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Abstract We give a complete characterization of a hypercyclic abelian semigroup of matrices on Cn.
For finitely generated semigroups, this characterization is explicit and it is used to determine the minimal
number of matrices in normal form over C that form a hypercyclic abelian semigroup on Cn. In particular,
we show that no abelian semigroup generated by n matrices on Cn can be hypercyclic.
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1. Introduction

Let Mn(C) be the set of all square matrices over C of order n � 1 and let GL(n, C) be
the group of invertible matrices of Mn(C). Let G be an abelian subsemigroup of Mn(C).
For a vector v ∈ Cn, we consider the orbit of G through v: G(v) = {Av : A ∈ G} ⊂ Cn. A
subset E ⊂ Cn is called G-invariant if A(E) ⊂ E for any A ∈ G. The orbit G(v) ⊂ Cn is
dense (respectively, somewhere dense) in Cn if G(v) = Cn (respectively, G̊(v) �= ∅), where
Ē (respectively, E̊) denotes the closure (respectively, the interior) of a subset E ⊂ Cn.
The semigroup G is called hypercyclic if there exists a vector v ∈ Cn such that G(v) is
dense in Cn. We refer the reader to the recent book [4] and to [9] for a thorough account
on hypercyclicity.

Recently, there has been much research around this subject. We mention, in particu-
lar, [1–3,5–8,12] for the abelian case and [10] for the non-abelian case. Feldman showed
in [8] that in Cn there exists a hypercyclic semigroup generated by an (n + 1)-tuple
of diagonal matrices on Cn, and that no semigroup generated by an n-tuple of diago-
nalizable matrices on Cn or Rn can be hypercyclic. Costakis et al . proved in [7] that if
one removes the diagonalizability condition, there exists an n-tuple of non-diagonalizable
matrices on Rn that is hypercyclic. Recently, Costakis and Parissis proved in [5] that the
minimal number of matrices in Jordan form on Rn that form a hypercyclic tuple is n+1.
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In the non-abelian case, Javaheri shows in [10] that there exists a 2-generator hypercylic
semigroup in any dimension in both real and complex cases.

The main purpose of this paper is to investigate the following: when can an abelian
subsemigroup of Mn(C) be hypercyclic?

Shkarin [12] and Abels and Manoussos [1] considered the same topic, in particular the
minimal number of generators of a finitely abelian hypercyclic semigroup of matrices on
Cn and Rn. They have, independently, proved similar results to Corollaries 1.8 and 1.9.
The methods of proof in [1,12] and in this paper are quite different and have different
consequences.

We firstly give a general result answering the above question for any abelian subsemi-
group of Mn(C), by providing an effective way of checking that a given semigroup is
hypercyclic. Note that in [3] the authors answer this question for any abelian subgroup of
GL(n, C), so this paper can be viewed as a continuation of that work. We point out that,
as the results obtained for groups are not used to get those for semigroups, the present
paper is almost independent of [3].

Secondly, we prove that the minimal number of matrices required to form a hypercyclic
abelian semigroup in Kη(C), having a normal form of length r (see the definition below),
is exactly 2n − r + 1 (see Corollary 1.7). In particular, n + 1 is the minimal number of
matrices on Cn required to form a hypercyclic abelian semigroup on Cn; this was recently
shown in [2], answering a question raised by Feldman in [8, § 6].

To state our main results, we need to introduce the following notation and definitions.
Let N be the set of non-negative integers, and set N0 = N\{0}. Let n ∈ N0 be fixed. By

a partition of n we mean a finite sequence of positive integers η = (n1, . . . , nr) such that∑r
i=1ni = n. The number r will be called the length of the partition. Given a partition

η = (n1, . . . , nr), we define the following:

Kη(C) := Tn1(C) ⊕ · · · ⊕ Tnr
(C),

where Tm(C) (m = 1, 2, . . . , n) is the set of lower-triangular matrices over C with only
one eigenvalue.

Obviously, Kη(C) is a subsemigroup of Mn(C). We have the following:

• K∗
η(C) := Kη(C) ∩ GL(n, C) is a subsemigroup of GL(n, C);

• T∗
m(C) = Tm(C) ∩ GL(m, C) is a subgroup of GL(m, C);

• B0 = (e1, . . . , en) is the canonical basis of Cn;

• In is the identity matrix on Cn.

