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Abstract: In order to explore how supernova blast waves might catalyze 
star formation, we investigate the stability of a slab of decelerating gas 
of finite thickness. We examine the early work in the field by Elmegreen 
and Lada and Elmegreen and Elmegreen and demonstrate that it is flawed. 
Contrary to their claims, blast waves can indeed accelerate the rate of 
star formation in the interstellar medium. Also, we demonstrate that in 
an incompressible fluid, the symmetric and antisymmetric modes in the 
case of zero acceleration transform continuously into Rayleigh-Taylor and 
gravity-wave modes as acceleration grows more important. 

Shock fronts in the interstellar medium may be generated by several common mecha­
nisms: supernovae, strong stellar winds, ionization fronts, to name a few. As these shocks 
sweep through the interstellar medium they compress the ambient gas into shells of con­
siderably higher density. In increasing the density of the gas, the shocks decrease the 
characteristic gravitational collapse time, tjj ~ \J\jGp. However, in these compressed 
shells, Jeans-collapse theory is no longer valid because the shell thicknesses of interest are 
much smaller than the Jeans lengths of the compressed gas. There has been considerable 
debate in the literature regarding whether or not shocks can accelerate the process of star 
formation by enabling gravitational collapse to proceed more quickly. We intend in this 
paper to illuminate some of the issues in that debate by demonstrating that certain claims 
in the literature are conceptually ill-grounded, and by presenting a toy model of our own 
to illustrate the relevant physical phenomena. 

We concern ourselves in this paper primarily with the instabilities of a plane-parallel 
slab of finite thickness, bounded by contact discontinuities on both sides, where the pres­
sures on the two sides are, in general, dissimilar. Elmegreen and Lada (1977) examined 
the critical stability of an isothermal, self-gravitating, decelerating slab of gas bounded 
by contact discontinuities on both surfaces. They found that no instabilities arise in the 
slab until its age is of order <// in the unshocked medium (tnorm), i.e. shocks do not 
accelerate star formation. Elmegreen and Elmegreen (1978) calculated dispersion rela­
tions for the modes of a slab of isothermal, self-gravitating, stationary gas bounded by 
contact discontinuities on both surfaces. They found that the slab becomes unstable to 
deformational instabilities on timescales much shorter than tnorm, but that instabilities 
to gravitational collapse do not arise until the age of the slab is of order tnoTm, in agree­
ment with Elmegreen and Lada (1977). Vishniac( 1983) found dispersion relations for the 
gravitationally unstable modes of an infinitesimally thin shell of gas having a polytropic 
equation of state and bounded on one side by shock jump conditions and on the other 
by a contact discontinuity. His results show that gravitational collapse of the shell can 
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Figure 1: Sqenmodes of Incompressible Slob 
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Figure 1 illustrates how the eigenmodes of an incompressible slab change with changing V 
and differ at differing dimensionleas wavenumber kh. The quantity 72 = —t)/(, where 17 and C are 
the amplitudes of the perturbative displacements of the top and bottom surfaces, characterizes 
a given mode. The solid lines give the fl+ modes for /? = 2 (pj = 2;^) and V = 0.0, 0.2, 0.5, 
1.0, 2.0, 3.0; the dashed lines give the A . modes for the same values of V. The quantities R± 
decrease monotonically with increasing V Note that for V — 0, the A+ modes is symmetric 
(H+ = 1), and the R- mode is antisymmetric ( # _ = - 1 ) . When V ^ 0, at large kh (small 
wavelength), R+ —> 0, and R- —• —00, that is, the surfaces decouple into separate waves on top 
and bottom. As V grows, decoupling occurs at longer and longer wavelengths (smaller kh). 

figure 2: Dispersion Relotions for Incompressible Slob 
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Figure 2 display* the dispersion relations of /£+ and A- modes - dimensionleas frequency 
squared (u7/2rGpo) versus dimensionleas wavenumber (kh). The relations are plotted for 0 = 2 
and V = 0.0, 0.2, 0.5,1.0, 2.0, 3.0. For R- modes, J1 > 0 always, the modes are always stable, 
and w2 always increases with increasing V. The R+ modes go unstable (u3 < 0) for at least 
some kh, no matter what the value of V, and u1 decreases with increasing V. As V becomes 
large, the J£+ modes become Rayleigh-Taylor modes, and the R- modes become gravity waves. 
That this physics should emerge is not surprising. 
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occur at times considerably smaller than tnorm in the unshocked medium - that shocks 
can accelerate the rate of star formation in the ISM. 

