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We analyse the collisionless tearing mode instability of a current sheet with a strong
shear flow across the layer. The growth rate decreases with increasing shear flow, and
is completely stabilised as the shear flow becomes Alfvénic. We also show that, in the
presence of strong flow shear, the tearing mode growth rate decreases with increasing
background ion-to-electron temperature ratio, the opposite behaviour to the tearing mode
without flow shear. We find that even a relatively small flow shear is enough to dramati-
cally alter the scaling behaviour of the mode, because the growth rate is small compared
with the shear flow across the ion scales (but large compared with shear flow across the
electron scales). Our results may explain the relative absence of reconnection events in
the near-Sun Alfvénic solar wind observed recently by NASA’s Parker Solar Probe.

Keywords: plasma instabilities, space plasma physics

1. Introduction

Magnetic reconnection is a fundamental plasma physics process, involving a
topological rearrangement of the magnetic field, and accompanied by the conver-
sion of magnetic energy into bulk plasma flow and heat. Reconnection occurs in
a wide range of contexts, for example solar flares (Yan et al. 2022), at plane-
tary magnetopauses (Paschmann, Øieroset & Phan 2013), in magnetic confinement
fusion devices (Kadomtsev 1975; Zanini et al. 2020) and other laboratory plasmas
(Ji et al. 2023) and in current sheets ubiquitous in many space and astrophysical
environments (Eriksson et al. 2022, 2024).

Here, we are specifically motivated by observations of current sheets in the near-
Sun solar wind, currently being explored in situ for the first time by NASA’s
Parker Solar Probe (PSP) spacecraft. While such sheets are observed essentially
ubiquitously (Vasko et al. 2022; Lotekar et al. 2022), only a small fraction actually
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reconnect (Eriksson et al. 2022). In the Alfvénic solar wind (D’Amicis & Bruno
2015; D’Amicis et al. 2021), the fluctuations are close to Alfvén waves propagating
away from the Sun, with velocity fluctuations δu ≈ ±δb, δb = δB/

√
4πnimi being

the magnetic field fluctuation in velocity units. An even more pronounced absence
of reconnection events has been observed in this type of solar wind (Phan et al.
2020; Fargette et al. 2023; Eriksson et al. 2024), suggesting that the quasi-Alfvénic
velocity shear accompanying the magnetic shear across current sheets suppresses
the onset of reconnection, as observed in steady-state nonlinear reconnection simu-
lations (Cassak 2011). Here, we develop a linear theory to describe the suppression
of reconnection onset by such a flow shear.

Many numerical studies of reconnection begin with a kinetic-scale current sheet:
for example, the GEM reconnection challenge problem (Birn et al. 2001) has a
current sheet with a width comparable to di = c/ωpi, where ωpi = (4πniZ2e2/mi)1/2

is the ion plasma frequency, with Z = qi/e. With this set-up, reconnection proceeds
rapidly from the outset. However, in many of the natural systems mentioned above,
reconnection occurs as part of a bursty, two-time-scale process: first a long, quiescent
phase in which magnetic energy builds up in thinning current sheets, followed by an
extremely rapid disruption as reconnection occurs.

Recently, new models of reconnection onset that explain this property have been
developed (Pucci & Velli 2014; Uzdensky & Loureiro 2016; Tolman, Loureiro &
Uzdensky 2018). On large scales, ideal dynamics leads to the progressive ‘thin-
ning’ of the current sheet width a, for example via the Chapman–Kendall collapse
(Chapman & Kendall 1963), on a characteristic (ideal) time scale T (a). This can be
compared with the growth rate of the tearing mode (the linear stage of reconnection),
γ (a): only when γ (a)T (a) � 1 will reconnection onset occur: at which point, the ideal
dynamics is disrupted and the current sheet is usually destroyed. This model has also
been applied to turbulence, where T can be identified as the nonlinear time scale
Tnl , whose scaling depends on the details of the turbulence (Mallet et al. 2017a,b;
Loureiro & Boldyrev 2017a,b; Comisso et al. 2018).

To apply this model to the highly sheared current sheets observed by PSP, we
need to understand the scalings of both γ and T in the presence of strong flow
shear, neither of which are currently well understood. Here, we focus on the former
problem, and develop a new analytic theory for the collisionless tearing mode with
significant flow shear, δu ∼ δb = δB/

√
4πnimi, determining the growth rate γ as a

function of the physical parameters. We find that flow shear strongly suppresses the
tearing instability, with the growth rate proportional to 1 − α2, where α = δu/δb: as
α → 1, corresponding to Alfvénic flow shear, the growth rate of the tearing mode
vanishes (for α > 1, we would have instead the ideal Kelvin–Helmholtz instability,
whose growth rate is proportional to

√
α2 − 1: we will not comment further on

this instability here). Finally, we discuss how our results might apply to the PSP
observations.

1.1. Tearing mode without shear flow
To compare with the new results we will find in our calculation, we first present an

overview of the collisionless tearing mode scalings without equilibrium flow shear.
1

1Specifically, the scalings at low β with a strong guide field: these can be found from (2.13)–(2.15) without the
flow shear terms, i.e. with α = 0. A clear and concise derivation, along with references to previous works, is given
by Zocco & Schekochihin 2011.
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We assume that the current sheet normal is in the x̂ direction, with reconnecting
field vAy = δb = δB/

√
4πn0imi, the wavenumber k of the tearing mode both in the ŷ

direction and a strong constant guide field B0 � δB pointing in the ẑ direction. The
growth rate is given by

