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On the Multiplicities of Characters in
Table Algebras

J. Bagherian

Abstract. In this paper we show that every module of a table algebra can be considered as a faithful
module of some quotient table algebra. Also we prove that every faithful module of a table algebra
determines a closed subset that is a cyclic group. As a main result we give some information about
multiplicities of characters in table algebras.

1 Introduction

In [6], Hanaki proved that every character of an association scheme can be consid-
ered as a faithful character of some quotient scheme. Also he showed that a faithful
character of an association scheme determines a thin closed subset that is cyclic as
a finite group. In this paper we first generalize the above facts for table algebras.
Then as an application of them, we give some information about multiplicities of
characters for a table algebra. More precisely, we first show that for every irreducible
character χ of a table algebra (A,B) we have

(1.1) ζχ ≤
|B+|

χ(1)|Z(χ)+|
,

where ζχ is the multiplicity of χ. Then we give a condition for which the equality
occurs in (1.1). More precisely, we show that if (A,B) is a table algebra andχ ∈ Irr(A)
such that B//Z(χ) is an abelian group, then

ζχ =
|B+|

χ(1)|Z(χ)+|
.

In particular, if (A,B) is commutative, then

ζχ =
|B+|
|Z(χ)+|

.

This is a generalization of [5, Theorem 2.31] in the character theory of finite groups
which states that if G is a finite group and χ ∈ Irr(G) such that G/Z(χ) is abelian,
then χ(1)2 = |G : Z(χ)|.

Throughout this paper we follow [1] for the definition of table algebras and related
notions. Hence we deal with non-commutative table algebras defined as follows.
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A table algebra (A,B) is a finite dimensional algebra A over the complex field C
and a distinguished basis B = {b1 = 1, · · · , bd} for A, where 1 is a unit, such that
the following properties hold:

(a) The structure constants of B are nonnegative real numbers, i.e., for a, b ∈ B,

ab =
∑
c∈B

λabcc, λabc ∈ R+ ∪ {0}.

(b) There is a semilinear involutory anti-automorphism of A (denoted by ∗) such
that B∗ = B.

(c) For all a, b ∈ B, λaa∗1 > 0 and λab1 = 0 if b 6= a∗.

Remark 1.1 (i) Let (A,B) be a table algebra. Then [1, Theorem 3.11] implies
that A is semisimple.

(ii) For any table algebra (A,B), there is a unique algebra homomorphism | · | : A→
C, called the degree map, such that |b| = |b∗| > 0 for all b ∈ B (see [1, Theo-
rem 3.14]).

(iii) If |b| = λbb∗1 for all b ∈ B, then (A,B) is called the standard table algebra.

Without loss of generality, in this paper we will assume that (A,B) is a standard
table algebra.

The value |b| is called the degree of the basis element b. For an arbitrary element∑
b∈B xbb ∈ A, we have |

∑
b∈B xbb| =

∑
b∈B xb|b|.

For any x =
∑

b∈B xbb ∈ A we denote by Supp(x) the set of all basis elements
b ∈ B such that xb 6= 0. If E,D ⊆ B, then we set ED =

⋃
e∈E,d∈D Supp(ed).

A nonempty subset C ⊆ B is called closed if C∗C ⊆ C , where C∗ = {c∗ | c ∈ C}.
We denote by C(B) the set of all closed subsets of B. In addition, a closed subset C of
B is called strongly normal if for every b ∈ B, b∗Cb ⊆ C . An element b ∈ B is called
linear if bb∗ = |b|1. From [1, Proposition 4.6], the set of all linear elements of B is a
closed subset of B that forms a finite group.

Let (A,B) be a table algebra with basis B and let C ∈ C(B). From [1, Proposition
4.7], it follows that {CbC | b ∈ B} is a partition of B. The subset CbC is called a
C-double coset or double coset with respect to the closed subset C . Let

b//C := |C+|−1(CbC)+ = |C+|−1
∑

x∈CbC

x,

where C+ =
∑

c∈C c and |C+| =
∑

c∈C |c|. Then the following theorem is an imme-
diate consequence of [1, Theorem 4.9].

Theorem 1.2 Let (A,B) be a table algebra and let C ∈ C(B). Suppose that
{b1 = 1, . . . , bk} is a complete set of representatives of C-double cosets. Then the vector
space spanned by the elements bi//C, 1 ≤ i ≤ k, is a table algebra (which is denoted by
A//C) with a distinguished basis B//C = {bi//C | 1 ≤ i ≤ k}. The structure constants
are given by

γi jk = |C+|−1
∑

r∈CbiC,
s∈Cb jC

λrst ,
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where t ∈ CbkC is an arbitrary element.

The table algebra (A//C,B//C) is called the quotient table algebra of (A,B) modulo
C . One can see that a closed subset C of table algebra (A,B) is strongly normal if and
only if (A//C,B//C) is a group algebra; see [2, Corollary 2.9].

