements c,, d, of Kg(Z), and elements e,, f, of Kg(3) by
¢y = 23"Xp3251,  dy = ¥23' %31 )3

and
e = 233'X312%, Ju = V31" X3V31-

Now bycy = dyey = foag = 1in K3/15, and it follows from Theorem 1 that
K;/15 is a quotient of the group K5 with presentation

generators: a,, b,, ¢,, d,, e, [,
and
relations:  bycy = dyey = foap = 1
anbm = bm—lan+l’ Cndm = dm—lcn+l’
Cufn = Ju—1€n+1 (n,m € Z).

We shall show that K;/1; is a proper quotient of IA(3. For this purpose,
we use the following table

a, bn Co d0 : dl
i a, by b, dyay bod\agh -
e a, b_, < dy cod—1¢o
Y a, b, by dyay d_coagh,

The entries of the table are elements of A4;/I;, where p is the element
taking x, to X, and fixing x, and x5, and 6 = py,,. The entries are obtained
by conjugation of the top elements by the elements at the left; thus, e.g.
Yiad\ V12 = bydiagb_,, pb,p = b_,, etc. We now use the table to compute
Oc_,0 and 04,0. We have

Oc_ 0 = 8dycod,0 = dyayh b a,cod_
= dycyd_| = ¢_,
and
0d,0 = 6(c" dycy)d = " \dyah!
= " dyby "a_

=c"da_,

n n
n = ¢ qdpcoa_,
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Now in K3/1; we have the relation
¢ ddyec_y=d  d (re2Z).
Conjugating by 8 yields
(5.1) c_ja_,dedyage_, = a_,_d, ;@ VA dia_,

We now note that in the quotient of K3(l) by the normal closure H of
the set {a,, by}, we have

b, = aghya) = d}, and a, = bjayh| = b} = a.

Hence K3(1)/H is infinite cyclic, and generated by a,. It is now clear that
adding the relations a; = ¢, = ¢, = 1 to the group K3 yields the free
group on ay, ¢, e;. However, adding the same relations to K;/15 yields, in
view of relation (5.1) above, the relation

— r —r2r o+l —(r+ D) 2(r+ 1) -2 —
ca ¢ ¢ C'] = a ) Cl (8] C]al,
so that
dicic,a; = cjadicl,
ie.,
ror
[C,a,, alCI] =1 (r (S Z)

This establishes the first part of Theorem 3, since by symmetry we will
have the relations

lejcy, ciell = lajey, ejdl] =

in the group K;/N.
To show that the group L of Theorem 3 is not f.p., we consider the
quotient group L, obtained by adding the relation z = 1 to L. We have

L=y [yx, Xy =1 (r e 2)).
If we put w = yx and replace y by wx we obtain

L= {&xww,Xwx)]=1 (r=2)).
Thus [w, xwX] = 1 in L, and then using

s+l s+l s

ST W) 1 = [w, x xXwxt .. xwx]

[w, x

if s = 1, it follows that [w, x’wXx’] = 1 for all s € Z. It is then clear
that

Ly = {(x,w;[w, X’wx’'] =1 (s € Z)).

Thus L, is the restricted wreath product of the infinite cycle on w by the
infinite cycle on x. This group is easily seen to be non f.p.
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6. Proof of the propositions. In this section we shall assume familiarity
with the notation and results of [9] (see also [6]). In [10] we used (the
1mproved versnon of) Theorem 1 of [9] to obtain a presentation of C, =

S(xl, co X ) It is not d1ff1cult to extend the analysis of [10] to obtam a
result for the subgroup S(x,Jr oo ees X ) of 4, consnstmg of those elements
of A4, which fix the conjugacy classes x(,)+,, .. x (where r is an integer

with 0 = r = n). We state this as

ProposiTioN C. S(x(,)Jr e ees xg) has presentation with

generators: the union of

(a) the set Q,, and

(b) those type 2 whitehead automorphisms (A; a) of A, such that for each i
withr + 1 =i = nwehavex, € A — aifandonly if X, € A — a.

And

relations: All relations of type R1-R10 in [8] which involve only the above
generators, together with the multiplication table for the group Q,.

Proof. Let M2 be the complex described in Section 4 of [9] for the tuple

U = x9+ - Then it is easy to see (as in [10] ) that each type 2 edge
of M, is in fact a loop. This observation enables us to construct M, as
follows:

Let M, be the one-point (labelled) complex corresponding to the pre-
sentation in the statement of the proposition, and let P(n) be the one-
point complex corresponding to the multiplication table of {,. Now
take P.(n) to be the covering complex for P(n) corresponding to the
subgroup £, of §,. At each point p of P.(n) there is a (unique) copy of
P(r). Note that M, also contains a (unique) copy of P(r). To each point p
of P(n) we attach a copy of M, identifying the copy of P(r) in M, with
the copy of P(r) at p. The resulting complex, M} say, is a subcomplex of
M, which contains the 1-skeleton of M,. Now M, is a labelled complex; if
we take this same labelling on M), then we obtain M, from M) merely by
adding 2- cells corresponding to all loops of M5 with boundary label the R6
relator T~ '(A4; a)T(AT; aT) ™! of [8] which are not in the attached copies
of M, (noting that the excluded loops already correspond to 2-cells).

