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Abstract We give a complete characterization of a hypercyclic abelian semigroup of matrices on C™.
For finitely generated semigroups, this characterization is explicit and it is used to determine the minimal
number of matrices in normal form over C that form a hypercyclic abelian semigroup on C™. In particular,
we show that no abelian semigroup generated by n matrices on C™ can be hypercyclic.
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1. Introduction

Let M, (C) be the set of all square matrices over C of order n > 1 and let GL(n,C) be
the group of invertible matrices of M, (C). Let G be an abelian subsemigroup of M, (C).
For a vector v € C", we consider the orbit of G through v: G(v) = {Av: Ae G} CC". A
subset £ C C™ is called G-invariant if A(E) C E for any A € G. The orbit G(v) C C" is
dense (respectively, somewhere dense) in C" if G(v) = C™ (respectively, G(v) # 0), where
E (respectively, F) denotes the closure (respectively, the interior) of a subset E C C™.
The semigroup G is called hypercyclic if there exists a vector v € C™ such that G(v) is
dense in C™. We refer the reader to the recent book [4] and to [9] for a thorough account
on hypercyclicity.

Recently, there has been much research around this subject. We mention, in particu-
lar, [1-3,5-8,12] for the abelian case and [10] for the non-abelian case. Feldman showed
in [8] that in C™ there exists a hypercyclic semigroup generated by an (n + 1)-tuple
of diagonal matrices on C”, and that no semigroup generated by an n-tuple of diago-
nalizable matrices on C™ or R™ can be hypercyclic. Costakis et al. proved in [7] that if
one removes the diagonalizability condition, there exists an n-tuple of non-diagonalizable
matrices on R™ that is hypercyclic. Recently, Costakis and Parissis proved in [5] that the
minimal number of matrices in Jordan form on R™ that form a hypercyclic tuple is n+ 1.
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In the non-abelian case, Javaheri shows in [10] that there exists a 2-generator hypercylic
semigroup in any dimension in both real and complex cases.

The main purpose of this paper is to investigate the following: when can an abelian
subsemigroup of M,,(C) be hypercyclic?

Shkarin [12] and Abels and Manoussos [1] considered the same topic, in particular the
minimal number of generators of a finitely abelian hypercyclic semigroup of matrices on
C™ and R™. They have, independently, proved similar results to Corollaries 1.8 and 1.9.
The methods of proof in [1,12] and in this paper are quite different and have different
consequences.

We firstly give a general result answering the above question for any abelian subsemi-
group of M, (C), by providing an effective way of checking that a given semigroup is
hypercyclic. Note that in [3] the authors answer this question for any abelian subgroup of
GL(n, C), so this paper can be viewed as a continuation of that work. We point out that,
as the results obtained for groups are not used to get those for semigroups, the present
paper is almost independent of [3].

Secondly, we prove that the minimal number of matrices required to form a hypercyclic
abelian semigroup in /C,)(C), having a normal form of length 7 (see the definition below),
is exactly 2n — r 4+ 1 (see Corollary 1.7). In particular, n + 1 is the minimal number of
matrices on C™ required to form a hypercyclic abelian semigroup on C"; this was recently
shown in [2], answering a question raised by Feldman in [8, §6].

To state our main results, we need to introduce the following notation and definitions.

Let N be the set of non-negative integers, and set No = N\ {0}. Let n € Ny be fixed. By

a partition of n we mean a finite sequence of positive integers n = (n1,...,n,) such that
Z;Zlni = n. The number r will be called the length of the partition. Given a partition
n=(ny,...,n,), we define the following:

Kn(C) :=Tn, (C)& - & Ty, (C),

where T,,,(C) (m = 1,2,...,n) is the set of lower-triangular matrices over C with only
one eigenvalue.
Obviously, K,)(C) is a subsemigroup of M,,(C). We have the following:

e K;(C) := K, (C) N GL(n,C) is a subsemigroup of GL(n, C);
e T (C) =T,,(C) N GL(m, C) is a subgroup of GL(m, C);

e By =(e1,...,ey,) is the canonical basis of C";

e [, is the identity matrix on C™.

For a row vector v € C", we denote by vT the transpose of v. We also have that

o u,=l[ey1,...,ey,]T €C" where e, =[1,0,...,00T € C™, k=1,...,r,
° e%k) = [(es,k))l, e (eg,k))r} € C", where, for every j =1,...,r,
0eCv ifj£Ek,
(efh); = 1 J.?é
€n,k if j =k.
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The following ‘normal form of G’ allows us to deduce the results for an arbitrary semi-
group.