γ0a
vAy

∼
{

k�′deρs
√

1 + τ/Z, �′δin � 1

kd1/3
e ρ

2/3
s

√
1 + τ/Z, �′δin � 1,

(1.1)

where ρs = √
ZT0e/mi/�i is the ion sound radius and de = c/ωpe is the electron iner-

tial length, with Z = qi/e, τ = T0i/T0e, ωpe = (4πn0ee2/me)1/2 the electron plasma
frequency and �i = ZeB0/mic the ion gyrofrequency (Zocco & Schekochihin 2011).
Here, �′ is a measure of the ideal discontinuity (see § 3 for details), with �′ > 0
required for instability, while δin � a is the inner layer width over which the micro-
physics becomes important. The explicit form of δin depends on the regime, but is
not needed here. We refer the reader to Zocco & Schekochihin (2011) for further
details. The parameter �′ depends on k in a way that depends on the specific equi-
librium profile (Boldyrev & Loureiro 2018): for ka � 1, we have �′a ∝ (ka)−n with
n = 1 for a Harris-type equilibrium (Harris 1962) with f (x/a) = tanh (x/a) and n = 2
for f (x/a) = sin (x/a). For �′δin � 1, the growth rate γ0 decreases with k, while at
�′δin � 1, γ0 increases with k. The maximum growth rate and wavenumber at which
it is attained may be found by equating the two expressions in (1.1)

γ0tra
vAy

∼ d1/3+2/(3n)
e ρ2/3+1/(3n)

s

√
1 + τ/Z

a1+1/n , k0tra ∼ d2/(3n)
e ρ1/(3n)

s

a1/n . (1.2)

For n = 1 the growth rate in the �′δin � 1 case does not depend on k, and so
the growth rate is the same for all k > k0tr: for n = 2 this is not the case. In the
calculation that follows, we will find that these scalings are strongly affected by the
presence of even relatively modest flow shear.

2. Equations

We will use the kinetic reduced electron heating model (KREHM) equations
(Zocco & Schekochihin 2011), in the collisionless limit. These equations are derived
from gyrokinetics (and thus assume low-frequency fluctuations ω � �i and a strong
guide field, δB/B0 � 1) in the limit of small βe = 8πn0eT0e/B2

0, and, assuming no
variations in the ẑ direction, may be written

d
dt

(1 − �̂0)Φ = −1

2
ρ2

i

{
Ψ, ∇2⊥Ψ

}
, (2.1)

d
dt

(Ψ − d2
e ∇2⊥Ψ ) =

{
Ψ,

Z
τ

(1 − �̂0)Φ − c
eB0

δT‖e

}
, (2.2)

dge

dt
+ v‖

vA

{
Ψ, ge − δT‖e

T0e
F0e

}
= − 1

�i

(
1 − 2v2‖

v2
the

)
F0e

{
Ψ, ∇2⊥Ψ

}
. (2.3)

where the Poisson bracket is {f , g} = ẑ · (∇⊥ f × ∇⊥g), and the ion gyroradius is
ρi = vthi/�i, with vthi = √

2T0i/mi the ion thermal speed . Here, B0 is again the
(strong) guide magnetic field in the out-of-plane ẑ direction, F0e is the equilibrium
Maxwellian electron distribution function, and

d
dt

= ∂

∂t
+ {Φ, . . .} . (2.4)
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The equations have been written in different variables to Zocco & Schekochihin
(2011)

Φ = c
B0

φ, Ψ = − A‖√
4πmin0i

, (2.5)

chosen to be notationally similar to reduced magnetohydrodynamics (RMHD): φ
is the electric potential and A‖ is the parallel magnetic vector potential, while the
perpendicular (to ẑ) magnetic field (in velocity units) is b⊥ = ẑ × ∇⊥Ψ and the E × B
velocity is uE×B = ẑ × ∇⊥Φ. The operator �̂0 is the inverse Fourier transform of

�0(k2⊥ρ2
i /2) = I0(k2⊥ρ2

i /2)e−k2⊥ρ2
i /2, (2.6)

where I0 is the modified Bessel function: at large and small scales, we have

1 − �̂0 ≈
{

−ρ2
i

2 ∇2⊥, ρ2
i ∇2⊥ � 1

1, ρ2
i ∇2⊥ � 1.

(2.7)

In (2.1) we have already substituted

δne

n0e
= − 2

ρ2
i �i

(1 − �̂0)Φ = δni

n0i
, (2.8)

for the density fluctuations. Equation (2.3) evolves the reduced parallel electron dis-
tribution function ge, defined in terms of the perturbed parallel electron distribution
function δfe as

ge = δfe −
[

δne

n0e
+ 2v‖u‖e

v2
the

]
F0e. (2.9)

The parallel electron temperature fluctuation is given by the second moment of ge

δT‖e

T0e
= 1

n0e

∫
d3v

2v2‖
v2
the

ge. (2.10)

The KREHM is designed to be a set of equations appropriate for studying
reconnection: the equations contain a rigorous treatment of electron heating via
the electron kinetic equation (2.3), the dispersion at the ion scales (ρi and ρs =
ρi

√
Z/2τ ), important for achieving fast reconnection (Shay et al. 2001) and also the

flux unfreezing at the electron inertial-scale de. This model cannot be expected to
apply to all the current sheets observed in the solar wind: in particular, the assump-
tions that β � 1 and δB/B0 � 1 are often not satisfied, nor do we attempt to model
sheared parallel flow or density gradients across the current sheet. However, it will
allow us to make progress in understanding reconnection onset in the near-Sun solar
wind.

2.1. Equilibrium and linearised equations
Our chosen equilibrium is

Φ0 = αΨ0, b0y = vAyf (x/a) = ∂xΨ0, (2.11)

where we will be especially interested in the case where the shear flow in the ŷ
direction is comparable to the reconnecting magnetic field, α ∼ 1. As in § 1.1, we
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have the current sheet normal in the x̂ direction and both the reconnecting field
and wavenumber in the ŷ direction. We also assume that the equilibrium length
scale is large compared with ion and electron scales, a � ρi ∼ ρs � de. We have also
implicitly assumed that u0y, b0y � vA, so we are limited to guide-field reconnection.
Relaxing this assumption is not possible with the KREHM equations, which assume
that there are no flows on the same level as the background (guide) magnetic field
B0. Linearising (2.1)–(2.3) and assuming fluctuations of the form

δΦ = Φ(x) exp (iky + γ t), δΨ = Ψ (x) exp (iky + γ t), (2.12)

and that k−1 � ρi, de, we obtain

(γ + iαkvAyf )(1 − �̂0)Φ + 1

2
iαkvAyρ

2
i f ′′Φ = −1

2
ikvAyf ρ2

i

[
Ψ ′′ − k2Ψ − f ′′

f
Ψ

]
,

(2.13)

(γ + iαkvAyf )(Ψ − d2
eΨ

′′) = ikvAyf
[(

1 + Z
τ

(1 − �̂0)

)
Φ − c

eB0
δT‖e

]
, (2.14)

(γ + iαkvAyf )ge + ikvAyf
v‖
vA

(
ge − δT‖e

T0e
F0e

)
=

− 1

�i
ikvAyf

(
1 − 2v2‖

v2
the

)
F0e

[
Ψ ′′ − k2Ψ − f ′′

f
Ψ

]
.

