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Abstract

This paper considers a large class of non-stationary random fields which have fractal characteristics and
may exhibit long-range dependence. Its motivation comes from a Lipschitz-Holder-type condition in the
spectral domain.

The paper develops a spectral theory for the random fields, including a spectral decomposition,
a covariance representation and a fractal index. From the covariance representation, the covariance
function and spectral density of these fields are defined. These concepts are useful in multiscaling
analysis of random fields with long-range dependence.

1991 Mathematics subject classification (Amer. Math. Soc.): 60G60, 62M135.

1. Introduction

A random field {X (), ¢ € R"} is said to exhibit long-range dependence (LRD) if its
‘spectral density’ has the form

(1.1) f@) = f@)|™, B>0, weR",

where f,(w) is slowly varying as @ — 0. The spectral density has an integrable
pole at the origin when 8 < 1/2 with the characteristic effect that the covariance
function of X (¢) decays to zero at a very slow rate. The phenomenon of LRD has now
been observed in a large number of different areas including hydrology, geophysics,
agriculture, meteorology, economics and telecommunications. A good perspective on
the occurrence of LRD is given in Hampel (1987). Modelling LRD in a space-time
context is attempted in Haslett and Raftery (1989). A recent survey on statistical
methods for data with LRD is presented in Beran (1992). Central limit theorems for
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2] Spectral analysis of random fields 65

LRD processes and fields are different from the classical theorems, so that standard
results of statistical inference do not hold. Recent works on statistical inference of
random fields with LRD include Heyde and Gay (1993), Anh and Lunney (1995).

With f,(w) equal to a constant in (1.1), the random field is identified as 1/f noise
(or flicker noise) in signal and image processing, where f stands for frequency. 1/f
noise is known to display fractal characteristics (partially meaning that its Haus-
dorff dimension is strictly greater that the topological dimension), and has been used
to model natural phenomena (such as terrain, clouds, water) and texture data (see
Mandelbrot and van Ness (1968), Wornell (1993) and Anh et al. (1994), for example).

For 8 > 1/2 the ‘spectral density’ is not integrable, suggesting that 1/f noise
can have infinite variance; hence it may not be second-order stationary and, as a
result, may not have a spectral density in the usual sense. This is the difficulty noted
in Mandelbrot and van Ness (1968) where an approach was attempted to define a
‘spectral density’ of fractional Brownian motion (fBm). A more precise concept of
spectral density of fBm based on a time-frequency analysis was given in Flandrin
(1989). Solo (1992) presents another approach to define a spectral density for the
larger class of intrinsic random functions of order zero. It should be noted that a
similar approach was given in Anh and Lunney (1991) for asymptotically stationary
random fields (see their Theorem 1).

In this paper, we study the spectral representation and spectral density of a large
class of non-stationary random fields using the tools of generalised harmonic analysis
as developed in Beurling (1964), Henniger (1970), Anh and Lunney (1992). These
random fields may exhibit LRD and have fractal characteristics, hence can be used to
model fractal phenomena. Furthermore, a fractal index can be defined and used in the
role of fractal dimension of these random fields. In order to motivate the consideration
of these random fields, let us briefly recall some concepts relating to fractals.

A random field {X(¢), ¢+ € R"} is said to satisfy a uniform Lipschitz-Holder
condition of order « in a domain D of R” if there exists a constant A such that, for
every t,t + h € D and ||h]| small enough,

(1.2) [X(t+h)—X(@)| < AlR)® a.s.

A class of random fields which satisfy the uniform Lipschitz-Holder condition is that
of index-B Gaussian fields which are characterised by the existence of a number S
such that

Bo=sup{B: o(t) =o(lltl?), lit]l | O}
=inf{B: [Itll® = o(a (1)), liz]l | O}

where the random fields are assumed to have stationary increments and o2(¢) is the
incremental variance o2(t) = E|X (t) — X (0)}2.
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A specific example of an index-B field is the isotropic fractional Brownian field
(fBf), which is characterised by

1
(1.3) EX()X (1) = EC[IISIIM + el — Qs — 1))

fBf is known to be fractal and exhibit LRD. As shown in Adler (1981), p. 204, the
Hausdorff dimension of the graph of an index-8 field is

(1.4) dim(graph(X)) = min{n/8, n+1 — 8}.

