
JFP 19 (6): 723–725, 2009. c© Cambridge University Press 2009 723

Book review

Essentials of Programming Languages (third edition) by Daniel P. Friedman

and Mitchell Wand, MIT Press, ISBN 978-0-262-06279-4, 2008.

doi:10.1017/S0956796809007357

Since 1992 programming languages courses at numerous universities have been based on

this classic textbook (Taha 2003). The book has now appeared in its substantially revised

third edition, this time without one of the original authors, Christopher T. Haynes. The

book gives a profound introduction to basic concepts of programming languages. Hardly any

mathematical knowledge or skills are required, but the reader should be a reasonably proficient

programmer with some knowledge of Scheme, the programming language used throughout the

book. The concise explanations also require attentive reading. The book takes the following

principled approach: programming languages are best studied by writing interpreters for

small programming languages with particular features. Implementing interpreters provides

deep understanding and motivation, because they can be run. Additionally the reader will

also learn about writing well-structured programs. Thus the approach is rather different to

other programming languages books (Sebesta 2003; Watt 2004) that compare programming

language features by studying programs written in several common languages. Although the

book relates high-level concepts (e.g. function call) to low-level features (context, stack), the

interpreters aim for clarity, not efficiency. Throughout the book the authors assume that

programs that will be interpreted are given as abstract syntax trees; using a suitable Scheme

package for scanning and parsing is explained only briefly in an appendix. Despite some

overlaps this is not a compiler-construction book. The book provides a solid foundation for

any further study of programming languages, from compiler construction to formal semantics

and type theory.

The book starts with two chapters on how to systematically define data types and functions

over these data types, using the same approach as How to Design Programs (Felleisen et al.

2001). These techniques are used throughout the book, especially for representing the abstract

syntax tree of a program and for the interpreter as a recursively defined function over this

abstract syntax. The main body of the book discusses interpreters for various programming

languages, starting with a very simple one in Chapter 3 and then adding one feature after

another. Chapter 3 concentrates on expressions and how to handle variable bindings and

their scope. Subsequently the facility for defining named procedures and finally recursive

procedures are added. Chapter 4 gives several variants of mutable state and eventually

discusses parameter-passing variations, as differences are mainly exposed by mutable state.

Chapter 5 considers low-level control-flow issues by studying continuation-passing interpreters.

It also shows how continuations enable easy implementation of exceptions and threads.

Breaking the extend-the-interpreter pattern Chapter 6 describes a general continuation-

passing style transformation for any program. Subsequently Chapter 7, 8 and 9 add a static

type system, a module system and an object system with classes, respectively.

For the third edition all chapters were revised and reorganised, but there are three main

changes: all Scheme definitions come with contracts, there is a new chapter on modules,

and the continuation-passing-style transformation of Chapter 6 was replaced. Contracts

describe input and output sets of procedures like static types; the book does not use the

full expressibility of dynamically checked contracts of some Scheme variants (Findler &

Felleisen 2002). The authors do not assume the presence of any contract checking at compile

https://doi.org/10.1017/S0956796809007357 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007357


724 Book review

or runtime; contracts are just structured comments to clarify the meaning of procedures

and variables. I was surprised that the relationship between contracts and types is not even

discussed in the chapter on types. As module systems are an important part of programming

languages and their complexity is often under-appreciated, the new chapter on module

systems is welcome. Basic concepts are studied in three steps. The chapter starts with simple

modules just providing procedures, followed by support for opaque type export, and finally

adding module procedures, that is, functors. Whereas the preceding chapter defines type

systems first through type rules which are then implemented by type checking/inference, the

module systems have no such independent specifications, but are directly defined through

large checking procedures. However, such compromises may be required to limit the chapter

size. The new Chapter 6 lucidly presents a first-order compositional continuation-passing

style transformation. Nonetheless it seems odd that this chapter describes how to transform

any program into continuation-passing style, but it does not give a reason for doing so for

any program other than an interpreter.