Elmegreen and Lada (1977) begin with an isothermal, plane-parallel slab bounded 
by two contact discontinuities at pressures pi and p2. The z direction points perpendicular 
to the slab and the x direction along it. They then introduce a density perturbation 

Pi = Poeikxe{z). 

To this system they apply boundary conditions 

9(zi) = 6{z2) = 0, 

where Z\ = z(p\) and z2 = z(p2) are defined in the unperturbed system. In an isothermal 
slab the pressure perturbation, Pj , obeys Pi = (const.)pi, so 

Pi(zi) = Pi(z2) = 0, 

and 

P(*l) = P0(2l) = Pi 

P(z2) = P0(z2) = p2. 

If the boundary of the perturbed slab is displaced by some r](x,t) <C \z\ — z2\, then 

P(*i + V) = P(zi) = Pi-

In this system, dP/dz is monotonic and nonzero at the boundary; therefore, r\ = 0 by 
necessity, and the boundaries must be rigid. Elmegreen and Lada find an instability 
criterion valid only for a small and nonphysical subset of the possible modes - those for 
which the boundaries of the slab remain fixed. 

Elmegreen and Elmegreen (1978) consider an isothermal, plane-parallel slab of gas 
bounded by two contact discontinuities at the same pressure; thus, the slab is symmet­
ric about its midplane. They assume all perturbed quantities take the form f(x,z,t) = 
f(z)e'(kx+u,t\ Allowing the top and bottom surfaces to ripple either symmetrically or 
antisymmetrically about the midplane according to the displacement rj(x,t) = -qe

%(kx+ijJt); 

they calculate numerically the dispersion relations, u>(k), for the symmetric and antisym­
metric modes. They find that the antisymmetric modes are always stable and that the 
symmetric modes are unstable to wavelengths longer than of order the thickness of the 
slab. However, the symmetric modes merely deform the slab, causing it to quilt - they 
do not collapse gravitationally. Elmegreen and Elmegreen then solve for the time when 
gravitational instability does set in by calculating when the gas contained within one 
characteristic wavelength of the symmetric mode will collapse. They fail to recognize that 
collapse over much longer wavelengths will occur much earlier. 

In order to explore the stability of a decelerating plane-parallel slab of gas bounded 
by two contact discontinuities at differing pressures, p\ and p2 = f3p\, we consider the case 
of the incompressible slab, which we can solve analytically. Assuming perturbed quantities 
take the form f(x,z,t) = f(z)e,^kx+u'i\ we allow the displacements of the two surfaces 
to ripple according to fj(x,t) = rje'(

kx+wt) and ((x,t) = (^e'(
kx+ut). Since we introduce 
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two degrees of freedom, namely r\ and £, into the problem, we obtain the two dispersion 
relations 

u>\ = 2*Gp0 [(R±e-kh - 1) 

+ Ju^W { («" - 2** + «-») - {-^-V («» + 2/fe + ."») }' 
j[/-(e** + e-*>) T y/U\ekh - e~kh)2 + 4V* 

± " 2 ( V - t / ) 
[/ = kh(0-l)-p 
V = l-e-2kh-2kh, 

where po is the density of the slab, h is the slab thickness, a is the surface density of the 
slab, R — —T)/( describes the eigenmodes, and V = pi/irGcr2 is a dimensionless quantity 
which describes the relative importance of self-gravity in determining the structure of 
the slab. We shall refer to the two eigenmodes as J?± modes. We plot R± in Fig. 1 
and UJ\ in Fig. 2. When /3 = 1, our dispersion relations are qualitatively identical 
to those that Elmegreen and Elmegreen find for an isothermal slab bounded by equal 
pressures. We believe this correspondence justifies our admittedly nonphysical assumption 
of incompressibility. 

In summary, we have shown that Elmegreen and Lada (1977) and Elmegreen and 
Elmegreen (1978) made conceptual errors in their treatments of the instabilities of isother­
mal slabs of gas. They concluded incorrectly that shocks do not accelerate star formation. 
A correct approach to the shock induced gravitational instability, albeit in the thin shell 
approximation, is given by Vishniac (1983). We have also solved for the stability of a slab 
of incompressible gas bounded by differing pressures. The dispersion relations we find 
demonstrate that the symmetric and antisymmetric modes of Elmegreen and Elmegreen 
(1978) are related to Rayleigh-Taylor and gravity waves, respectively. 
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