To our knowledge, apart from fBf, a spectral analysis has not been attempted for
random fields which satisfy the Lipschitz-Holder condition (1.2) or a subclass such as
that of index-8 fields.

In this paper, we shall give a spectral theory for a large class of random fields which
satisfy a kind of Lipschitz-Holder condition in the spectral domain. Let B,(x) denote
the ball of radius r with centre at x. A positive o -finite Borel measure i on R" is said
to be locally uniformly a-dimensional, 0 < a < n, if

(1.5) w(B.(x)) <Cr°, O<r<1, VxeR"
Strichartz (1990) showed that if u is such a measure, then there exists C; > 0 such
that
(1.6)
timsup —— [ el dg < c, [ixeau  vxeLaw.

For a positive o -finite Borel measure 2 on R” let

1

V(€ ) = =2 fw I (B(x)I dx

and define
oy = inf {a; limsup V, (¢; ) > 0} .

e—~>0
Lau and Wang (1993) showed that a, plays the role of Hausdorff dimension of the
measure /L.
Motivated by the result (1.6), we shall consider random fields which are character-
ised by the condition

1 T, T
—/ / X (1, -, t)%dty, ..., dt, < oo,
-T, ~T;

O<o;<1, j=1,...,n

1.7
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Here, the scaling exponents «; are allowed to be different for each j. This is useful in
practice, where fractal characteristics of the random field may be distinct in different
directions. As will be seen later, these random fields may also display LRD. The class
defined by (1.7) generalises the class & of non-stationary random fields studied in
Anh and Lunney (1992), which corresponds to « = 0. It is noted that, by definition,
the class & contains the class of asymptotically stationary random fields, which in
turn contains the well-known class of harmonizable random fields. Fractal measures
of the form (1.5) and (1.6) were investigated extensively in Lau (1992) and Lau and
Wang (1993). In this paper, we develop a spectral theory for random fields defined by
condition (1.7). In particular, a useful characterisation of these random fields is given
in Section 2. Their spectral representation and fractal index are developed in Section
3. Section 4 gives a definition of the covariance function and spectral density of these
fields. These concepts are useful in multifractal analysis of random fields with LRD.
This application together with empirical results to back up the theory is reported in

Anh and Lunney (1995).
2. Fractional random fields
LetT = (Th,...,T,), e =(€1,...,6),a =(ty,...,a,) With T; > 0,¢; >0,
O<a<l,j=1,...,n Put

CT)={,....t): 151 <T;, j=1,...,n},
Vi) =[T,QT™), V(T =]1_,QT),
1+a;

C(e,a):{(xl,...,x,,):|x,-|§ej , j=1,...,n],
Vl+u(€) = n;=1(261'1+aj)'

We define the class of random fields

By = [X(t) € L. R"); sup

—_— X(@®))Pdr < o0}.
r>0 1 + V1=(T) C(T)l ® }

. 1- .
Since Tj Y < T; for each j, we have

1 1
—_— IXOPdt < ——— X)) dr.
1+ V(T) L(T) ® 14+ Vi=«(T) C(T) X0l

Hence,

@.n By C B,.
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The norm of the class 4, is defined as

1 172
2.2 X =sup| ——— Xt 2dt) .
(2.2) 1X |, r>%’(1+v1—am X

The equivalent of %, for n = 1 is the class of stochastic processes

1 T
B =1X1t)eL? : ——/ X)) dt
p { () e L, R) SUp T _TI (O dt <00

where 0 < o < 1. A characterisation condition for this class is given by the following

THEOREM 1. Let X (t) € L; ((R). Then X (t) € . if and only if

loc

1 , (sinp'ter z
2.3) S(X)= sup [lX(t)[ <_t—) dt < o0.
Y

O

Furthermore, there exist constants k\, k, independent of X such that
(2.4 kil Xz < $YA(X) <kl X || g

PROOF. We follow the method of Henniger (1970). We first note that, by integration
by parts,