Let (A,B) be a table algebra and C ∈ C(B). Set e = |C+|−1C+. Then e is an idem-
potent of A, and the subalgebra eAe is equal to the quotient table algebra (A//C,B//C)
modulo C ; see [1].

2 Faithful Modules

Let (A,B) be a table algebra. The kernel of an A-module V in B is defined by

kerB V =
{

b ∈ B
∣∣ bx = |b|x,∀x ∈ V

}
.

From [8, Proposition 4.5], it follows that kerB V is a closed subset in B and if χ is the
character of A afforded by the A-module V , then kerB V = kerB χ, where kerB χ =
{b ∈ B | χ(b) = |b|χ(1)}. Furthermore, the A-module V or character χ is called
faithful if kerB V = {1}.

In the theorem below we show that every A-module V can be considered as a
faithful A//K-module, where K = kerB V . It might be mentioned that this is an
analog of the association schemes that was done by Hanaki in [6].

Theorem 2.1 Let (A,B) be a table algebra and V be an A-module. Suppose that
L is a closed subset of B contained in K = kerB V . Then V can be considered as an
A//L-module by the multiplication

(b//L)v =
|b//L|
|b|

bv, v ∈ V.

Moreover, if L = K, then V is faithful as an A//K-module.

Proof Put e = |L+|−1L+. Then e is an idempotent of A and for every b ∈ B we have

b//L =
|b//L|
|b|

ebe.

Moreover, by assumption of the theorem one can see that for v ∈ V ,

ev = (|L+|−1L+)v = |L+|−1(L+v) = |L+|−1|L+|v = v.

This implies that for every b ∈ B, ebe(v) = eb(ev) = (eb)v = e(bv) = bv. Now for
every v ∈ V , we consider the multiplication

(b//L)v =
|b//L|
|b|

ebe(v) =
|b//L|
|b|

bv.

We will show that the above multiplication is well defined. Suppose b//L = c//L.
Then we have

|b//L|
|b|

ebe =
|c//L|
|c|

ece.

https://doi.org/10.4153/CMB-2013-045-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-045-0


234 J. Bagherian

So for every v ∈ V ,

|b//L|
|b|

bv =
|b//L|
|b|

ebe(v) =
|c//L|
|c|

ece(v) =
|c//L|
|c|

cv.

Now since for every b, c ∈ B and v ∈ V ,

(b//L c//L)v =
|b//L|
|b|
|c//L|
|c|

(ebece)v =
|b//L|
|b|
|c//L|
|c|

ebe
(

ece(v)
)
= b//L

(
c//L(v)

)
,

it follows that V is an A//L-module. Moreover, suppose that L = K and b//K ∈
kerB V as an A//K-module. Then for every v ∈ V , (b//K)v = |b//K|v. So

|b//K|
|b|

bv = |b//K|v,

and hence bv = |b|v. This implies that b ∈ kerB V = K and then b//K = 1//K.
Therefore, V is faithful as an A//K-module, as desired.

The following corollary is a generalization of [6, Theorem 2.1] for table algebras.

Corollary 2.2 Let (A,B) be a table algebra and χ be a character of A afforded by an
A-module V . Suppose that T is a closed subset of B contained in kerB V . Then we can
define a character χ′ of A//L such that

χ′(b//L) =
|b//L|
|b|

χ(b).

Moreover, χ′ is faithful if T = kerB V .

Let (A,B) be a table algebra and V be an A-module. We define

Z(V ) =
{

b ∈ B
∣∣ ∀v ∈ V, bv = λbv, where λb ∈ C and |λb| = |b|

}
.

Clearly kerB V ⊆ Z(V ). In the following lemma we show that Z(V ) is a closed subset
of B.

Lemma 2.3 For every A-module V , Z(V ) is a closed subset of B.

Proof Let b, c ∈ Z(V ). Then for every v ∈ V

(2.1) b(cv) = b(λcv) = λbλcv,

where λb, λc ∈ C such that |λb| = |b| and |λc| = |c|. On the other hand, suppose
that

bc =
∑
d∈B

λbcdd.

Then for every v ∈ V

(2.2) (bc)v =
∑
d∈B

λbcddv =
∑
d∈B

λbcd
∑

w∈T
µdww,

where T is a C-basis of V and for every w ∈ T, µdw ∈ C. But since b(cv) = (bc)v,
from (2.1) and (2.2) we get

λbλcv =
∑
d∈B

λbcdµdvv,
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and so

λbλc =
∑
d∈B

λbcdµdv.

Since from [8, Proposition 4.1] it follows that |µdv| ≤ |d|, by the latter equality we
get

|b||c| = |λb||λc| = |λbλc| =
∣∣∣ ∑

d∈B
λbcdµdv

∣∣∣ ≤ ∑
d∈B

λbcd|µdv| ≤
∑
d∈B

λbcd|d| = |b||c|.