(2.15)

We first solve the linearised kinetic equation (2.15) for ge, integrating according
to (2.10) to find

δT‖e

T0e
= − 2

�i

vA

vthe

Z(ζ ) + ζZ′(ζ )

Z′(ζ )

(
Ψ ′′ − k2Ψ − f ′′

f
Ψ

)
, (2.16)

where

ζ =
[

iγ
kvAyf

− α

]
vA

vthe
, (2.17)

and Z(ζ ) is the plasma dispersion function, with Z′(ζ ) = −2(1 + ζZ(ζ )). Using
(2.13),

c
eB0

δT‖e = −(G − 1)
Z
τ

(1 − �̂0)Φ, (2.18)

where we have dropped a term since ρ2
s f ′′/f � 1, and

G = 2

(
ζ 2 − 1

Z′(ζ )

)
. (2.19)

For ζ → ∞, G → 3 (adiabatic electrons), while as ζ → 0, G → 1 (isothermal
electrons). Inserting (2.18) into (2.14), we obtain

(γ + iαkvAyf )(Ψ − d2
e Ψ ′′) = ikvAyf

[(
1 + G

Z
τ

(1 − �̂0)

)
Φ

]
. (2.20)

We will solve (2.13) and (2.20) in the ‘outer region’ x ∼ a and in the ‘inner region’
close to x = 0. Compared with the resistive magnetohydrodynamics (MHD) case
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(Chen & Morrison 1989), the main differences are, first, that we have the electron
inertia term involving de allowing reconnection instead of resistivity, and second,
the terms involving 1 − �̂0 which encode the ion-scale behaviour. Since there are
two microscales in the problem, ρs (or ρi) and de � ρs, there will be nested ion
and electron boundary layers. Because γ is real, the real and imaginary parts of the
eigenmodes will be even and odd respectively around x = 0, and it will turn out that
the imaginary part is small compared with the real part.

3. Outer region

Here, x ∼ a ∼ (f ′/f )−1 ∼ k−1 � ρs, de. On these scales

1 − �̂0 ≈ −1

2
ρ2

i ∇2⊥ � 1, (3.1)

so it may be neglected in (2.20) (but not in 2.13, where all the terms are at least this
small). Assuming γ � kvAy, we may also neglect the growth terms. (2.20) becomes

Φ = αΨ, (3.2)

and inserting this into (2.13), we obtain

(1 − α2)f [Ψ ′′ − k2Ψ − ( f ′′/f )Ψ ] = 0, (3.3)

so that the outer solution for Ψ is the same as in the MHD tearing mode. As x → 0,
∂x � k and f ≈ x/a, and of the outer equation all we are left with is Ψ ′′ = 0, whence
the real and imaginary parts are

varPsiR → Ψ∞R

(
1 + 1

2
�′|x|

)
, x → 0,

ΨI → Ψ∞I

(
1

2
�′x ± 1

)
, x → 0, (3.4)

defining �′ = [Ψ ′]+0
−0/Ψ (0), the discontinuity in the outer solution’s magnetic field.

4. Inner region

In the inner region, of width δin � a, the ion- and electron-scale effects become
important. Here, x � a, f ≈ x/a and ∂2/∂x2 � k2, f ′′/f . Defining

δ = γ a
kvAy

, (4.1)

we obtain the inner region equations

(δ + iαx) (1 − �̂0)Φ = −1

2
ixρ2

i Ψ ′′, (4.2)

(δ + iαx) (Ψ − d2
eΨ

′′) = ix
[
Φ + G

Z
τ

(1 − �̂0)Φ

]
. (4.3)

We need to deal with the non-local operator 1 − �̂0: substituting (4.2) into (4.3) we
obtain

(δ + iαx) (Ψ − d2
eΨ

′′) = ixΦ + x2Gρ2
s

Ψ ′′

δ + iαx
, (4.4)
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but we still need to calculate 1 − �̂0 to solve (4.2) itself. One simplification is to take
cold ions: as ρ2

i ∂2
x → 0, 1 − �̂0 → −(1/2)ρ2

i ∂2
x and we recover a MHD-like version

of (4.2). Instead, following Pegoraro & Schep (1986) and more recently Zocco &
Schekochihin (2011), we incorporate the hot-ion response (non-rigorously) by using
the Padé approximant

1 − �̂0 ≈ −(1/2)ρ2
i ∂2

x

1 − (1/2)ρ2
i ∂2

x
. (4.5)

Then, (4.2) becomes

Φ ′′ = ixΨ ′′

δ + iαx
− 1

2
iρ2

i

(
xΨ ′′

δ + iαx

)′′
. (4.6)

We now rescale our equations by the inner length scale δin, to be determined later:
writing

ξ = x
δin

, λ = δ

δin
, ε = de

ρs
� 1, (4.7)

and with ′ now denoting differentiation by ξ , (4.6) and (4.4) become

Φ ′′ = iξΨ ′′

λ + iαξ
− 1

2
i
ρ2

i

δ2
in

(
ξΨ ′′

λ + iαξ

)′′
, (4.8)

(λ + iαξ )Ψ − iξΦ = ρ2
s

δ2
in

[
Gξ2 + (λ + iαξ )2ε2

] Ψ ′′

λ + iαξ
, (4.9)

where the argument of G(ζ ) (see equation (2.19)) is

ζ = 1√
2
ε

(
iλ
ξ

− α

)
. (4.10)

The electron inertia term in (4.9) becomes important when ξ ∼ λε (x ∼ δε): this is
also the scale below which the electrons are no longer isothermal, i.e. when ζ ∼ 1 so
that G(ζ ) starts to differ from 1. We are free to choose δin to be of the same order
as the ion scale, δin ∼ ρs, and anticipate λ ∼ ε � 1.