1 o0 SiI'l l+at 2
M1+a/ |X(t)|2(—/j*—) dt
1 : o 2
_ ! U |X(z)!2(M) dt
MH-Q 1 t
- * 1 d * 2/a: 14+a ,\2
+ + — = | IX@®PGinp' 1) drdx
—00 1 X dx 0
1 1 . 1+at 2 001 x
=— /;X(z)ﬁ(%) dt+2f —3/ X (6) P (sin w*21)? dedx
uire t 1 X7 J &

1 x 1
+ lim ;/ |X(t)|2(sin,u‘+°‘t)2dt—/ |X(t)|2(sinul+“t)2dt].
x—>00 — -1

(2.5)

Put | X||%, = sup(1 +2T"~*)~" [T |X(t)*dr = M. Then, as
® T>0

I+a

sin !+t 1 /" it
_= e dx,
[Ll+at 2M1+a _

uH—a
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we get (sinu!**)? < (u'**r)?. Hence for 0 < u < 1/2,

1 ! sin !+ \ 2 1\'*
. XOP(———) dr <= M.
2.6) = /_1‘ | ( t ) < (2) 3

Now

Il
e

e I 4 2x1
@7  0<lim— f X (O (sin 02 dr < lim —— M
x—o0 x2 J_,

x—=0 x2

For the last term in (2.5), we have

121
N f *;/ IX (&) (sinu' ) drdx
u +a | X x

1 1t
= i / / f |X (¢)|*(sin ' **t)* dtdx.
“’ @ 1 /ul+u _

For the range 1 < x < 1/u!*, use of the inequality (sinu'**f)? < (u!**t)? for
—x <t < x implies

1 1/u'*e x
(2.8) — f = | 1X@(sinp'*t)* drdx
M 1 X —x
1/l x2(1 +2x1—a)
< p'te / — 1+2 1 a/ X (t)|* dtdx

< ,LLH"‘M/ ( > dx

— M(-—/J,Ha IOg Ml+a _+_ 2 _ 2u1+a)
<M(-BlogB +2)
where B = u!**,0 < B < (1/2)!**. The function — B log B is maximized at 8 = 1/e
and 0 < 1/e < (1/2)'*. Thus (2.8) is bounded above by (2 + 1/e)M. For the range
x > 1/u'** we simply use | sin '**¢] < 1. Then
1

e

f / | X (¢)*(sin " **¢)* dtdx
/uH-a
1 ] 4 2xte 5
< e /Ww = 1+2x1_a f_X|X(t)| dtdx
< M " (i + —2—) dx
,LLH'O’ e x3 x2

<))
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Summarising, we get from (2.5) — (2.9) that S"*(X) < k|| X| s, where, since
4(1/2)** + 8 + 2/e < 11 we may take k, = +/11.

Conversely, assume that (2.3) holds. We want to show that X (1) € %.. Suppose
that for some T

1 &
2.10 S — XMOPdt > B, B>0.
2.10) 1+2T1_af IX@O)Pdt > >

We can assume that Ty > 2. Take 4 = 1/T. Then 0 < & < 1/2 and the last term of
(2.5) is greater than

2To 1 X t
4o 2 inl
(2.11) 2T0 '/;.0 F [X [ X (2)|° sin (m) drdx.

Letc =sup {x: (142737 [7 IX(®)2dr < b < co0}.
Thenc < Ty, ¢/Ty™ < 1/T¢ < 1/2* and the expression (2.11) is greater than

2T
(2.12) T1+°'/ /T X (1)]? sin? (T”") drdx
2T0
> 2T} sin’ T [(f / )|X(z)|2dt]/ i—f

3, / ) 2
= - sin® —— + X()|*drt.
4 Tol_a ToHa (/—r(, ¢ X @l
But

- To T c
(/ +f )lX(t)l?-dt:(f - )lxo),zdt>(B_b)(1+2Tol_a).
-To ¢ 1, i,

Thus, the last expression in (2.12) is greater than (3/2)(B — b) sin?(c/ T, **).
Consequently, if (1 + 27'~)"! f_TT |X (¢)|*dt is unbounded, then S(X) = oo,
contradicting (2.3). Hence X (t) € £..
Now, take p!*® = 1/2**T!=*  Then, for a fixed @, we have in view of (2.3),