For every abelian subsemigroup G of M, (C), there exists a P € GL(n,C) such that
PGP c K,(C) for some partition 7 of n (see Proposition 2.4).

Given a positive integer r € {1,...,r}, we say that the semigroup G has ‘a normal

form of length r’ if G has a normal form in /C,,(C) for some partition n with length r.

Consider the matrix exponential map exp: M, (C) — GL(n,C). Set exp(M) = M.

For such a choice of matrix P, we let

g, =exp ' (G) N (P(K,(C)P~),
g,(u)={Bu: Beg,}, ueC"

Finally, we define
G* = GNGL(n,C).

Our principal results can now be stated as follows.

Theorem 1.1. Let G be an abelian subsemigroup of KC,,(C) for some partition n with
length r.

(1) The following are equivalent:

(i) G is hypercyclic,
(ii) the orbit G(u,) is dense in C",

(ili) gy(uy) is an additive subsemigroup, dense in C™.

(2) Assume that G* is finitely generated by p matrices (p > 1) and let By,..., B, €
KC,;(C) such that ePr, ... ePr generate G*. Then G is hypercyclic if and only if

P T
> NBjuy, + Y 2inZel)
k=1 k=1
is dense in C™.
An immediate consequence is the following corollary.

Corollary 1.2. Let G be an abelian subsemigroup of M, (C) with normal form in
K,,(C), where n has length r, and if P € GL(n,C) such that P~'GP C K,(C), then we
have the conditions below.

(1) The following are equivalent:

(i) G is hypercyclic,
(ii) the orbit G(Puy,) is dense in C",
(iii) gyn(Puy) is dense in C™.
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(2) Assume that G* is finitely generated by p matrices (p > 1) and let By,...,B, €
M,,(C) such that P~'B;P € K,(C) and the ¢Bi, 1 < j < p, generate G*. Then G
is hypercyclic if and only if

p r
Z NBy, Pu,, + Z 2inZPel
k=1 k=1

is dense in C™.

Remark 1.3. If all matrices of G \ I, are non-invertible (i.e. G* = {I,}), then G is
not hypercyclic (see Proposition 4.4).

Corollary 1.4. If G is an abelian semigroup having a normal form of length r €
{1,...,n} and generated by (2n — r) matrices of M,,(C), it has no dense orbit.

Corollary 1.5 (Ayadi [2]). If G is an abelian semigroup generated by n matrices of
M,,(C), it has no dense orbit.

Theorem 1.6. For any partition n of length r, there exist (2n — r + 1) matrices in
K5 (C) that generate a hypercyclic abelian semigroup.

As a consequence, from Theorem 1.6 and Corollary 1.4, we obtain the following corol-
lary.

Corollary 1.7. For everyn € Ny, r € {1,...,n}, the minimum number of matrices of
M, (C) that generate a hypercyclic abelian semigroup having a normal form of length r
is exactly 2n —r + 1.

In particular, for » = n, we obtain Feldman’s theorem.

Corollary 1.8 (Feldman [8]). The minimum number of diagonalizable matrices of
M, (C) that generate a hypercyclic abelian semigroup is n + 1.

For r < n, we obtain the following.

Corollary 1.9 (Abels and Manoussos [1]; Shkarin [12]). The minimum number
of non-diagonalizable matrices of M, (C) that generate a hypercyclic abelian semigroup
isn+2.

For r = 1, we obtain the following.

Corollary 1.10 (Abels and Manoussos [1]). The minimum number of matrices of
T,.(C) that generate a hypercyclic abelian semigroup is 2n.

This paper has the following structure. In §2 we introduce the normal form of an
abelian subsemigroup of M,,(C) and we give some related properties. In §3 we explore
the characterization of hypercyclic abelian subsemigroups of IC;;((C). The first part of
Theorem 1.1 is proved in §4. In §5, we prove the second part of Theorem 1.1 and
Corollaries 1.4 and 1.5. Theorem 1.6 is proved in §6. In §7, we give some examples for
the cases n =1, 2.

https://doi.org/10.1017/50013091513000539 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091513000539

Abelian semigroups of matrices on C" 327

2. The normal form of abelian subsemigroups of M, (C) and some related
properties

First recall the following proposition.