4.1. Ion layer
We first solve the equations on the ion scales, ξ ∼ 1. Since λ � α ∼ 1, to lowest

order the equations are

Φ ′′ = 1

α

(
Ψ ′′ − 1

2

ρ2
i

δ2
in

Ψ ′′′′
)

, (4.11)

αΨ − Φ = − 1

α

ρ2
s

δ2
in

Ψ ′′. (4.12)

The solution that matches onto the outer layer solution (3.4) is

Ψi = Ψ∞
(

1 + 1

2
�′δinξ

)
+ Cie−ξ , (4.13)

Φi = αΨ∞
(

1 + 1

2
�′δinξ

)
+ 1

α
Cie−ξ

[
1 − 1 − α2

1 + Z/τ

]
, (4.14)
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where we have set

δin = ρs
√

1 + τ/Z√
1 − α2

. (4.15)

It is worth noticing that the solution for Φi is very different from the tearing mode
without shear as ξ → ∞, to match the outer solution (3.4), which is also very differ-
ent from its equivalent with α = 0, since the flow shear dominates over the growth
rate on the large equilibrium scales. Moreover, it is clear that (4.11) depends strongly
on the ratio of ρi to ρs, i.e. on τ . These two facts will conspire to change the τ -
dependence of the growth rate from the case with no shear flow (1.1). As ξ → 0, we
have

Ψi → Ψ∞ + Ci +
(

1

2
�′δinΨ∞ − Ci

)
ξ, (4.16)

Φi → αΨ∞ + 1

α
Ci

[
1 − 1 − α2

1 + Z/τ

]
+
(

1

2
α�′δinΨ∞ − 1

α
Ci

[
1 − 1 − α2

1 + Z/τ

])
ξ .

(4.17)

4.2. Electron layer
We rescale the equations again to find the solution on electron scales, defining

y = ξ

λε
= x

δε
. (4.18)

The equations are

Φ ′′ = iεyΨ ′′

1 + iαεy
− 1

λ2ε2

1 − α2

1 + Z/τ

(
iεyΨ ′′

1 + iαεy

)′′
, (4.19)

λ2(1 + iαεy)Ψ − iλ2εyΦ = 1 − α2

1 + τ/Z

[
(1 + iαεy)2 + Gy2

] Ψ ′′

1 + iαεy
. (4.20)

On these scales, the shear terms are small compared with the growth terms. Dividing
(4.20) by y, differentiating twice and substituting for Φ ′′ using (4.19), we obtain an
equation for Ψ

λ2 [(1/y + iαε) Ψ
]′′ + λ2ε2 Ψ ′′

1/y + iαε

= 1 − α2

1 + τ/Z

[(
G + τ

Z
+ 1

y2 (1 + iαεy)2
)

Ψ ′′

1/y + iαε

]′′
. (4.21)

Anticipating λ ∼ ε, we can now solve order by order. At lowest order, using (4.20),
we have Ψ ′′

0 = 0, and so from (4.19) we also have Φ ′′
0 = 0. To match the solution at

larger scales, the lowest-order solution must be real and even, and we have

Ψ0 = Ψ0e, Φ0 = Φ0e, (4.22)

both constants. At first order, Ψ ′′
1 = 0, and we take Ψ1 = 0: we can absorb any even

constant piece into the zeroth-order solution, and since the solution is even and real
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to lowest order overall, any term linear in y must appear at order λε or higher. At
second order, we obtain

Ψ ′′
2 = λ2(1 + τ/Z)

1 − α2
Ψ0e

1

(G + τ/Z)y2 + 1
, (4.23)

so that

Ψ2 = λ2√1 + τ/Z
1 − α2

Ψ0e

∫ y

0
dz
∫ z

0

du
√

1 + τ/Z
(G + τ/Z)u2 + 1

. (4.24)

As y → ∞, we then have (in terms of ξ )

Ψe → Ψ0e

[
1 + λ

√
1 + τ/Z

ε(1 − α2)
IGξ − λ2√1 + τ/Z

1 − α2
log (ξ )

]
, (4.25)

where

IG =
∫ ∞

0

dy
√

1 + τ/Z
(G + τ/Z)y2 + 1

. (4.26)

If we had assumed isothermal electrons (G = 1), IG = π/2. The solution for Φ can
be found by integrating (4.19) twice

Φ = Φ0e − 1

λ2ε2

1 − α2

1 + Z/τ

(
iεyΨ ′′

1 + iαεy

)
+ iε

∫ y

0
dz
∫ z

0
du

uΨ ′′

1 + iαεu
. (4.27)

The second term on the right-hand side, resulting from the small-scale asymptotic
of 1 − �̂0, is dominant for y ∼ 1, but always decays for y � 1, since Ψ ′′ (e.g. Ψ ′′

2 ) is
strongly peaked on the electron scales. The final term on the right-hand side does
produce terms in the solution for Φ that do not decay as y → ∞: however, note that
they are still a factor ε smaller than the corresponding terms in Ψ . Inserting Ψ ′′

2 into
(4.27), the lowest-order piece is, as y → ∞ and in terms of ξ ,

Φe → Φ0e + iε
∫ y

0
dz
∫ z

0
duuΨ ′′

2 → Φ0e + iλ(1 + τ/Z)

1 − α2
Ψ0e

[
ξ log (ξ ) − ξ + const.

]
+ iλΨ0e

1 + Z/τ

1

ξ
, (4.28)

so the non-constant piece of Φe is O(λ) for ξ ∼ 1.
Finally, if we were to solve to third order for Ψ , we could determine the odd part

of the eigenmode in terms of the even one, and thus determine the small imaginary
part of the solution: because this appears at third order, the linear term that appears
in the asymptotic solution as y → ∞ is ∼ λξ , showing that the imaginary part of the
eigenmode is a factor of around λ smaller than the real part. However, this is not
necessary to obtain the growth rate.