S(X) > lim "“"[|X(t)|2 sinpl e\ g 1 /T X () dt
1 _— = _—
- u_)()ll‘ % Ml+at T—00 2(1 1 + 2T1—ﬂ T

Hence we may take k; = 1/+/2 in (2.4).
An extension of Theorem 1 to random fields is
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THEOREM 2. X (t) belongs to B, if and only if

(2.13)
nfsin® )t
S(X) = sup / |X(t1,...,t,,)|2l—[ —%—j dt, ---dt, < 00.
O<u;<1/2, j=1,...n n j=1 [,Lj / th
PROOF. Suppose that X (¢) € %,. Then, as I_[;.'=1(l + 27}1_‘1’) > 14 VI=(T), we
get
1 g 1 h
_Tf ——1/ X, ..., )P dt - -dt,
1427, Jor, 14277 Jog
1
(2.14) < — X @) dr.
1+ Vi-(T) Jeay
This implies that, for j = 1,...,n,
1 T;
(2.15) Sup—-w/ IX(t, ..., )P dt; < oo.
1>0 1+ 2T, 7 J-7,

Therefore, in view of Theorem 1 aboveandfor j = 1,...,n,

. 1+a;
% sin® ;" 't
sup / |X(tl,-~-»tn)|2'_l_;_ﬁdtj
O<p;<1/2 J ~0 J tj
1 & )
(2.16) <k sup———lJ‘/ X, ..., t)|"dt,
5>0 1 4+ 2T, 7 J-1;
for some constant k; independent of X. A recursive argument for j from 1 to n then
yields
nsin® p; T
sup |X(t1,...,tn)lzn-l—Jri_T—dtl---dt,,
O<p;<1/2,j=1.....n JR» =1 ML

1 g 1 /Tl
<k ...kysup——— [ ...SUp ———— X, ... t)dty - dt,
ok o [ [ X

< 00

in view of (2.14) and the assumption X (t) € %,.
Conversely, suppose that for some T, and all -T; <, < T;, i # j,

Ty
(2.17) f X, ..., t)Pdy; > D, D>0.

=T

1427,
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In view of the inequality (1 4+ 2T : /A + 2T1 ¥y > 1721 for T; < 2T;,, we get
from (2.17) that

1 , D
(2.18) —= | |X(t1,... )P dty > o

1+ 2T, 1

for T, < T; < 2T,. Note also that 1 + 2T, ... 2T~ < (1 + 2T} ™™)... (1 +
2T}=). Thus (2.18) implies

1
(2.19) S — | X () dt
1+ VI=«(T) Jer

1 T, 1 T, 5
> P [ X(t, ..., 1)) dt, ...dt,
142 ) 1r2r™ )y

D £ 2T, D
> 21—aj I:—ll 1+2]—}1—a, > 5
i#j

forlarge T;, i = 1,...,n, i # jand T;y <T; < 2T;. As in the proof of Theorem 1,
the inequality (2.17) yields that

1+¢¥jt

% sin? u; 3
2 . 2
sup /: IX(ty, ... ut)] ————Hofjtz diy; > E(D —d)sin® ———,

1 .
O<p<s o j Jo

where
1 X
C=supyx: —ﬁ/ X, ..., t)fdy <d < o0
1+2Tjo P
Consequently,
sin® i "¢
su Xt,.. t 2 J dt"'dt,,
0<u,»<1/2,pj=1 / X (0 )l l—[ 1+a, 12 1
2.20 3 010D _ d) sin?
(2.20) > 57 (D —d)sin® ——,

Jo

where we have used the result that [ sin® x /x> dx = /2. In view of (2.17), (2.19)
and (2.20), it is seen that if (2.17) holds for all D > 0, then S(X) = oo, contradicting
(2.13). Hence X (¢) must belong to 2, if (2.13) is assumed.
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3. Spectral representation and fractal index

In this section, we obtain a spectral representation and a characterisation of the
spectral measure of fractional random fields in the class %,.
We first consider