For a row vector v ∈ Cn, we denote by vT the transpose of v. We also have that

• uη = [eη,1, . . . , eη,r]T ∈ Cn, where eη,k = [1, 0, . . . , 0]T ∈ Cnk , k = 1, . . . , r,

• e
(k)
η = [(e(k)

η )1, . . . , (e
(k)
η )r] ∈ Cn, where, for every j = 1, . . . , r,

(e(k)
η )j =

{
0 ∈ Cnj if j �= k,

eη,k if j = k.
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The following ‘normal form of G’ allows us to deduce the results for an arbitrary semi-
group.

For every abelian subsemigroup G of Mn(C), there exists a P ∈ GL(n, C) such that
P−1GP ⊂ Kη(C) for some partition η of n (see Proposition 2.4).

Given a positive integer r ∈ {1, . . . , r}, we say that the semigroup G has ‘a normal
form of length r’ if G has a normal form in Kη(C) for some partition η with length r.

Consider the matrix exponential map exp: Mn(C) → GL(n, C). Set exp(M) = eM .
For such a choice of matrix P , we let

gη = exp−1(G) ∩ (P (Kη(C))P−1),

gη(u) = {Bu : B ∈ gη}, u ∈ Cn.

Finally, we define
G∗ = G ∩ GL(n, C).

Our principal results can now be stated as follows.

Theorem 1.1. Let G be an abelian subsemigroup of Kη(C) for some partition η with
length r.

(1) The following are equivalent:

(i) G is hypercyclic,

(ii) the orbit G(uη) is dense in Cn,

(iii) gη(uη) is an additive subsemigroup, dense in Cn.

(2) Assume that G∗ is finitely generated by p matrices (p � 1) and let B1, . . . , Bp ∈
Kη(C) such that eB1 , . . . , eBp generate G∗. Then G is hypercyclic if and only if

p∑
k=1

NBkuη +
r∑

k=1

2iπZe(k)
η

is dense in Cn.

An immediate consequence is the following corollary.

Corollary 1.2. Let G be an abelian subsemigroup of Mn(C) with normal form in
Kη(C), where η has length r, and if P ∈ GL(n, C) such that P−1GP ⊂ Kη(C), then we
have the conditions below.

(1) The following are equivalent:

(i) G is hypercyclic,

(ii) the orbit G(Puη) is dense in Cn,

(iii) gη(Puη) is dense in Cn.
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(2) Assume that G∗ is finitely generated by p matrices (p � 1) and let B1, . . . , Bp ∈
Mn(C) such that P−1BjP ∈ Kη(C) and the eBj , 1 � j � p, generate G∗. Then G

is hypercyclic if and only if

p∑
k=1

NBkPuη +
r∑

k=1

2iπZPe(k)
η

is dense in Cn.

Remark 1.3. If all matrices of G \ In are non-invertible (i.e. G∗ = {In}), then G is
not hypercyclic (see Proposition 4.4).

Corollary 1.4. If G is an abelian semigroup having a normal form of length r ∈
{1, . . . , n} and generated by (2n − r) matrices of Mn(C), it has no dense orbit.

Corollary 1.5 (Ayadi [2]). If G is an abelian semigroup generated by n matrices of
Mn(C), it has no dense orbit.

Theorem 1.6. For any partition η of length r, there exist (2n − r + 1) matrices in
K∗

η(C) that generate a hypercyclic abelian semigroup.

As a consequence, from Theorem 1.6 and Corollary 1.4, we obtain the following corol-
lary.

Corollary 1.7. For every n ∈ N0, r ∈ {1, . . . , n}, the minimum number of matrices of
Mn(C) that generate a hypercyclic abelian semigroup having a normal form of length r

is exactly 2n − r + 1.

In particular, for r = n, we obtain Feldman’s theorem.

Corollary 1.8 (Feldman [8]). The minimum number of diagonalizable matrices of
Mn(C) that generate a hypercyclic abelian semigroup is n + 1.

For r < n, we obtain the following.

Corollary 1.9 (Abels and Manoussos [1]; Shkarin [12]). The minimum number
of non-diagonalizable matrices of Mn(C) that generate a hypercyclic abelian semigroup
is n + 2.

For r = 1, we obtain the following.

Corollary 1.10 (Abels and Manoussos [1]). The minimum number of matrices of
Tn(C) that generate a hypercyclic abelian semigroup is 2n.