From the above construction it is easy to see that 7 (M,, U) = 7 (M)),
as required.

We now specialize the above result to the case r = 1, in order to prove
Proposition B. We note firstly that from part (a) of the generating set we
obtain only the generator 7 of 7,. The generators y, z;, x,, of T, are
included in those supplied by part (b) of the generating set, and if (4; a) is
a generator coming from (b) then (4; a)™" will either be a product (with-
out repetition) of elements of the set x,, ..., x,, or a similar product of
elements of the set Vir Zjp Xajs -+ Xy for some j = 2; moreover, the fact
that this is so will be conveyed by the relations R1 and R2. Thus
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S (xg, . ,xg) is generated by 7 and the y, z;, x,,. We shall present the
group on this set, and in determining the defining relations required we
must therefore suitably modify those provided by Proposition C. We now
examine the list R1-R10 of [8] to do this:

From R2: we obtain the relations Q2. We note that the additional
relations from R1 and R2 merely enable us to eliminate the ‘superfluous’
(A4; a) generators.

From R3: we obtain the relations Q3.

From R4: The general R4 relation may be written

(B— b+ b;b)A;a) =(A + B — b;a)B — b+ b; b)

where A N B=0,b € A,a ¢ B. In our case we must have b = x,il, since

otherwise the condition of (b) of Proposition C is not satisfied. There is no
real loss of generality in taking 4 = x;, Xy, X3,..., %X, X3, ..., X
a=xyand B =X, X 41, ..., X X415, %X, b= X for some s, k with
k < s. Then the R4 relation can be written as

(i=IjI+| xil)(jli sz)yz = h(izlj-gl xiz)(JI:I3 sz)(i=lj£l xn),

and we have to show that this holds in 7. We can delete the term H/’.‘=3 X
from both sides, since the relations of 7, imply that this term commutes
with the others. Now repeated use of the relation

XV = VaXpXi

of T, gives
S N
( I1 xil)y2 =y, II (xpx)
i=k+1 i=k+1

N N
= )’1( IT Xiz)( I1 x,,)
i=k+1 i=k+1

as required (where the last equality is obtained using the relation
(x50, x;] = 1if j #1).

From RS5: no relations arise (since otherwise some (j Z) would belong
to S(xY, ..., x9).

From R6: We obtain Q6.

From R7: We obtain Q7.

From R8: We obtain only consequences of Q2.

From R9: The general R9 relation is

(4; )j(b)(4; @)~ = j(b)
where j(b) is conjugation by the letter b, and b, b € A’. If (4; a)™'is a

product of the Xjs then the deduction on page 1528 of [10] shows that the
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required relation holds in T,. Otherwise we may suppose, with no essential
loss of generality, that (4; @) = ), and that we have to show

n n
s = 1T,

i= i=

i*k i#k

in T, where k # 1, j. Using the relations Q2 and Q3, this reduces to
showing that

VXX = XXk
Now Xy, y,x 1, = Wy in T, so we need
VVVk = XXk

and this is in Q9. _
From R10: The conditions b # a, b € A and b € A’ ensure that
b = xli'. Now the general R10 relation may be written

(4; @)j(b)4; a)~ " = j(b)j(@),

(if the (4’; @) term is rewritten as j(a)(4; a)). There is no real loss of
generality in taking b = x, and a = x,. We then have

(Aa a) = H Xs2

sE€S

for some subset S of 1, 3,..., n, and we have to show, in T, that

n — l n n
—1 _
)’2(H xsZ) H X (H xsz) Ya = H Xr1 H Xp-
seS r=2 seS r=2 t=1
t#2
Now using R9 the terms (I, < ¢ x,,)™" on the left-hand side of this may be
deleted. We then have

n n
)’2(I12 xrl))_’z = X5 X3 1_13 XX,
r= r=

in T, (using Q10 and Q4). Now by repeated use of the relation
[x12%,2, x,1] = 1 and of [x;, x,] = Lif i, j, r, s, are distinct, we can write
the right-hand side of the last relation in the desired form. This concludes
the proof of Proposition B.

Finally we consider the proof of Proposition A. The results of [9] show
easily that S(x,, ..., x,) is generated by 7 and the y, z;. The methods of
[9] can also be used to present the group, but in fact consideration of the
observations in the first paragraph of Section 3 is enough to provide an
easy verification of the proposition.
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