W ={w:R" - R; w() > 0 non-increasing in |¢{,
f w(t)dt < oo and w(0) = lirroxw(t) < oc}.
R t—
Define the norm in W as

3.1 N(w) = w(0) +/ w(t)dt,

R

and consider Wy, = {w € W : N(w) = 1}. We next define

LY (w(t)dt) = {X R > C :/ X () |w(t)dt < oo},
)‘n

B ={\,ew, L2(w(t) dt),

12
(3.2) | X|lz = sup (f IX(I)Izw(t)dt> .
weW, p. U
Then B is a Banach space in the norm (3.2) (see Beurling (1964), Theorem 1). We
further define
A= Uwe% L2(dt/w(t)),
1/2
(3.3) | Xta = inf (/ IX(t)Izdt/W(t)) .
wEW() p- U

Then A is a Banach algebra under addition and convolution with the norm (3.3) and
1X, * Xolla < 1 X1llallX2]l4 (see Beurling (1964), Theorem 1).

An important result of Beurling (1964) that we require is the following.

THEOREM (Beurling). (i) B, = B = A*, where A* is the dual of A in the
Banach space sense;

(ii) each linear functional X on A has the form X (p) = fw (p(t)m dt for a
unique Y in B and

[ X1las = sup

llella=1

(see Beurling (1964), Theorem 2).

=|Ylls

f ()Y (1) dt
Rn
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From Beurling’s Theorem, it is seen that, for X € %,, X € L*(dt/(1 + |¢t|"*")) since
1/(1+ [t*1) € W. Also, [, € dx = O(|t|-+72),

Thus, for large |¢],
/ e dx
Cle.)

/ 1X (@)
R

for some constant c; that is,

z dt
dt <c |X(t)|2— < 00
- L+ [e*!

X@) e dx e L2 (dy).

C(e,a)

Its Fourier transform is then

1 / . .
X(t) ( / et dx) et dr.
2r)" Jxe Cle.a)

The quantity Z, .(}) is called the generalised Fourier transform of X (). We now put

1 /‘ )
(t,x)
e dx.
V]-me Cle,a)

(3.4) Zead) =

(3.5 X.(t) = X(1)

Then, for a fixed €,

(3.6)

Ze,a(k) _ 1 it
Vitee) — (ny /1;.. X.()e'" dt.

Let ¢ € A. Then Parseval’s identity implies that, for € # 0,
niay Zea(A)
DX (t)dt = A . dai,
fﬂw() ) fwm e

where ¢ is the Fourier transform of ¢. It is clear that || X, || g, < || X|| &, so that {X.}
is a bounded set in %&,. Also X, — X in L>(C(T)) foreach T > 0 as ¢ — 0 since

1

lim
>0 VI (€) Jerew

&N dx = 1.

Thus, an extension of Theorem 2.1 of Henniger (1970) to R" yields X, — X in the
weak-star topology of %,. Consequently, Beurling’s theorem implies that

/ p(OX()dt > X(9)

and

Zea(A)
VY i+e (6)

(3.7 X@) =lim= f $(\) dx = / P(AZ(d).
e—>0 R Ar
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Equation (3.7) defines the Fourier transform Xof X € B, ltis represented by the
measure Z(dA) generated by the generalised Fourier transform Z, , of X..
For the representation of X € 4,, we note that by Plancherel’s theorem,

Zea()') —i(t A
X =/ 2 e g,
( e V1Te(€)

As seen above, X, — X in %,. It is not true in general that this limit is in 4,. We
now want to find the condition under which X € 4,. Then

\)
3.8 X@) = 2 e M g,
(3.8) (1) = LO/N Vi)
that is,
(3.9) X(t) = f e N Z(d)),

which gives the spectral representation of X (t) € %4,. The condition for X to belong
to 2, is given by the following

THEOREM 3. The measure Z(dL) of (3.7) and (3.8) is the spectral measure of
X(t) € B, ifand only if Z. ,(}) is locally in L*(dA) and satisfies

1 2
(310) sup _‘/_1-*‘7(5_) j);" |Ze,a(}")| d\ < 00.