This paper has the following structure. In § 2 we introduce the normal form of an
abelian subsemigroup of Mn(C) and we give some related properties. In § 3 we explore
the characterization of hypercyclic abelian subsemigroups of K∗

η(C). The first part of
Theorem 1.1 is proved in § 4. In § 5, we prove the second part of Theorem 1.1 and
Corollaries 1.4 and 1.5. Theorem 1.6 is proved in § 6. In § 7, we give some examples for
the cases n = 1, 2.
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2. The normal form of abelian subsemigroups of Mn(C) and some related
properties

First recall the following proposition.

Proposition 2.1. Let G be an abelian subgroup of GL(n, C). There then exists a
P ∈ GL(n, C) such that P−1GP is an abelian subgroup of K∗

η(C), for some partition η

of n.

The proof of Proposition 2.1 results from combining the Lemmas 2.2 and 2.3.

Lemma 2.2. Let G be an abelian subgroup of GL(n, C). There then exists a direct
sum decomposition

Cn =
r⊕

k=1

Ek, 1 � r � n, (2.1)

where Ek is a G-invariant vector subspace of Cn of dimension nk, 1 � k � r, such that,
for each A ∈ G, the restriction Ak of A to Ek has a unique eigenvalue µA,k.

Proof. Given A ∈ G, let µA,k be an eigenvalue and let EA,k = Ker(A − µA,kIn)n be
the associated generalized eigenspace. For any B ∈ G the space EA,k is invariant under
B. If B restricted to EA,k has two distinct eigenvalues, then it can be decomposed further.
The decomposition (2.1) is the maximal decomposition associated to all A ∈ G. �

The restriction of the group G to each subspace Ek can be put into triangular form.
This follows from a standard induction argument (see [13, Chapter 1, § 2, Corollary to
Theorem 1]), used to prove the following.

Lemma 2.3. Let G be an abelian subgroup of GL(n, C). Assume that every element
of G has a unique eigenvalue. There then exists a matrix P ∈ GL(n, C) such that P−1GP

is a subgroup of T∗
n(C).

The analogous proposition to Proposition 2.1 for the subsemigroup is the following.

Proposition 2.4. Let G be an abelian subsemigroup of Mn(C). There then exists a
P ∈ GL(n, C) such that P−1GP is an abelian subsemigroup of Kη(C) for some partition
η of n.

Proof. For every A ∈ G there exists λA ∈ C such that (A − λAIn) ∈ GL(n, C) (it
suffices to take λA not an eigenvalue of A). Define L̂ as the group generated by L := {A−
λAIn : A ∈ G}. Then L̂ is an abelian subgroup of GL(n, C) and, by Proposition 2.1, there
exists a P ∈ GL(n, C) such that P−1L̂P ⊂ K∗

η(C), for some η ∈ Nr
0 and r ∈ {1, . . . , n}.

As P−1LP = {P−1AP − λAIn : A ∈ G}, we have P−1GP ⊂ Kη(C); this proves the
proposition. �

The following results follow from basic properties of the matrix exponential map, and
their proofs are left to the reader.

Lemma 2.5. exp(Kη(C)) = K∗
η(C).
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Lemma 2.6. Let A, B ∈ Kη(C). If eAeB = eBeA, then AB = BA.

Let G be an abelian subsemigroup of K∗
η(C). Define

C(G) := {A ∈ Kη(C) : AB = BA ∀B ∈ G}.

Since G is abelian, G ⊂ C(G).

Lemma 2.7. Let G be an abelian subsemigroup of K∗
η(C). We have that

(i) gη ⊂ C(G) and all matrices of gη commute,

(ii) exp(gη) = G,

(iii) exp(C(G)) = C(G) ∩ GL(n, C) = C(G) ∩ K∗
η(C).

Proof. (i) By Lemma 2.6, all elements of gη commute; hence gη ⊂ C(gη). Let B ∈ gη

and A ∈ G, so eB ∈ G. As G is abelian, AeB = eBA; hence eAeB = eBeA. Since
A, B ∈ Kn(C), it follows by Lemma 2.6 that AB = BA, and therefore B ∈ C(G). We
conclude that gη ⊂ C(G).

(ii) We have exp(gη) ⊂ G by definition. Conversely, let A ∈ G. Since G ⊂ K∗
η(C), there

exists B ∈ Kη(C) such that eB = A (see Lemma 2.5). Hence, B ∈ exp−1(G)∩Kη(C) = gη,
and then A ∈ exp(gη). It follows that exp(gη) = G; this proves (ii).