5. Matching and dispersion relation

We can now match the ion and electron solutions. We match the constant and
linear terms from ξ → 0 from the ion solution (4.16 and 4.17) and y → ∞ in the
electron solution (4.25 and 4.28), assuming �′δin ∼ 1. From the constant terms of
Ψ , we obtain

Ψ0e = Ψ∞ + Ci. (5.1)
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As we found above, at lowest order the leading non-constant terms of Φe are O(λ),
and so to lowest order, the linear term in (4.17) must be zero

1

2
α�′δinΨ∞ − 1

α
Ci

[
1 − 1 − α2

1 + Z/τ

]
= 0, (5.2)

whence

Ci =
1
2α2�′δinΨ∞(1 + Z/τ )

Z/τ + α2
. (5.3)

The O(λ) terms of Φe in (4.28) can in principle be matched with the next-order
solution to Φi (which we have not calculated), providing a small correction to our
results, but we do not attempt this here. Finally, matching the linear terms for Ψi as
ξ → 0 (4.16) and Ψe as y → ∞ (4.25)

1

2
�′δinΨ∞ − Ci = λ

√
1 + τ/Z

ε(1 − α2)
IGΨ0e. (5.4)

Inserting (5.1) and (5.3), we obtain the dispersion relation

λ =
1
2�′δinε(1 − α2)2Z/τ

Z/τ + α2 + 1
2α2�′δin(1 + Z/τ )

1

IG
√

1 + τ/Z
. (5.5)

5.1. Growth rate
Using the definitions of λ (4.7) and δ (4.1), the growth rate is

γ a
vAy

= k�′δ2
inε(1 − α2)2

2IG
√

1 + τ/Z(1 + α2τ/Z + 1
2α2�′δin(1 + τ/Z))

. (5.6)

Inserting δin (4.15), we find that

γ a
vAy

∼

⎧⎪⎪⎨
⎪⎪⎩

k�′ρsde
(1 − α2)

√
1 + τ/Z)

2IG(1 + α2τ/Z)
, �′δin � 1

kde
(1 − α2)3/2

α2IG(1 + τ/Z)
, �′δin � 1.

(5.7)

The growth rate for �′δin � 1 has the same scaling with de and ρs as the no-flow scal-
ing (1.1), but for �′δin � 1, we have obtained the surprising result that the growth
rate is independent of ρs: in the no-flow case, we had γ0 ∝ ρ

2/3
s d1/3

e . Note that the
growth rate for �′δin � 1 does not match smoothly onto the no-flow scaling (1.1):
this is because the expansion in the ion region is invalidated for α � λ (see § 5.2
below).

The transition between these scalings occurs where they match. Inserting �′a ∝
1/(ka)n (see § 1.1), the transition occurs roughly at

ktra ∼ (ρs/a)1/n α2/n

(1 − α2)1/2n

(
(1 + τ/Z)3/2

1 + α2τ/Z

)1/n

, (5.8)

for which the growth rate is of order

γtra
vAy

∼ ρ
1/n
s de

a1+1/n

(1 − α2)3/2−1/2n

α2−2/n

(1 + τ/Z)3/2n−1

(1 + α2τ/Z)1/n . (5.9)
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For n = 2, the growth rate increases with k for �′δin � 1 and decreases with k for
�′δin � 1, so that γtr is also the maximum growth rate, occuring uniquely at ktr. For
the n = 1 case, γ is independent of k for �′δin � 1, and equal to γtr for all k > ktr.

This differs in several ways from the growth rate for α = 0 (1.1). First, the growth
rate scales strongly with 1 − α2: as α → 1, the growth rate vanishes, as is the case
for the resistive MHD tearing mode with shear (Hofman 1975; Chen & Morrison
1989; Boldyrev & Loureiro 2018; Shi et al. 2021a), where γMHD ∝ (1 − α2)1/2: thus
the growth rate of the tearing mode is more strongly suppressed in a collision-
less plasma than in resistive MHD.

2
Second, the growth rate depends differently

on τ . For τ � 1, the growth rate becomes independent of τ , similarly to the tear-
ing mode without flow shear. In contrast, for τ � 1, the maximum growth rate is
proportional to τ (1/2n)−1; the opposite dependency to the case without flow shear,
for which γ0tr ∝ τ 1/2 for τ � 1. Finally, in general the growth rate also depends
differently on the scales ρs and de than in the no-flow case: without shear flow,
γ0tr ∝ d1/3+2/3n

e ρ
2/3+1/3n
s , but with shear flow, γtr ∝ deρ

1/n
s . For n = 1, these scalings

coincide, but for n = 2, γtr/γ0tr ∝ ε1/3, where ε = de/ρs � 1.

5.2. Validity and the small shear flow limit
For the expansion in the ion region to be valid, we must have λ � α. For �′δin �

1, this is easily satisfied, and indeed, the growth rate in this case smoothly joins onto
the no-flow growth rate (1.1) as α → 0. For �′δin � 1, the inequality is

ε(1 − α2)2

α2(1 + τ/Z)3/2
� α, (5.10)

or α above a critical αc defined by
αc

(1 − α2
c )2/3

= ε1/3(1 + τ/Z)−1/2. (5.11)

For ε � 1, αc ∼ ε1/3. Taking βe ≈ 0.1 in the low-β solar wind and corona, ε ≈ 0.1
and αc ≈ 0.5. Thus, even a modest shear flow (far enough from α = 1 that 1 − α2 is
not small) can affect the growth rate scalings with de and ρs for �′δin � 1. This is
because the growth rate of the mode is slow compared with the shearing rate on the
ion scales.