Despite new material the number of pages have hardly changed. The text is clear and

concise. Scheme code makes up a substantial part of the book (it is available for download);

whereas initially code is explained in detail, later chapters often contain large chunks of code

with few comments. The book provides many exercises. The reader should note the statements

on the back cover: “exercises are a vital part of the text”, “the text explains [only] the key

concepts”, “the exercises explore alternative designs and other issues”. Hence even if not doing

them all, the reader should give each exercise at least some thought. On their own, without

the support of a teacher, readers may find it hard get the points of all exercises. Within the

book hardly any references are given. Instead, the reader needs to refer to Appendix A which

gives a clear guide to the appropriate bibliography.

I miss one topic in this book: concurrency. To effectively use today’s and future hardware,

all programs will have to be concurrent. Section 5.5 discusses threads, but the focus is on easy

implementation within a continuation-passing interpreter. Admittedly, giving concurrency a

more prominent role within this book would have been hard, because there are so many

distinctive concurrency models and it is yet unclear which ones will be used most. What

should a concurrently implemented interpreter look like?

The foreword by Hal Abelson makes the promise that this book teaches the skills for

“appreciating which language features are best suited for which type of application”. However,

the book does not compare language features for their suitability for certain applications. For

example, the single paragraph in Chapter 9 comparing objects and modules only emphasises

the similarities and differences in implementation.

While reading the book I have been wondering whether the chosen implementation

language, Scheme, is the best choice for the purpose. The authors do not take advantage of

S-expressions: scanner and parser are required to process the mixfix syntax of the implemented

languages and a data type facility comparable to the algebraic data types of ML and Haskell

is used throughout. When writing calculations of Scheme programs the authors also use non-

standard parentheses (>> <<) and special syntax for environments to improve readability.

Also for some interpreters a specification in the form of separate equations over the abstract

syntax data type is given first, followed by the implementation using a case construct for

decomposing the abstract syntax tree. Hence I conclude that a functional programming

language with algebraic data types and pattern matching, such as a member of the ML

family, would be well suited as implementation language for the interpreters of the book.

Wadler’s criticism of calculating with Scheme (Wadler 1987) still applies. The book shows

calculations of interpreters, not eager evaluations. To improve readability of calculations,

function arguments are often left unevaluated until they are needed. Such calculations

are easy to read, but need to be written with care. However, using a non-strict language

such as Haskell instead of Scheme would be problematic, as all interpreters except for the

continuation-passing style ones then would implement non-strict languages as well. I was

disappointed that the dependence of evaluation strategy of the implemented language on the

https://doi.org/10.1017/S0956796809007357 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007357


Book review 725

evaluation strategy of the implementing language is not even mentioned (Reynolds 1998).

Using a pure functional language such as Haskell would also pose problems as the book

uses some side effects within the implementation language: the store for mutable variables is

implemented via side effects, the continuation-passing style trampoline uses a global mutable

variable and tracing via output statements is used by some interpreters to obtain a readable

account of their work.

In conclusion, this is a sensibly updated edition that every undergraduate computer science

student should study to genuinely understand established programming languages principles.

References

Felleisen, M., Findler, R. B., Flatt, M. & Krishnamurthi, S. (2001) How to Design Programs:

An Introduction to Programming and Computing. The MIT Press.

Findler, R. B. & Felleisen, M. (2002) Contracts for higher-order functions. In ICFP

’02: Proceedings of the Seventh ACM SIGPLAN International Conference on Functional

Programming, Pittsburgh, PA. ACM, pp. 48–59.

Reynolds, J. C. (1998) Definitional interpreters for higher-order programming languages,

Higher Order Symbol. Comput., 11(4), 363–397. Originally appeared in Conference Record

of the 25th National ACM Conference (1972).

Sebesta, R. W. (2003) Concepts of Programming Languages. Boston, MA: Addison-Wesley

Longman Publishing Co.

Taha, W. (2003) [Review of] Essentials of Programming Languages, Friedman, Daniel P.,

Wand, Mitchell & Haynes, Christopher T. (eds), 2nd ed. MIT Press. J. Funct. Prog. 13(4),

829–831.

Wadler, P. (1987) A critique of Abelson and Sussman or why calculating is better than

scheming, SIGPLAN Not. 22(3), 83–94.

Watt, D. A. (2004) Programming Language Design Concepts. John Wiley & Sons.

OLAF CHITIL

University of Kent, Canterbury

https://doi.org/10.1017/S0956796809007357 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007357