(iii) Let A = eB , where B ∈ C(G), and let C ∈ C(G). Then BC = CB, and therefore
CeB = eBC, or AC = CA. It follows that A ∈ C(G). Since B ∈ Kη(C), so A ∈ K∗

η(C),
by Lemma 2.5. Conversely, let A ∈ C(G)∩K∗

η(C). By Lemma 2.5 there exists B ∈ Kη(C)
such that eB = A. Let C ∈ G. Then CeB = eBC, and hence eCeB = eBeC . Since
B, C ∈ Kη(C), it follows by Lemma 2.6 that BC = CB. Therefore, B ∈ C(G), and hence
A ∈ exp(C(G)). �

3. The hypercyclic abelian subsemigroup of K∗
η(C)

Let G be an abelian subsemigroup of K∗
η(C). Let u ∈ Cn and consider the linear map

Φu : C(G) → Cn

A 	→ Au.

Denote by Vect(G) the vector subspace of Kη(C) generated by G.

Proposition 3.1. Let G be an abelian subsemigroup of K∗
η(C). If ˚

G(u) �= ∅ (respec-
tively, ˚gη(u) �= ∅) for some u ∈ Cn, then Φu is a linear isomorphism. Moreover,
Φu(Vect(G)) = Φu(C(G)) = Cn.
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Proof.

Case 1 ( ˚
G(u) �= ∅). Let us prove that Φu is surjective: we have that Φu(C(G)) is

a vector subspace of Cn. Since G ⊂ C(G), it follows that G(u) ⊂ Φu(C(G)). As C(G)
is a vector space, ∅ �= ˚

G(u) ⊂ Φu(C(G)), and therefore Φu(C(G)) = Cn. We also have
G(u) ⊂ Φu(Vect(G)), so, as above, Φu(Vect(G)) = Cn.

Φu is injective: let A ∈ Ker(Φu), so Au = 0. Let x ∈ Cn; then, by the above working
there exists B ∈ Vect(G) such that x = Bu. As A ∈ Ker(Φu) ⊂ C(G) then AB = BA.
Therefore, Ax = ABu = BAu = B(0) = 0. It follows that A = 0, and hence Ker(Φu) =
{0}.

Case 2 ( ˚gη(u) �= ∅). We also have that Φu(C(G)) = Cn since gη ⊂ C(G)
(Lemma 2.7 (i)) and ∅ �= ˚gη(u) ⊂ Φu(C(G)). �

Corollary 3.2. If G is hypercyclic, then C(G) = Vect(G) = Ḡ; in particular, Ḡ is a
vector space of dimension n.

Proof. If G(u) = Cn for some u ∈ Cn, then Φu is a linear isomorphism (see Propo-
sition 3.1), and hence C(G) = Φ−1

u (Cn) = Φ−1
u (G(u)) = Φ−1

u (G(u)) = Ḡ; this proves the
corollary. �

We let U :=
∏r

k=1(C
∗ × Cnk−1). Then, U is open and dense in Cn; moreover, Cn \ U

is a union of r G-invariant vector subspaces of Cn of dimension n − 1.

Lemma 3.3. Let u ∈ U .

(i) If B ∈ Kη(C) satisfies Bu ∈ U , then B ∈ K∗
η(C).

(ii) If ˚
G(u) �= ∅ (respectively, ˚gη(u) �= ∅), then U = Φu(C(G) ∩ K∗

η(C)).

Proof. (i) Write

u = [u1, . . . , ur]T, Bu = v = [v1, . . . , vr]T ∈ U,

with uk = [ak,1, . . . , ak,nk
]T ∈ C∗ × Cnk−1, vk = [xk,1, . . . , xk,nk

]T ∈ C∗ × Cnk−1, and
write B = diag(B1, . . . , Br), with Bk ∈ Tnk

(C), k = 1, . . . , r. Let µk be the eigenvalue of
Bk. From Bu = v, we get that µkak,1 = xk,1 �= 0 for every k = 1, . . . , r. It follows that
µk �= 0. Therefore, B ∈ GL(n, C), that is, B ∈ K∗

η(C).