O<e;<1/2, j=1,...,n

PROOF. Since Z, ,(})/ V'™ (¢) is the Fourier transform of X.(t), we get

" Zea) |
(2n)"f | X (| dt = f

Vl+a(€)
Noting that f_‘:ﬂ e"'* dx = 2sine'*t/t, Equation (3.11) can be rewritten as

3.11

sin? e l"Lc"t 1
(3.12) —/ X.()? ———dts /IZe,a(k)lsz-
| | Jl:! Jl+ot tjz V1+a(€) R

Taking ¢, = pu;, j = 1,...,n, the condition (3.10) now follows directly from
Theorem 2.

Conversely, suppose that Z,, is a field locally in L2(dA) and satisfies (3.10).
Then, using Plancherel’s theorem, we can define a function X (¢, €) such that X (¢, €)
is locally in L*(dt) and X (1, €) [, €“" dx is the inverse Fourier transform of
Z..(2), that is,

I+

1 n exej 4 _ e ;5 +"l,} -
(313) Ze.a()\) = lim f - X(t, e)ex(t,k) dt.
(2”)” Tox folen) 11:! lt}
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We now want to show that X (¢, €) = f;, e7"“*Z(du) as ¢ — 0. In fact, put

n ei(A,-+e;+aj o ei(x,—ej”"f % .
(3.14) g(T) = / I : ( / e_’(’“‘)Z(du)) dr.
) =l 1 R

Then

n ei(Aj+e;ﬂj —upy ei(xj—e/'+°’+u,)r,
g(T) = / / [1 : dtZ(du) (Fubini)
nJe) =1 1

=2”f h(u,T)Z(du), where

I+o;

norT sin(h; 4+ e —ut —sin(h; — e T —u)t;
h(u, T) = n/ ( (* J DL oy j L d;.
j=1+0

5

If we denote by C the cube

1+a; 1+ .
[u:(ul,...,u,,).—ej ’+Aj<uj<ej ’+Aj,j=1,...,n},

then g(T) = 2" (f. + foc + [o) h(u, TYZ(du) = 2"(I, + I + I5), where C° is the
complement of the closure of C and dC is the boundary of C. Since C is a continuity

set of Z(u), I, = 0. Also, for u € C, we have for each j A, + ejlm’ —u; > 0and

1+a;
Aj—¢€ " —u; <0. Thus

lim
7,—-0 0 tj

T (sin(Aj +&" —up)ty —sin(h; — ¢, — u,-)t,) T (—n) .
i — =

~ . . 1 .
For u > C, there exists some j such that u; > A; + ¢; ™ or some i such that

%, The former inequality is equivalent to A; + ejl+a, —u; < 0, which
implies A; — ejHa’ — u; < 0, and therefore,

ui<)\.,'_6

lim
tj-)O

2

iy

T ((sin(y + € —wy; —sinGy — €77 —u)yy n (-7
dtj = = 0
0

1+a;
i

—u; > 0, whichimplies A; +€/ 7 —u; >

{

The latter inequality is equivalentto A; —¢
0, and therefore

T . 1+a; . 1+«
' Aj L A — €7 — U
i / (sm( + ¢ u;) sin( € u;) ) dt 72t 7; 0.
0

T,—0 t;
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Summarising, we have

n*, uedC,

lim h(u, T) = _
T—oo 0, u>C.

Consequently, in view of the dominated convergence theorem, we get
lim 1, =f (Jim h@. T)) Z@du) =0,
T—>o00 ce Tox

fm Iy = /c (Tlggoh(u, T)) Z(du)
=" (ZO0+ €™ ) = Z00 — €y — ™)

so that

(3.15)

- 1 140 1+a, Hay 1+a,
T!ngomg(T)_Z()\‘l+el ,...,)\.,,+En )_Z()‘-l_el ,...,A.n €, )

By the definition of Stieltjes integrals, we can write

(3.16)
i e ZOa €T L A e — Z( g — €T, Ay — 64T "
521(1) n € 2€1+a‘ e 261+a,,
1 n

= / e N Z(dh).
Xn

But the right-hand side of (3.16) is equal to lim._,o [, e "“PZ ,(1)/ V'**(€) dA by
(3.8) and (3.9). Thus, as € — 0,

ZOg+ €™ A ety —Z0y — €T, A, — €)= Z, ().