Proposition 2.1. Let G be an abelian subgroup of GL(n,C). There then exists a
P € GL(n,C) such that P~'GP is an abelian subgroup of K} (C), for some partition n
of n.

The proof of Proposition 2.1 results from combining the Lemmas 2.2 and 2.3.

Lemma 2.2. Let G be an abelian subgroup of GL(n,C). There then exists a direct
sum decomposition

C"=@PEr, 1<r<n, (2.1)
k=1

where Ej, is a G-invariant vector subspace of C™ of dimension ny, 1 < k < r, such that,
for each A € G, the restriction Ay of A to Ej has a unique eigenvalue ji4 .

Proof. Given A € G, let 41 be an eigenvalue and let E4 , = Ker(A — pa 1 I,)" be
the associated generalized eigenspace. For any B € G the space E4 j is invariant under
B. If B restricted to E4 i has two distinct eigenvalues, then it can be decomposed further.
The decomposition (2.1) is the maximal decomposition associated to all A € G. 0

The restriction of the group G to each subspace Fj can be put into triangular form.
This follows from a standard induction argument (see [13, Chapter 1, §2, Corollary to
Theorem 1]), used to prove the following.

Lemma 2.3. Let G be an abelian subgroup of GL(n,C). Assume that every element
of G has a unique eigenvalue. There then exists a matrix P € GL(n, C) such that PGP
is a subgroup of T} (C).

The analogous proposition to Proposition 2.1 for the subsemigroup is the following.

Proposition 2.4. Let G be an abelian subsemigroup of M, (C). There then exists a
P € GL(n,C) such that P~'GP is an abelian subsemigroup of K,,(C) for some partition
n of n.

Proof. For every A € G there exists Ay € C such that (4 — Aal,) € GL(n,C) (it
suffices to take A4 not an eigenvalue of A). Define L as the group generated by L := {A-
Aal,: A € G}. Then L is an abelian subgroup of GL(n,C) and, by Proposition 2.1, there
exists a P € GL(n,C) such that P~'LP C K;(C), for some n € Nj and 7 € {1,...,n}.
As P7'LP = {P7'AP — \sl,,: A € G}, we have P"'GP C K,(C); this proves the
proposition. O

The following results follow from basic properties of the matrix exponential map, and
their proofs are left to the reader.

Lemma 2.5. exp(K,(C)) = K;(C).
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Lemma 2.6. Let A, B € K,(C). If eeB = eBe?, then AB = BA.
Let G' be an abelian subsemigroup of K7 (C). Define
C(G):={AecK,(C): AB=BAVB € G}.
Since G is abelian, G C C(QG).
Lemma 2.7. Let G be an abelian subsemigroup of K}(C). We have that

(i) g, C C(G) and all matrices of g, commute,

(ii) exp(gy) = G,
(iii) exp(C(G)) = C(G) N GL(n,C) = C(G) N K3(C).

Proof. (i) By Lemma 2.6, all elements of g, commute; hence g, C C(gy,). Let B € g,
and A € G, so e® € G. As G is abelian, Ae® = ePA; hence e?ef = eBe?. Since
A,B € K,(C), it follows by Lemma 2.6 that AB = BA, and therefore B € C(G). We
conclude that g, C C(G).

(ii) We have exp(g,) C G by definition. Conversely, let A € G. Since G C K} (C), there
exists B € K,)(C) such that e? = A (see Lemma 2.5). Hence, B € exp~}(G)NK,(C) = g,
and then A € exp(gy). It follows that exp(g,) = G; this proves (ii).

(iii) Let A = P, where B € C(G), and let C € C(G). Then BC = CB, and therefore
CeP = ePC, or AC = CA. 1t follows that A € C(G). Since B € K,(C), so A € K}(C),
by Lemma 2.5. Conversely, let A € C(G)NK;(C). By Lemma 2.5 there exists B € K,;,(C)
such that e = A. Let C € G. Then CeP? = eBC, and hence e“e? = eBeC. Since
B, C € K,(C), it follows by Lemma 2.6 that BC' = C'B. Therefore, B € C(G), and hence
A € exp(C(Q)). O

3. The hypercyclic abelian subsemigroup of Ky (C)

Let G be an abelian subsemigroup of Ky (C). Let u € C" and consider the linear map

®,:C(G)—»C"
A~ Au.