(ii) If v ∈ U , then, by Proposition 3.1, there exists B ∈ C(G) such that Bu = v;
hence, by (i), B ∈ K∗

η(C) and so v ∈ Φu(C(G) ∩ K∗
η(C)). Conversely, if v = Bu, where

B ∈ C(G) ∩ K∗
η(C), then xk,1 = µkak,1 �= 0 for every k = 1, . . . , r. It follows that

v ∈ U . �

Lemma 3.4. Let G be an abelian subsemigroup of K∗
η(C). Assume that G has a some-

where dense (respectively, dense) orbit in Cn; then, for every v ∈ U , G(v) is somewhere
dense (respectively, dense) in Cn.
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Proof. Let u ∈ Cn such that ˚
G(u) �= ∅. Since Cn \ U is a union of r G-invariant

vector subspaces of Cn with dimension n − 1, it follows that u ∈ U . Let v ∈ U ; then, by
Proposition 3.1, v = Bu for some B ∈ Vect(G). Moreover, by Lemma 3.3, B ∈ K∗

η(C). It
follows that G(v) = B(G(u)) and, since B is invertible, G̊(v) �= ∅.

Now, if G(u) = Cn, then G(v) = B(G(u)) = B(Cn) = Cn. �

4. Proof of the first part of Theorem 1.1

We require the following result.

Proposition 4.1 (Rossmann [11, Proposition 7′ p. 17]). The restriction

exp|Tn(C) : Tn(C) → T∗
n(C)

is a local diffeomorphism; in particular, it is an open map.

Corollary 4.2. The restriction exp|Kη(C) : Kη(C) → K∗
η(C) is a local diffeomorphism;

in particular, it is an open map.

Proof. The proof results from Proposition 4.1 and the fact that

exp|Kη(C) = exp|Tn1 (C) ⊕ · · · ⊕ exp|Tnr (C).

�

Recall that U :=
∏r

k=1(C
∗ × Cnk−1) and, for u ∈ Cn, the linear map Φu is defined as

Φu : C(G) → Cn, A 	→ Au.

Proposition 4.3. Let G be an abelian subsemigroup of K∗
η(C). Assume that ˚

G(uη) �=
∅ or ˚gη(uη) �= ∅, where uη is defined in § 1. Then, f := Φuη ◦ exp|Kη(C) ◦ Φ−1

uη
from Cn to

Cn is well defined and satisfies the following:

(i) f is continuous and open;

(ii) f(Buη) = eBuη for every B ∈ C(G);

(iii) f−1(G(uη)) = gη(uη) and f(gη(uη)) = G(uη);

(iv) f(Cn) = U .

Proof. (i) By Proposition 3.1, Φuη is a linear isomorphism. So f := Φuη ◦ exp|Kη(C) ◦
Φ−1

uη
is well defined and continuous. Moreover, f is a local diffeomorphism by Corol-

lary 4.2, and therefore f is an open map.

(ii) For every B ∈ C(G), we have that Φ−1
uη

(Buη) = B. Therefore,

f(Buη) = Φuη ◦ exp|Kη(C) ◦ Φ−1
uη

(Buη)

= Φuη
(eB)

= eBuη.
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(iii) We have that

f−1(G(uη)) = Φuη
◦ exp|−1

Kη(C) ◦ Φ−1
uη

(G(uη))

= Φuη (exp|−1
Kη(C)(G))

= Φuη (gη)

= gη(uη).

We also have that

f(guη
) = Φuη ◦ exp|Kη(C) ◦ Φ−1

uη
(gη(uη))

= Φuη
(exp|Kη(C)(gη))

= Φuη (G)

= G(uη).

(iv) As Φ−1
uη

: Cn → C(G) is an isomorphism, we get that

f(Cn) = Φuη
◦ exp|Kη(C) ◦ Φ−1

uη
(Cn)

= Φuη [exp|Kη(C)(C(G))]

= Φuη
(C(G) ∩ K∗

η(C)) (by Lemma 2.7 (iii))

= U (by Lemma 3.3 (ii)).

�

Proposition 4.4. Let G be an abelian subsemigroup of Mn(C) and let u ∈ Cn. Then
G∗(u) is somewhere dense (respectively, dense) if and only if G(u) is.

Proof. The first implication is trivial. Conversely, suppose that ˚
G(u) �= ∅ (respec-

tively, G(u) = Cn). We can assume, using Proposition 2.4, that G ⊂ Kη(C). We let
G′ := G \ G∗.

• If G′ = ∅, then G = G∗ and so ˚
G∗(u) �= ∅ (respectively, G∗(u) = Cn).

• If G′ �= ∅, then

G(u) ⊂
( ⋃

A∈G′

Im(A)
)

∪ G∗(u).