6. Numerical tests

We use an eigenvalue code to solve (2.13–2.14) assuming cold ions and isothermal
electrons (and thus we do not need to solve (2.15)): these assumptions (while unjus-
tified physically for the case of the solar wind) make the equations much simpler to
solve numerically. We use the profile (Loureiro et al. 2005)

f (x/a) = −2 tanh (x/a)sech2(x/a). (6.1)

For ka � 1, �′a ∼ 15/(ka)2; i.e. n = 2. For this profile, the maximum growth rate
is attained uniquely at the transitional wavenumber, rather than for all k > ktr as
would be the case for the more usual f (x/a) = tanh (x/a) profile, for which n = 1.

2For α2 > 1, we would have instead the Kelvin–Helmholtz instability: since a � ρi this is essentially the same
as the MHD case (Miura & Pritchett 1982).
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FIGURE 1. Growth rate as a function of ka for α = 0, 0.05, . . . , 0.95, red to blue lines. We set
ρ = 0.01a and de = 0.001a.

Growth rates as a function of k for different α are shown in figure 1, showing the
expected scalings with k for both small and large k (large and small �′). Because the
transition moves to larger k with increasing shear flow, the interval in k over which
the small-�′ scalings are relevant gets narrower as α increases towards 1.

We plot growth rates at fixed k as a function of 1 − α2 in figure 2. For both small
and large �′ (top left and right panels, respectively), the scalings agree with (5.7). In
the top right panel, we have also marked on the x-axis the position at which α = ε1/3:
for smaller α (larger 1 − α2), we do not expect our scaling to apply – and indeed, the
behaviour changes at around this point. The maximum/transitional growth rate (5.9)
and corresponding transitional wavenumber (5.8) are shown in the bottom panels,
and also agree quite well with the predicted scalings, shown as black lines.

We also check the dependence of the growth rate on both ρs and de. As a
reminder, for α = 0 the dependencies are given by (1.1) with τ = 0: our code repro-
duces these scalings (not shown). In figure 3 we plot the scalings for α = 0.9. For
large �′, the growth rate depends linearly on de, and does not depend on ρs: both as
predicted (5.7), and very different to the α = 0 case. For small �′, at a wavenumber
of ka = 1.12, the growth rate depends on the product deρs, as in the no-flow case,
also in agreement with our predictions.

We can also check the behaviour of the width of the perturbed current profile:
this corresponds to the scale at which the electron terms become important, x ∼ δε.
We have checked that this agrees with the scalings found numerically for the growth
rate.

7. Conclusions

We have studied the collisionless tearing mode in the presence of significant shear
flows, as parametrised by α = δu/δb, where δu and δb are the amplitudes of the
background velocity and magnetic field fluctuations, pointing in the y (or L) direc-
tion and varying in the x (or N) direction across the current sheet. We find that the
growth rates depend strongly on α, with a maximum growth rate given by (5.9),

γtra
vAy

∼ ρ
1/n
s de

a1+1/n

(1 − α2)3/2−1/2n

α2−2/n

(1 + τ/Z)3/2n−1

(1 + α2τ/Z)1/n , (7.1)

where n = 1 (e.g. for a Harris-type profile) or n = 2 (e.g. for a sinusoidal type pro-
file). As α → 1 (an exactly Alfvénic flow), γ → 0. Moreover, for large ion-to-electron
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FIGURE 2. Top left: γ for ka = 1.12, at which wavenumber �′δin � 1. Top right: γ for ka =
10−3 (�′δin � 1). Bottom left: maximum growth rate γmax. Bottom right: the wavenumber ktr
at which γmax is attained. The vertical dashed lines on the top right and bottom left panels mark
α = ε1/3.

temperature ratios, τ = T0i/T0e, the growth rate decreases with τ , γtr ∝ τ 1/2n−1. With
n = 1 for simplicity, relative to the maximum tearing mode growth rate with α = 0,
γ0tr (see (1.2)), we have

γtr

γ0tr
= 1 − α2

1 + α2τ/Z
. (7.2)

As described in the introduction, a remarkable absence of reconnection was
reported in the near-Sun solar wind observed during PSP’s first perihelion (Phan
et al. 2020). This has been confirmed in a comprehensive recent study of the PSP
data by Eriksson et al. (2024), who found that reconnection was extremely rare
more specifically in faster, high-ion-temperature solar wind emerging from coronal
holes: this is also the wind that is typically highly Alfvénic (D’Amicis & Bruno 2015;
D’Amicis et al. 2021), with highly correlated velocity and magnetic field fluctua-
tions, δu ∼ ±δb or 1 − α2 � 1 (Ervin et al. 2024). Typically, this wind also has large
τ = T0i/T0e (Shi et al. 2023), probably due to higher ion heating in imbalanced
turbulence due to the recently discovered helicity barrier (Meyrand et al. 2021;
Squire et al. 2022). Similar clustering was observed at larger heliocentric distances
by Fargette et al. (2023), possibly with the same underlying cause.

We have shown that both these parameters typical of the Alfvénic wind, 1 −
α2 � 1 and τ � 1, suppress the tearing mode growth rate, and thus increase the
reconnection onset time, comparable to γ −1. We can roughly estimate a typi-
cal reconnection time from our expression for the growth rate: taking n = 1 and
typical values for the PSP Alfvénic wind, α ≈ 0.9 and τ ≈ 2 (Chen et al. 2020;
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FIGURE 3. In all panels α = 0.9. Top left: growth rate vs k, different lines correspond to different
ρs. For large �′δin (smaller wavenumbers), the growth rate is independent of ρs. Top right:
growth rate as a function of ρs for ka = 1.12, i.e. for �′δin � 1. Bottom left: growth rate as a
function of de for ka = 10−3, i.e. �′δin � 1. Bottom right: growth rate as a function of de for
ka = 1.12.

Shi et al. 2021b, 2023; Ervin et al. 2024), we find γtr/γ0tr ≈ 0.07. On the other hand,
the eddy turnover time τnl ∼ λ/δu(1 − α2) in imbalanced turbulence is increased
by the same factor (1 − α2)−1 (Schekochihin 2022), so if all the current sheets are
produced by turbulence, the product γtrτnl is left relatively unchanged. If the devel-
opment of current sheets is controlled by the eddy turnover time, then the overall
prevalence of reconnection would not be suppressed by this mechanism. However,
it is far from clear that this is the only time scale available. For example, sharp
switchback boundaries may evolve instead due to the large-scale inhomogeneity in
the system, on the solar wind expansion time of order τexp ∼ R/Usw, where R is the
radial distance from the Sun and Usw is the solar wind velocity (Mallet et al. 2021).