Denote by Vect(G) the vector subspace of IC,,(C) generated by G.

o

Proposition 3.1. Let G be an abelian subsemigroup of Ky (C). If G(u) # 0 (respec-

tively, g,(u) # 0) for some u € C", then &, is a linear isomorphism. Moreover,
?,(Vect(@)) = @,(C(G)) = C".
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Proof.

Case 1 (G(u) # 0). Let us prove that @, is surjective: we have that @,(C(G)) is
a vector subspace of C". Since G C C(G), it follows that G(u) C @,(C(G)). As C(G)
is a vector space, § # G(u) C &,(C(G)), and therefore @,(C(G)) = C™. We also have
G(u) C 9, (Vect(G)), so, as above, &,,(Vect(G)) = C™.

&, is injective: let A € Ker(P,), so Au = 0. Let € C"; then, by the above working
there exists B € Vect(G) such that « = Bu. As A € Ker(®,) C C(G) then AB = BA.
Therefore, Az = ABu = BAu = B(0) = 0. It follows that A = 0, and hence Ker(®,) =

{0}
Case 2 (gn(u) # 0), We also have that &,(C(G)) = C" since g, C C(G)

(Lemma 2.7 (i) and 0 # g, (u) C ¢,(C(G)). O

Corollary 3.2. If G is hypercyclic, then C(G) = Vect(G) = G; in particular, G is a
vector space of dimension n.

Proof. If G(u) = C™ for some v € C", then @, is a linear isomorphism (see Propo-
sition 3.1), and hence C(G) = &, *(C") = &, (G(u)) = &5, ' (G(u)) = G; this proves the

- Tu

corollary. 0

We let U := [];_,(C* x C™~1). Then, U is open and dense in C"; moreover, C" \ U
is a union of r G-invariant vector subspaces of C" of dimension n — 1.

Lemma 3.3. Letu e U.

(i) If B € K,(C) satisties Bu € U, then B € K;(C).

o o

(i) If G(u) # O (respectively, g,(u) # 0), then U = &,,(C(G) N K (C)).
Proof. (i) Write
w=1[uy,...,u]T, Bu=v=1[v,...,v.]T €U,

with ug = [ak1,. .,k n, )T € C* x C™ ™1 vy = [2p1, ..., Thop, ]t € C* x C™~1 and
write B = diag(Bi, ..., By), with By € T,,, (C), k =1,...,r. Let p be the eigenvalue of
By. From Bu = v, we get that prag1 = zp1 # 0 for every k = 1,...,r. It follows that
pr. # 0. Therefore, B € GL(n,C), that is, B € K}(C).

(ii) If v € U, then, by Proposition 3.1, there exists B € C(G) such that Bu = v;
hence, by (i), B € K}(C) and so v € @,(C(G) N K} (C)). Conversely, if v = Bu, where
B € C(G) N Ky(C), then w1 = prary # 0 for every k = 1,...,r. It follows that
veU. O

Lemma 3.4. Let G be an abelian subsemigroup of Ky (C). Assume that G has a some-

where dense (respectively, dense) orbit in C"; then, for every v € U, G(v) is somewhere
dense (respectively, dense) in C".
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Proof. Let u € C" such that G(u) # 0. Since C* \ U is a union of r G-invariant
vector subspaces of C™ with dimension n — 1, it follows that v € U. Let v € U; then, by
Proposition 3.1, v = Bu for some B € Vect(G). Moreover, by Lemma 3.3, B € K}(C). It
follows that G(v) = B(G(u)) and, since B is invertible, G(v) # 0.

Now, if G(u) = C", then G(v) = B(G(u)) = B(C") = C". O

4. Proof of the first part of Theorem 1.1
We require the following result.
Proposition 4.1 (Rossmann [11, Proposition 7’ p. 17]). The restriction
exp|r,(c): Tn(C) = T (C)

is a local diffeomorphism; in particular, it is an open map.

Corollary 4.2. The restriction exp|x, c): Ky(C) = K;(C) is a local diffeomorphism;
in particular, it is an open map.

Proof. The proof results from Proposition 4.1 and the fact that

explk, (c) = explr, () © - @ explr,, ()

O

Recall that U := [];_,(C* x C"~1) and, for u € C", the linear map &, is defined as
$,:C(G) - C", A Au.