Since every A ∈ G′ is non-invertible,

Im(A) ⊂
r⋃

k=1

Hk,

where

Hk := {u = [u1, . . . , ur]T ∈ Cn : uj ∈ Cnj , uk ∈ {0} × Cnk−1, 1 � j �= k � r}.
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It follows that

G(u) ⊂
( r⋃

k=1

Hk

)
∪ G∗(u),

and so

G(u) ⊂
( r⋃

k=1

Hk

)
∪ G∗(u).

Since Hk has dimension n − 1, H̊k = ∅, for every 1 � k � r, and therefore ˚
G∗(u) �= ∅

(respectively, G∗(u) = Cn). �

Proof of the first part of Theorem 1.1. Let G be an abelian subsemigroup of
Kη(C). From Proposition 4.4 and since gη = g∗

η := exp−1(G∗)∩ (Kη(C)), we may assume
that G ⊂ K∗

η(C).

(ii) =⇒ (i). This is clear.

(i) =⇒ (ii). This follows directly from Proposition 4.4 and Lemma 3.4 (since uη ∈ U).

(iii) =⇒ (ii). Suppose that gη(uη) = Cn. Then gη(uη) = g∗
η (uη) = Cn. By apply-

ing Proposition 4.3 to G∗, there exists a continuous map f : Cn → Cn such that
f(gη(uη)) = G(uη) and f(Cn) = U . Hence, one has that U = f(gη(uη)) ⊂ G(uη).
Therefore, G(uη) = Cn.

(ii) =⇒ (iii). Suppose that G(uη) = Cn. Since f is an open map, we have that
f−1(G(uη)) = gη(uη), and thus

Cn = f−1(G(uη)) ⊂ f−1(G(uη)) = gη(uη).

Hence, gη(uη) = Cn. �

5. Proof of the second part of Theorem 1.1, Corollaries 1.4 and 1.5

Lemma 5.1 (Ayadi and Marzougui [3, Proposition 3.5]). Let A, B ∈ Tn(C). If
eA = eB , then A = B + 2ikπIn for some k ∈ Z.

Proposition 5.2. Let G be an abelian subsemigroup of K∗
η(C) and let B1, . . . , Bp ∈

Kη(C) (p � 1) such that eB1 , . . . , eBp generate G. We have that

gη(uη) =
p∑

k=1

NBkuη +
r∑

k=1

2iπZe(k)
η .

Proof. First we determine gη. Let C ∈ gη. Then C = diag(C1, . . . , Cr) ∈ Kη(C) and
eC ∈ G. So

eC = diag(eC1 , . . . , eCr ) = em1B1 · · · empBp

https://doi.org/10.1017/S0013091513000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000539


Abelian semigroups of matrices on Cn 333

for some m1, . . . , mp ∈ N. Since B1, . . . , Bp ∈ gη, they pairwise commute (see Lemma
2.7 (i)). Therefore, eC = em1B1+···+mpBp . Set Bj = diag(Bj,1, . . . , Bj,r); then

eCk = em1B1,k+···+mpBp,k , k = 1, . . . , r.

As C ∈ gη, we also have that CBj = BjC, so CkBj,k = Bj,kCk, j = 1, . . . , p. It follows
that

Ck = m1B1,k + · · · + mpBp,k + 2iπskInk

for some sk ∈ Z (see Lemma 5.1). Therefore,

C = diag
( p∑

j=1

mjBj,1 + 2iπs1In1 ; . . . , . . . ;
p∑

j=1

mjBj,r + 2iπsrInr

)

=
p∑

j=1

mjBj + diag(2iπs1In1 , . . . , 2iπsrInr ).

Set Jk := diag(Jk,1, . . . , Jk,r), where

Jk,i =

{
0 ∈ Tni

(C) if i �= k,

Ink
if i = k.

We have that

diag(2iπs1In1 , . . . , 2iπsrInr ) =
r∑

k=1

2iπskJk,

and therefore

C =
p∑

j=1

mjBj +
r∑

k=1

2iπskJk.

We conclude that

gη =
p∑

j=1

NBj +
r∑

k=1

2iπZJk.

Second, we determine gη(uη). Let B ∈ gη. We have that

B =
p∑

j=1

mjBj +
r∑

k=1

2iπskJk

for some m1, . . . , mp ∈ N and s1, . . . , sr ∈ Z. We also have that

Jkuη = diag(Jk,1, . . . , Jk,r)[eη,1, . . . , eη,r]T

= [(e(k)
η )1, . . . , (e(k)

η )r]T

= e(k)
η .
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Hence,

Buη =
p∑

j=1

mjBjuη +
r∑

k=1

2iπske(k)
η ,

and therefore

gη(uη) =
p∑

j=1

NBjuη +
r∑

k=1

2iπZe(k)
η .