This result and (3.15) yields

1 li
3.17) Jim o

In view of (3.13), (3.14) and (3.17), we get, as € — 0,

g(T) = Ze,a ()")

(3.18) X(t,e)= / e ' Z(du).
Denoting the right-hand side of (3.18) by X (¢), Plancherel’s theorem then implies
1 n 4sine TVt
ZeaW)PdA = xXOPT| ———La,
/};nl <) (2”),,/N| o[
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that is,
.2 1+(!J ¢

1 1 n Sin‘ €. i
ZeaWPdr=— | 1X@P]]——21
Vite(e) .L Zea) " /xn X l_[ €12

j=1 J

Condition (3.10) then yields that X () € 4, in view of Theorem 2.

Throughout this paper, inequality on R"” means componentwise inequality; that is,
forx = (x;,.... %), y=(1,-.., ) €R",

x < y (respectively x > y) ifandonlyif x; < y; (respectively x; > y;),
i=1,...,n

In view of Theorem 3, let
o’ =@, ...,a" =sup {(al, e O) llmsup V1+a( ) / |Zea W) dA < 00]
= inf{(al,.. ,0p) llmsup Virage )/ |ZeaWPdr > O}

It follows that, if a® exists, then it can be defined as the fractal index of X (¢). In the
one-dimensional case, this number corresponds to the Hausdorff dimension of X (¢)
and it has been found useful in studying the multiscaling behaviour of LRD time series
in Anh and Lunney (1994).

4. Spectral density of fractional random fields

Section 3 defines the spectral measure Z(dX) of a random field X (¢) in 98, and
establishes its spectral decomposition. This section will give a definition of the
covariance function and spectral density of X (¢) € %,. For this purpose, we assume
that

i —
“.1) lim — X+ k)X(@t)dt existsfork e R".
T>oo VI=¢(T) Je(r)

Denote this limit by R(k). Then it will be shown below that

1 .
T —ik.3) 2
4.2) Rk) = Zl—{% V(o) ‘/); e |Zeo(A)|"dA.

Consequently, R(k) can be defined as the covariance function and lim,_¢ | Z, ,(A)]?/
V() the spectral density of X (t) € %,. We shall require
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WIENER’S TAUBERIAN THEOREM Suppose that ¢ € l:°°(){"), f € L'@&",
f Q) # 0 for every A € R* and limy,_,oo(f * ¥)(t) = af(0). Then limy_, (g *
¥)(t) = ag(0) for every g € L'R").

PROOF. See Rudin (1973), pp. 211-212.

THEOREM 4. For X (t) € 9B, under condition (4.1),

4.3) lim

1
X(¢ 2dt=l'm——/ Z. o) dA.
A T le ) el—>0V1+°‘(6) NI paes]

PROOF. Let ¢ € L®R"). Putt; = ¢4, Ty =eV, ¢, =e™™, j=1,...,n,and
define ¢(t) = ¢ (§), t,& € R". Then

1 T, '
e e | £)dt, .. .dt,
Tll—aq . Tnl—a,, /(; ‘/(; (0( ) 1
- / = f " g0y ) g5, d,
sin® € ey
( ) / / (t)< l+a 2 )dtl d
2 Slnz(eEJ 7!,(1+a,))
/ / ( eE,-n,(l+u, Y(e)dg .. E

We next define

)
fEO =[] -ebsin’e™), &= ....6) e,

j=1
e—(51+~..+§'n)’ 0< gj < 00, ] — 1’ e, n,

0, otherwise.

g(£)=[
Then,
~ [*2 222 [ sin?x;
— T b cin2(o—6 - = J =
/x"f@ds—jg/_wne sin’(e™) d; I:!nfo o dn =1
dt¢ = 6 dg; = 1.
[ s@ras E»/O e dt,
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Also,

4.4

1+,
i Sm € t d
Gj—’ovlglv---,n ‘p(t) 1+a 2 t

= lim fxf(m(1+0!1)—€1,--~,nn(1+an)—‘s’n)¢(§h---,‘s”,.)d&---d&.

n;—=o0, j=1,..n

4.5)

lim L, ..., t)dt...dt
Tj—>o00, j=1,..n Tl—a‘ .. 1 a,/ / (l n) !