Proposition 4.3. Let G be an abelian subsemigroup of K;(C). Assume that G (uy) #
0 or gy(uy) # 0, where u, is defined in § 1. Then, f := ®,, o exp|k, ) o P, from C" to
C™ is well defined and satisfies the following:

(i) f is continuous and open;
(ii) f(Buy) = ePu, for every B € C(G);

) fH(G(uy)) = gy(uy) and f(gy(uy)) = G(uy);
(iv) f(C") =U.

Proof. (i) By Proposition 3.1, @, is a linear isomorphism. So f := &, oexp|k, () ©
@;}1 is well defined and continuous. Moreover, f is a local diffeomorphism by Corol-
lary 4.2, and therefore f is an open map.

(ii) For every B € C(G), we have that @, (Bun) B. Therefore,

(iii

f(Buy,) = Dy, © expli, (©°?, (Bun)

= qjun( )

_ B
=€ Uy.
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(iii) We have that

FHG(uy)) = Pu, 0 explict o) 0 2, (G(uy))
=Py, (eXP|;E717(<C)(G))
=, (gn)
= &y (un).

We also have that

f(gun) = qun ° eXp|ICn(C) ° @;nl (gn(uﬂ))
= qun (eXp|ICn(C) (gn))
=o,,(G)
= G(uy).

(iv) As @;ﬂl : C" — C(Q) is an isomorphism, we get that

f((cn) = @u" o eXp|,C" ©) ©° @;’11 ((Cn)
= &y, [exp|k, () (C(G))]
=,,(C(G)NK;(C)) (by Lemma 2.7 (iii))
=U (by Lemma 3.3 (ii)).

|

Proposition 4.4. Let G be an abelian subsemigroup of M,,(C) and let w € C™. Then
G*(u) is somewhere dense (respectively, dense) if and only if G(u) is.

o

Proof. The first implication is trivial. Conversely, suppose that G(u) # 0 (respec-
tively, G(u) = C™). We can assume, using Proposition 2.4, that G C K, (C). We let
G =G\ G~

o If G' =), then G = G* and so G*(u) # () (respectively, G*(u) = C").

o

o If G' £ (), then
Gwc(Umw)wwy

AeG’

Since every A € G’ is non-invertible,
Im(A) c | J Hy,
k=1

where

Hy={u=[ug,...,u;]t €C":uj €C", u, € {0} x C™* 1 1< j#k<r}.
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It follows that

and so

Since Hj, has dimension n — 1, H, = 0, for every 1 < k < r, and therefore G*(u) # 0

(respectively, G*(u) = C™). O

Proof of the first part of Theorem 1.1. Let G be an abelian subsemigroup of
K, (C). From Proposition 4.4 and since g, = g := exp™ ' (G*) N (K, (C)), we may assume
that G C K} (C).

(ii) = (i). This is clear.
(i) =

(iii) = (ii). Suppose that g,(u,) = C". Then g,(u,) = g;(u,) = C". By apply-
ing Proposition 4.3 to G*, there exists a continuous map f: C* — C” such that

f(gn(uy)) = G(uy) and f(C") = U. Hence, one has that U = f(g,(uy,)) C G(uy).
Therefore, G(u,) = C™.

(ii). This follows directly from Proposition 4.4 and Lemma 3.4 (since u, € U).

(i) = (iii). Suppose that G(u,) = C". Since f is an open map, we have that
f_l(G(Un)) = g,(uy), and thus

C" = fH(G(uy)) € F7HG(uy)) = gn(uy).

Hence, g, (u,) = C". O

5. Proof of the second part of Theorem 1.1, Corollaries 1.4 and 1.5

Lemma 5.1 (Ayadi and Marzougui [3, Proposition 3.5]). Let A, B € T, (C). If
e4 = eB, then A = B + 2iknl, for some k € Z.

Proposition 5.2. Let G be an abelian subsemigroup of IC:‘,((C) and let By,...,By €
K, (C) (p = 1) such that eB1, ... ePr generate G. We have that

p r
gn(uy) = Z NBju, + Z 217‘(’267(7’6).
k=1 k=1

Proof. First we determine g,. Let C' € g;,. Then C = diag(C1,...,C;) € K,(C) and

e € G. So
CT) _

e® = diag(e“?,... e e™Bi. . eme By
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for some my,...,m, € N. Since By,...,B, € g, they pairwise commute (see Lemma
2.7(i)). Therefore, e© = emiBit+muBy_Set B; = diag(Bj 1,...,Bj); then

eCk — em1Bi it +mpBp i k=1 r

, ey

As C € g, we also have that CB; = B;C, so Cy,Bj = B; 1Ck, j = 1,...,p. It follows
that
Cr = miBy g+ +mpBy i 4 2insi I,

for some sy € Z (see Lemma 5.1). Therefore,

P P
C = diag (ijBjJ +2ims1 Ly Z m; B, + 2i7rsrlm)
j=1 j=1

P
Z ;Bj + diag(2irsi1y,,. .., 2ins,.I,,).