This proves the proposition. �

Proof of the second part of Theorem 1.2. This results directly from Proposi-
tion 5.2 and the first part of Theorem 1.1. �

Lemma 5.3. Let H = Zu1 + · · · + Zum, with uk ∈ Cn, k = 1, . . . , m. If m � 2n, then
H is nowhere dense in Cn.

Proof. By identifying Cn with R2n, the proof comes from [12, Lemma 2.1]. �

Proof of Corollary 1.4. First, it is clear by Lemma 5.3 that if H = Zu1 + · · ·+Zum,
uk ∈ Cn with m � 2n, then H cannot be dense. Now, by applying Corollary 1.2 for
p = 2n − r, one has that m = p + r = 2n, and Corollary 1.4 follows. �

Proof of Corollary 1.5. This follows from the fact that n � 2n − r, since r � n,
and by applying Corollary 1.2. �

6. Proof of Theorem 1.6

We construct, for every r ∈ {1, . . . , n} and for every partition η of n of length r, (2n−r+1)
matrices A1, . . . , A2n−r+1 ∈ K∗

η(C) generating a hypercyclic abelian semigroup.
We repeatedly use the following multidimensional version of Kronecker’s theorem.

Kronecker’s theorem

Let α1, . . . , αn be negative real numbers such that the numbers 1, α1, . . . , αn are lin-
early independent over Q. Then the set

Nn + N[α1, . . . , αn]T := {[s1, . . . , sn]T + k[α1, . . . , αn]T : k, s1, . . . , sn ∈ N}

is dense in Rn.
We deduce the complex version as follows.

Corollary 6.1. Let α1, . . . , αn, β1, . . . , βn be negative real numbers such that the
numbers 1, α1, . . . , αn, β1, . . . , βn are linearly independent over Q. Then Nn + iNn +
N[α1 + iβ1, . . . , αn + iβn]T is dense in Cn.

Proof. This is clear by identifying Cn with R2n in the obvious way. �
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Recall that e
(k)
η = [(e(k)

η )1, . . . , (e
(k)
η )r] ∈ Cn, where, for every j = 1, . . . , r,

(e(k)
η )j =

{
0 ∈ Cnj if j �= k,

eη,k if j = k.

An equivalent formulation is

e(1)
η = e1, . . . , e

(k)
η = e�k

, where �1 = 1, �k :=
k−1∑
j=1

nj + 1, k = 2, . . . , r.

Proposition 6.2. Let n ∈ N0 and r ∈ {1, . . . , n}. There then exist (2n−r+1) vectors
u1, . . . , u2n−r+1 of Cn such that

2n−r+1∑
k=1

Nuk +
r∑

k=1

2iπZe(k)
η

is dense in Cn.

Proof. Let α1, . . . , αn, β1, . . . , βn be negative real numbers such that the numbers
1, α1, . . . , αn, β1, . . . , βn are linearly independent over Q. Define (eir+1 , . . . , ein

) := B0 \
(e�1 , . . . , e�r ), and define the matrix S by

Sek =

{
2iπe

(k)
η if 1 � k � r,

eik
if r + 1 � k � n.

We see that S ∈ GL(n, C). Set u = [α1 + iβ1, . . . , αn + iβn]T and define

uk :=

⎧⎪⎨
⎪⎩

Ser+k if 1 � k � n − r,

iSer−n+k if n − r + 1 � k � 2n − r,

Su if k = 2n − r + 1.

Set

H :=
2n−r+1∑

k=1

Nuk +
r∑

k=1

2iπZe(k)
η

and

H ′ :=
n−r∑
k=1

Ner+k +
n∑

k=1

iNek + Nu +
r∑

k=1

Zek.
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We then have that

S(H ′) =
n−r∑
k=1

NSer+k +
n∑

k=1

iNSek + NSu +
r∑

k=1

ZSek

=
n−r∑
k=1

Nuk +
n∑

k=1

NiSek + Nu2n−r+1 +
r∑

k=1

Z2iπe(k)
η

=
n−r∑
k=1

Nuk +
2n−r∑

k=n−r+1

Nuk + Nu2n−r+1 +
r∑

k=1

2iπZe(k)
η

= H.