Our work could be extended in several important ways to better describe the solar
wind current sheets. First, KREHM cannot handle large equilibrium flows, and
we are therefore limited to guide-field reconnection. Second, we have not allowed
an equilibrium parallel flow shear, which is also often observed in the solar wind
(Eriksson et al. 2024). Third, KREHM is formally limited to small β. This is per-
haps reasonable for the solar wind close to the Sun, but further out in the heliosphere
β is typically of order unity. Finally, we have also not allowed an equilibrium den-
sity gradient (again, often observed in the data), which can suppress reconnection
(Swisdak et al. 2003) and also requires a more careful treatment of the matching
between the ion and outer layers (Connor et al. 2019). Nevertheless, our theory may
help to explain the patchy suppression of reconnection in the PSP data, but further
work is needed to generalise the equilibrium and to elucidate the formation time
scale of the observed sheet-like structures.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S002237782500025X
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 31 Jul 2025 at 12:17:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002237782500025X
https://www.cambridge.org/core


Journal of Plasma Physics 15

Acknowledgements

The authors would like to thank the anonymous reviewers for helpful comments
that significantly improved the paper. A.M., S.E. and M.S. were supported by
NASA grant 80NSSC20K1284. J.J. was funded by the U.S. Department of Energy
under Contract No. DE-AC 02–09CH1146 via an LDRD grant.

Editor Nuno Loureiro thanks the referees for their advice in evaluating this article.

Declaration of interests

The authors report no conflict of interest.

REFERENCES

BIRN, J. et al. 2001 Geospace environmental modeling (gem) magnetic reconnection challenge. J. Geophys.
Res.: Space Phys. 106 (A3), 3715–3719.

BOLDYREV, S. & LOUREIRO, N.F. 2018 Calculations in the theory of tearing instability. J. Phys.: Conf.
Ser. 1100 (1), 012003.

CASSAK, P.A. 2011 Theory and simulations of the scaling of magnetic reconnection with symmetric shear
flow. Phys. Plasmas 18 (7), 072106.

CHAPMAN, SYDNEY & KENDALL, P.C. 1963 Liquid instability and energy transformation near a magnetic
neutral line: a soluble non-linear hydromagnetic problem. Proc. R. Soc. Lond. (A) Math. Phys. Sci.,
271 (1347), 435–448.

CHEN, C.H.K. et al. 2020 The evolution and role of solar wind turbulence in the inner heliosphere.
Astrophys. J. 246 (2), 53.

CHEN, X.L. & MORRISON, P.J. 1989 Resistive tearing instability with equilibrium shear flow. Phys. Fluids
B 2 (3), 495–507.

COMISSO, L., HUANG, Y.-M., LINGAM, M., HIRVIJOKI, E. & BHATTACHARJEE, A. 2018
Magnetohydrodynamic turbulence in the plasmoid-mediated regime. Astrophys. J. 854 (2), 103.

CONNOR, J.W., HAM, C.J., HASTIE, R.J. & ZOCCO, A. 2019 Ion landau damping and drift tearing modes.
J. Plasma Phys. 85 (2), 905850204.

D’AMICIS, R., ALIELDEN, K., PERRONE, D., BRUNO, R., TELLONI, D., RAINES, J.M., LEPRI, S.T.
& ZHAO, L. 2021 Solar wind Alfvénicity during solar cycle 23 and 24-perspective for future
observations with parker solar probe and solar orbiter. Astron. Astrophys. 654, A111.

D’AMICIS, R. & BRUNO, R. 2015 On the origin of highly Alfvénic slow solar wind. Astrophys. J.
805 (1), 84.

ERIKSSON, S., SWISDAK, M., MALLET, A., KRUPAROVA, O., LIVI, R., ROMEO, O., BALE, S.D.,
KASPER, J.C., LARSON, D.E. & PULUPA, M. 2024 Parker solar probe observations of magnetic
reconnection exhausts in quiescent plasmas near the sun. Astrophys. J. 965 (1), 76.

ERIKSSON, S., SWISDAK, M., WEYGAND, J.M., MALLET, A., NEWMAN, D.L., LAPENTA, G., WILSON

III, L.B., TURNER, D.L. & LARSEN, B. 2022 Characteristics of multi-scale current sheets in the
solar wind at 1 au associated with magnetic reconnection and the case for a heliospheric current
sheet avalanche. Astrophys. J. 933 (2), 181.

ERVIN, T., BALE, S.D., BADMAN, S.T., RIVERA, Y.J., ROMEO, O., HUANG, J., RILEY, P., BOWEN,
T.A., LEPRI, S.T. & DEWEY, R.M. 2024 Compositional metrics of fast and slow Alfvénic solar
wind emerging from coronal holes and their boundaries. Astrophys. J. 969 (2), 83.

FARGETTE, N. et al. 2023 Clustering of magnetic reconnection exhausts in the solar wind: an automated
detection study. Astron. Astrophys. 674, A98.

HARRIS, E.G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo
Cimento 23 (1), 115–121.

HOFMAN, I. 1975 Resistive tearing modes in a sheet pinch with shear flow. Plasma Phys. 17 (2), 143–157.
JI, H. et al. 2023 Laboratory study of collisionless magnetic reconnection. Space Sci. Rev. 219 (8), 76.
KADOMTSEV, B.B. 1975 Disruptive instability in tokamaks. Sov. Tech. Phys. Lett. 1 (5), 389–391.
LOTEKAR, A.B., VASKO, I.Y., PHAN, T., BALE, S.D., BOWEN, T.A., HALEKAS, J., ARTEMYEV, A.V.,

KHOTYAINTSEV, YU V. & MOZER, F.S. 2022 Kinetic-scale current sheets in near-sun solar wind:
properties, scale-dependent features and reconnection onset. Astrophys. J. 929 (1), 58.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S002237782500025X
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 31 Jul 2025 at 12:17:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002237782500025X
https://www.cambridge.org/core


16 A. Mallet, S. Eriksson, M. Swisdak and J. Juno

LOUREIRO, N.F. & BOLDYREV, S. 2017a Role of magnetic reconnection in MHD turbulence. Phys. Rev.
Lett. 118 (24), 245101.