Set Jy, = diag(JM, R Jkﬂ»), where

0eT,,(C) ifi#k,
T = iy
I, ifi = k.

We have that
diag(2ims1 Ly, ..., 2ins,. I, ZQlﬂ'Ska,

and therefore
P T
C= ZTnij + Z 2imsg Jg.
j=1 k=1
We conclude that

D r
gy =Y NBj+ ) 2irZJ;.
j=1 k=1

Second, we determine g,(uy). Let B € g,. We have that

p r
B=Y m;Bj+Y 2irspJ
j=1 k=1

for some mq,...,m, € N and sq,...,s, € Z. We also have that
Jpuy = diag(Ji,1, -, Jir)en, - -, en,T]T
= [, (), )T
= o,
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Hence,

P T
Bu, = ijBjun + Z 2i7rske7(7k),
=1 k=1
and therefore

p T
gn(uy) = > NBju, + Y 2inZe(l.
j=1 k=1

This proves the proposition. O

Proof of the second part of Theorem 1.2. This results directly from Proposi-
tion 5.2 and the first part of Theorem 1.1. O

Lemma 5.3. Let H = Zuy + -+ - + Ztty,, withuy, € C", k=1,...,m. If m < 2n, then
H is nowhere dense in C™.

Proof. By identifying C" with R?", the proof comes from [12, Lemma 2.1]. O

Proof of Corollary 1.4. First, it is clear by Lemma 5.3 that if H = Zuy + - - - + Zuy,
ur € C" with m < 2n, then H cannot be dense. Now, by applying Corollary 1.2 for
p = 2n —r, one has that m = p +r = 2n, and Corollary 1.4 follows. (]

Proof of Corollary 1.5. This follows from the fact that n < 2n — r, since r < n,
and by applying Corollary 1.2. O

6. Proof of Theorem 1.6

We construct, for every r € {1,...,n} and for every partition n of n of length r, (2n—r+1)
matrices Aq,..., Aop_ry1 € IC7*7((C) generating a hypercyclic abelian semigroup.
We repeatedly use the following multidimensional version of Kronecker’s theorem.

Kronecker’s theorem

Let aq,...,a, be negative real numbers such that the numbers 1, aq, ..., «, are lin-
early independent over Q. Then the set

N™ + Nlag, ..., o)t = {[s1,...,80)" +k[a1,..., 0" : k,51,...,5, €N}

is dense in R™.
We deduce the complex version as follows.

Corollary 6.1. Let aq,...,an,0B1,-..,08, be negative real numbers such that the
numbers 1,a1,...,0n,0B1,...,0, are linearly independent over Q. Then N™ + iN"™ +
Nlay + 61, .,y +i6,]T is dense in C™.

Proof. This is clear by identifying C"™ with R?" in the obvious way. ]
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Recall that eg,k) = [(e%k))l, cee (eg,k))r] € C", where, for every j =1,...,r,

(), = 0eCn ifj#Ek,
md enk if j = k.

An equivalent formulation is

k-1
67(71) :eh...,e,(?k) =ey,, where/l; =1, { :Zan—i—l, k=2,...,r1
j=1

Proposition 6.2. Let n € Ny and r € {1,...,n}. There then exist (2n—r+1) vectors
UL, ..., Uzp—rt1 Of C™ such that

2n—r—+1 r

Z Nug + Z QiﬂZe%’“)
k=1 k=1

is dense in C".

Proof. Let ai,...,ay,,01,...,0, be negative real numbers such that the numbers
Laq,...,0p,B1,..., 0, are linearly independent over Q. Define (e;,,,,...,€;,) := Bo \
(eey,-.-,es.), and define the matrix S by

)

2irel’) 1< k<
Sek =
1<k<n.