=}ir§°/}‘ gm —o) =&, ..., — o) —E)V(&, ..., &) dEr ... dE,.

As shown by Wiener (1958), pp. 142-143, for each j = 1,...,n, (2/m)exp(§;)
sin® exp(—§;) € L'(R) and its Fourier transform does not vanish on R. Thus, f €
L'R") and f (A) # 0, A € R*. Consequently, the two limits in (4.4) and (4.5)
assume the same value, if they exist, by Wiener’s Tauberian theorem. By choosing
@(t) = | X (¢)|?, we then get

1 1 " sinte,
“4.6) lim — X ()|*dt = lim -—f X (@) ——i dt.
T VI=(T) Jery 0" S ,1:! & 1

Equality (4.3) now follows from (3.12) and (4.6).

REMARK 1. The spherical form of (4.3) was obtained in Lau (1992), Theorem 3.1,
where the integral with respect to ¢ is taken over the ball of radius 7 and centre 0.
The result is therefore more suitable to isotropic random fields with uniform fractal
characteristics in all directions. The method of proof is inevitably different from the
method of this paper.

THEOREM 5. Let X (t) € B, and R(k) be defined by condition (4.1). Then R (k)
has the representation (4.2).

PROOF. The proof follows the same lines of that of Theorem 2 of Anh and Lunney
(1992). We give an outline here. R(k) can be rewritten as

1, 1 2 _ X
@D R =7 lim o | XD+ XOP =~ X +0) = X )]

+i X+ +iXOPF =il X +k) —iX(@)]dt.
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Denote the generalised Fourier transform of X (¢ + &) by Z, ,(A; k). Then

1 2sine; ™,
Zeolhi k) = f Xt +k ——-—-———e”f*f dt
hik) = 7 E( .
2sing; e (t; — k)
Q) 9N Y dr.
(2 )" ./n II;I( t—k;

Plancherel’s theorem now yields
|Zea(hi k) — e Z, (1 O
Rr/

n SR k e\ 2
_ _Lf IX(f)|2n sing; " (f; — &) _sing; 7y ar
" o =1 tj - kj tj

4.3) =0 (.. 20ty

n

Using the equality (4.3) and Minkowski’s inequality, we get

1 1/2
lim ————— X¢+k+4+:zX t)zdt)
(hm Vi (T) Cm{ ( )

— 3 1 . . 2 2 —_
= (ygg} TETE L NZeo i ) + 22,035 O) dx) L k=1

1/2
/ 1Zea(Rs k) — eV Z, (A O) dl)

(. 1
< ( lim
0 Vita(e)
1/2
+(1 / Iz 4+ e * VP Z (A 0)1%&)
e~»0 VH—a( ) N

4.9 = lim (

bl
<

1
VH'“(E) R

-0

1/
(24 ze“Y + 2e7 V) | Z, o (1 D) d)\)

in view of (4.8). Taking z = 1, —1,i, —i successively in (4.9) and substituting the
four values in (4.7) yields (4.2) as required.

REMARK 2. From the representation (4.2), the spectral density of the fields X (f) €
9B, satisfying condition (4.1) has the form

. 1 [Ze o)
A)=1 :
F® Pt € - 6" 26, - -+ 26,
= lim aﬂf*(A) >0 0<a,<1, j=1,...,n

606
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82 V. V. Anh and K. E. Lunney [19]

We may consider €; ~ X;, j = 1,...,n. Then, for f,(1) slowly varying as A | O,
f(A) may be considered as the spectral density of a LRD random field as defined in
(1.1).

As specified in the proof of Theorem 4, we may take ¢; = 1/T;, j = 1,...,n.
Then the periodogram of the random field may be taken as

n T(1-+-aj

1 1 sin sin; 74\
(271-)" T1+(X| . T1+an n—n /" ( )l_l '—(1+Of} € “h dt *
1

]
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