LOUREIRO, N.F. & BOLDYREV, S. 2017b Collisionless reconnection in magnetohydrodynamic and kinetic
turbulence. Astrophys. J. 850 (2), 182.

LOUREIRO, N.F., COWLEY, S.C., DORLAND, W.D., HAINES, M.G. & SCHEKOCHIHIN, A.A. 2005 X-
point collapse and saturation in the nonlinear tearing mode reconnection. Phys. Rev. Lett. 95 (23),
235003.

MALLET, A., SCHEKOCHIHIN, A.A. & CHANDRAN, B.D.G. 2017b Disruption of Alfvénic turbulence by
magnetic reconnection in a collisionless plasma. J. Plasma Phys. 83 (6), 905830609.

MALLET, A., SCHEKOCHIHIN, A.A. & CHANDRAN, B.D.G. 2017a Disruption of sheet-like structures in
Alfvénic turbulence by magnetic reconnection. Mon. Not. R. Astron. Soc. 468 (4), 4862–4871.

MALLET, A., SQUIRE, J., CHANDRAN, B.D.G., BOWEN, T. & BALE, S.D. 2021 Evolution of large-
amplitude Alfvén waves and generation of switchbacks in the expanding solar wind. Astrophys. J.
918 (2), 62.

MEYRAND, R., SQUIRE, J., SCHEKOCHIHIN, A.A. & DORLAND, W. 2021 On the violation of the zeroth
law of turbulence in space plasmas. J. Plasma Phys. 87 (3), 535870301.

MIURA, AKIRA & PRITCHETT, P.L. 1982 Nonlocal stability analysis of the MHD Kelvin-Helmholtz
instability in a compressible plasma. J. Geophys. Res.: Space Phys. 87 (A9), 7431–7444.

PASCHMANN, G., ØIEROSET, M. & PHAN, T. 2013 In-situ observations of reconnection in space. Space
Sci. Rev. 178 (2-4), 385–417.

PEGORARO, F. & SCHEP, T.J. 1986 Theory of resistive modes in the ballooning representation. Plasma
Phys. Control. Fusion 28 (4), 647–667.

PHAN, T.D. 2020 Parker solar probe in situ observations of magnetic reconnection exhausts during
encounter 1. Astrophys. J. Suppl. 246 (2), 34.

PUCCI, F. & VELLI, M. 2014 Reconnection of quasi-singular current sheets: the ”Ideal” tearing mode.
Astrophys. J. Lett. 780 (2), L19.

SCHEKOCHIHIN, A.A. 2022 MHD turbulence: a biased review. J. Plasma Phys. 88 (5), 155880501.
SHAY, M.A., DRAKE, J.F., ROGERS, B.N. & DENTON, R.E. 2001 Alfvénic collisionless magnetic

reconnection and the hall term. J. Geophys. Res.: Space Phys. 106 (A3), 3759–3772.
SHI, C., ARTEMYEV, A., VELLI, M. & TENERANI, A. 2021a Stability of the magnetotail current sheet

with normal magnetic field and field-aligned plasma flows. J. Geophys. Res.: Space Phys. 126 (11),
e2021JA029711.

SHI, CHEN et al. 2023 Proton and electron temperatures in the solar wind and their correlations with the
solar wind speed. Astrophys. J. 944 (1), 82.

SHI, CHEN et al. 2021b Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by
Parker Solar Probe. Astron. Astrophys. 650, A21.

SQUIRE, J., MEYRAND, R., KUNZ, M.W., ARZAMASSKIY, L., SCHEKOCHIHIN, A.A. & QUATAERT, E.
2022 High-frequency heating of the solar wind triggered by low-frequency turbulence. Nat. Astron.
6 (6), 715–723.

SWISDAK, M., ROGERS, B.N., DRAKE, J.F. & SHAY, M.A. 2003 Diamagnetic suppression of component
magnetic reconnection at the magnetopause. J. Geophys. Res.: Space Phys. 108 (A5), 1218.

TOLMAN, E.A., LOUREIRO, N.F. & UZDENSKY, D.A. 2018 Development of tearing instability in a
current sheet forming by sheared incompressible flow. J. Plasma Phys. 84 (1), 905840115.

UZDENSKY, D.A. & LOUREIRO, N.F. 2016 Magnetic reconnection onset via disruption of a forming
current sheet by the tearing instability. Phys. Rev. Lett. 116 (10), 105003.

VASKO, I.Y., ALIMOV, K., PHAN, T., BALE, S.D., MOZER, F.S. & ARTEMYEV, A.V. 2022 Kinetic-
scale current sheets in the solar wind at 1 au: scale-dependent properties and critical current density.
Astrophys. J. Lett. 926 (2), L19.

YAN, XIAOLI et al. 2022 Fast plasmoid-mediated reconnection in a solar flare. Nat. Commun. 13 (1), 640.
ZANINI, M. et al. 2020 ECCD-induced sawtooth crashes at W7-X. Nucl. Fusion 60 (10), 106021.
ZOCCO, A. & SCHEKOCHIHIN, A.A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics,

magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18 (10), 102309.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S002237782500025X
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 31 Jul 2025 at 12:17:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S002237782500025X
https://www.cambridge.org/core

	Introduction
	Tearing mode without shear flow

	Equations
	Equilibrium and linearised equations

	Outer region
	Inner region
	Ion layer
	Electron layer

	Matching and dispersion relation
	Growth rate
	Validity and the small shear flow limit

	Numerical tests
	Conclusions
	Acknowledgements
	Declaration of interests
	References