Since Nn + iNn + Nu ⊂ H ′, we see that H ′ is dense in Cn by Corollary 6.1, and thus so
is H. This proves the proposition. �

Proof of Theorem 1.6. By Proposition 6.2, there exist u1, . . . , u2n−r+1 ∈ Cn such
that

H :=
2n−r+1∑

k=1

Nuk +
r∑

k=1

2iπZe(k)
η

is dense in Cn. Set
uk = [uk,1, . . . , uk,r]T

with uk,j = [x(k)
j,1 , . . . , x

(k)
j,nj

]T. Let B1, . . . , B2n−r+1 be defined by

Bk = diag(Bk,1, . . . , Bk,r),

where

Bk,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(k)
j,1 0
...

. . .
... 0

. . .
...

...
. . . . . .

x
(k)
j,nj

0 . . . 0 x
(k)
j,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 1 � j � r, 1 � k � 2n − r + 1.

Then Bkuη = uk.
Let G be the subsemigroup of K∗

η(C) generated by eB1 , . . . , eB2n−r+1 .
Firstly, we check that G is abelian. For this, it suffices to show that BkBk′ = Bk′Bk

for every k, k′ = 1, . . . , 2n − r + 1.
Set Bk,j := Nk,j + x

(k)
j,1 Inj

, where

Nk,j =

[
0 0

Tk,j 0

]
∈ Tnj (C) with Tk,j = [x(k)

j,2 , . . . , x
(k)
j,nj

]T, j = 1, . . . , r.

We see that Nk,jNk′,j = Nk′,jNk,j = 0 for every j = 1, . . . , r. Hence, Bk,jBk′,j =
Bk′,jBk,j and so BkBk′ = Bk′Bk.
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Secondly, by Proposition 5.2, we have that

gη(uη) =
2n−r+1∑

k=1

NBkuη +
r∑

k=1

2iπZe(k)
η

=
2n−r+1∑

k=1

Nuk +
r∑

k=1

2iπZe(k)
η

= H.

Therefore, gη(uη) = Cn and, by Theorem 1.1, G(uη) = Cn. �

7. Examples

Example 7.1. Let G be the subsemigroup of C∗ generated by a1 = e2π, a2 =
e−2(

√
2+i

√
3)π. Then G is hypercyclic.

Proof. In this case, we have that η = (1), uη = 1 and gη = exp−1(G). By Proposi-
tion 5.2,

gη(1) = 2πN − 2(
√

2 + i
√

3)πN + 2iπZ = 2πL,

where
L := N − (

√
2 + i

√
3)N + iZ.

As 1,
√

2 and
√

3 are linearly independent over Q, by Corollary 6.1, N−(
√

2+i
√

3)N+iN ⊂
L is dense in C, and so is L. Therefore, gη(1) = C and, by Theorem 1.1, G(1) = C. �

Example 7.2. Let G be the semigroup generated by

A1 = diag(e2π, e2π), A2 =

[
1 0
2π 1

]
, A3 =

[
1 0

2iπ 1

]

and

A4 = e−2π(
√

2+i
√

3)

[
1 0

2π(1 − i
√

5) 1

]
.

Then G is abelian and hypercyclic.

Proof. By construction, G is an abelian subsemigroup of T∗
2(C) and we have that

uη = e1 and Ak = eBk , k = 1, . . . , 4, where

B1 = diag(2π, 2π), B2 =

[
0 0
2π 0

]
, B3 =

[
0 0

2iπ 0

]

and

B4 =

[
−2π(

√
2 + i

√
3) 0

2π(1 − i
√

5) −2π(
√

2 + i
√

3)

]
.
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By Proposition 5.2,

gη(e1) =
4∑

k=1

NBke1 + 2iπZe1

= 2πL,

where
L := Ne1 + Ne2 + iNe2 + N[−

√
2 − i

√
3, 1 − i

√
5]T + iZe1.

We let
K := Ne1 + Ne2 + iNe2 + N[−

√
2 − i

√
3, 1 − i

√
5]T + iNe1.

Then
K = N2 + iN2 + N[−

√
2 − i

√
3, 1 − i

√
5]T ⊂ L.

By Corollary 6.1, K is dense in C2 since 1, −
√

2, −
√

3 and −
√

5 are linearly independent
over Q, and so is L. We conclude by Theorem 1.1 that G(e1) = C2. �
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