<
€y, fr+1<

We see that S € GL(n,C). Set u = [a +iB1, ..., a, +18,]T and define

Serik fl<k<n—m
up =< iSep_pagp fn—r+1<k<2n—r,

Su ifk=2n—r+1.
Set

2n—r—+1 T

H = Z Nuy, + Z QiWZB%k)
k=1 k=1

and

n—r n T
H':=Y Neqx+ Y iNey + Nu+ ) Ze.
k=1 k=1 k=1
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We then have that

S(H') = nE:TNSer + z”: iNSep + NSu + ET: Z.Sey,

k=1 k=1 k=1
n—r n T
= Z Nuy, + Z NiSer + Nugy—ri1 + Z Zine%k)
k=1 k=1 k=1
n—r 2n—r T
= Z Nuy + Z Nug + Nugy—py1 + Z 2i7rZe£7k)
k=1 k=n—r+1 k=1
= H.
Since N +iN" + Nu C H', we see that H' is dense in C™ by Corollary 6.1, and thus so
is H. This proves the proposition. (I
Proof of Theorem 1.6. By Proposition 6.2, there exist uy,...,usp—rtr1 € C" such
that
2n—r+1 r

H:= Y Nug+» 2inZel})
k=1 k=1

is dense in C". Set

Wy = [we1, - Uky) "
with ug ; = [xgkl), A acgkgbj}T Let By,..., B2, 11 be defined by
Bk = diag(Bk’h - 7Bk:,7“)7
where
s 01
Buy=| ' o - L 1<j<r 1<k<2n—r+1.
® 0 W
[ m; o ... 0 x5 ]

Then Bru, = uy.

Let G be the subsemigroup of Ky (C) generated by eBr ... eBen—rir,

Firstly, we check that G is abelian. For this, it suffices to show that BBy = By By
for every k, k' =1,...,2n—17+ 1.

Set By,; == N ; + xgﬁ)lnj, where

0 O

Tk 0 GTnJ((C) with Tk’]:[$§?2)77$§k)]rr7 j:]_,...7’f'.
»J

Ng,j =

We see that Ny jNi;j = Ni/ jNi; = 0 for every 5 = 1,...,r. Hence, By ;B ; =
Bk/JBk,j and so BkBkr = Bk/Bk.
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Secondly, by Proposition 5.2, we have that

2n—r+1 r
&n(uy) = Z NBju, + Z inZe%’“)
k=1 k=1
2n—r—+1 r
= Y Nug+ ) 2inZell)
k=1 k=1
=H.
Therefore, g,(u,) = C" and, by Theorem 1.1, G(u,) = C". O

7. Examples

Example 7.1. Let G be the subsemigroup of C* generated by a; = €7, ay =
e~ 2(V2HV3)T Then @ is hypercyclic.

Proof. In this case, we have that n = (1), u,, = 1 and g;, = exp~!(G). By Proposi-
tion 5.2,
g,(1) = 27N — 2(v/2 +1V3)7N + 2inZ = 2rL,

where
L:=N-(V2+iV3)N+iZ.

As 1, v/2 and v/3 are linearly independent over Q, by Corollary 6.1, N—(v/2+iv/3)N+iN C
L is dense in C, and so is L. Therefore, g,(1) = C and, by Theorem 1.1, G(1) =C. O

Example 7.2. Let G be the semigroup generated by

1 0 1 0
A — d; 27 27 A _ A —
1 = diag(e™, ), 27 o 1]’ 3 [m 11
and
. 1 0
A, = 727r(\/§+1\/§) )
1= or(1—iv5) 1

Then G is abelian and hypercyclic.

Proof. By construction, G is an abelian subsemigroup of T%(C) and we have that

u, =ey and Ay = ePr k=1,...,4, where
0 O 0 0
B, = diag(2w, 2 By = By =
1 = diag(2m, 2m), 27 o 01’ s [m 01
and
—27(v/2 +iv/3) 0

By =

2r(1 —iv5)  —27(v/2 +iv3)
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By Proposition 5.2,

4
gnler) = ZNBk61 + 2inZey
k=1
=2nL,

where

L := Nej 4 Neg + iNey + N[—v2 — iv/3,1 — iv/5]T + iZe;.
We let

K :=Nej + Ney + iNey + N[—v2 —iv/3,1 — iv/5]T + iNe;.
Then

K =N?>+iN? + N-v2 -iv3,1 —iv5]T C L.

By Corollary 6.1, K is dense in C? since 1, —v/2, —/3 and —+/5 are linearly independent
over Q, and so is L. We conclude by Theorem 1.1 that G(e;) = C2. O
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