Hence we conclude that for every d ∈ B, where λbcd 6= 0, |µdv| = |d|. This implies
that for every d ∈ B, where λbcd 6= 0, dv = µdvv and |µdv| = |d|. So d ∈ Z(V ).
Therefore, Z(V ) is a closed subset of B, as desired.

Let (A,B) be a table algebra and V be an A-module. Let D be the representation
of A corresponding to V . Then one can see that

Z(V ) =
{

b ∈ B
∣∣ D(b) = λbI, where λb ∈ C and |λb| = |b|

}
.

In the lemma below we show that if V is a faithful A-module, then Z(V ) is cyclic
as a finite group.

Lemma 2.4 Let V be a faithful A-module of a table algebra (A,B). Then every
element of Z(V ) is linear. In particular, Z(V ) is cyclic as a finite group.

Proof Let D be the representation of A corresponding to V and let b ∈ Z(V ). Then
we have

(2.3) D(bb∗) = D(b)D(b∗) = λbλbI = |λb|2I = |b|2I,

where I is the identity matrix. On the other hand, suppose that

bb∗ =
∑
d∈B

λbb∗dd.

Then we have

(2.4) D(bb∗) =
∑
d∈B

λbb∗dD(d).

From (2.3) and (2.4) we conclude that for every d ∈ Supp(bb∗), D(d) = |d|I. So for
every d ∈ Supp(bb∗), d ∈ kerB(V ) = {1}. Thus bb∗ = {1} and b is a linear element
of B. Moreover, since for every b, c ∈ B, D(bcb∗c∗) = D(b)D(c)D(b∗)D(c∗) = I, we
have bcb∗c∗ ∈ kerB(V ) = {1} and hence bc = cb. So we conclude that Z(V ) is an
abelian group.

To prove the second statement, since for every irreducible constituent W of V we
have Z(V ) ⊆ Z(W ), we can assume that V is irreducible. Now we define λ : Z(V ) 7→
C − {0} by λ(b) = λb. Suppose that b, c ∈ B such that λb = λc. Then D(bc∗) =
D(b)D(c∗) = λbλc = |b||c|I, where I is the identity matrix. It follows that D(d) =
|d|I, for every d ∈ Supp(bc∗). This implies that d ∈ kerB(V ) = {1}, for every
d ∈ Supp(bc∗) and hence b = c. Thus λ is a faithful irreducible representation
of abelian group Z(V ). Now from [5, Theorem 2.32(a)], Z(V ) is cyclic as a finite
group.
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Definition 2.5 Let (A,B) be a table algebra and χ be a character of A. We define

Z(χ) =
{

b ∈ B
∣∣ |χ(b)| = |b|χ(1)

}
.

One can see that if χ is afforded by an A-module V , then Z(χ) = Z(V ), and so Z(χ)
is a closed subset of B.

In the corollary below we give a generalization of [6, Theorem 3.1] for table alge-
bras.

Corollary 2.6 Let χ be a character of table algebra (A,B). Then every element of
Z(χ) is linear. In particular, Z(χ) is cyclic as a finite group.

3 Multiplicities of Characters

Let (A,B) be a table algebra. Define a linear function ζ on A by ζ(b) = δb,1|B+| for
b ∈ B, where |B+| =

∑
b∈B |b|. Then ζ is a non-degenerate feasible trace on A, and

from [7] it follows that

ζ =
∑

χ∈Irr(A)

ζχχ,

where ζχ ∈ C and all ζχ are nonzero. The feasible trace ζ is called the standard feasible
trace, and ζχ is called the standard feasible multiplicity or briefly the multiplicity of
character χ.

For every χ, ϕ ∈ HomC(A,C), we define the inner product of χ and ϕ as follows:

[χ, ϕ] =
1

|B+|
∑
b∈B

1

|b|
χ(b)ϕ(b∗).

From [7, Lemma 3.1(ii)], one can see that

[χ, ψ] = δχ,ψ
χ(1)

ζχ
,

for any χ, ψ ∈ Irr(A).
Now let H be a closed subset of B. Then for every character χ of A we have

|H+|[χH , χH] =
∑
b∈H

χ(b)χ(b∗)

|b|
≤
∑
b∈B

χ(b)χ(b∗)

|b|
= |B+|[χ, χ].

Then

(3.1) [χH , χH] ≤ |B
+|
|H+|

[χ, χ]

with equality if and only if χ(b) = 0, for every b ∈ B − H. Now let H = Z(χ) for
some irreducible character of A. Then since

[χZ(χ), χZ(χ)] =
1

|Z(χ)+|
∑

b∈Z(χ)

χ(b)χ(b∗)

|b|
=

1

|Z(χ)+|
∑

b∈Z(χ)

|χ(b)|2

|b|
= χ(1)2,
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from inequality (3.1) we get

χ(1)2 = [χZ(χ), χZ(χ)] ≤
|B+|
|Z(χ)+|

[χ, χ] =
|B+|
|Z(χ)+|

χ(1)

ζχ
,

and thus

(3.2) χ(1)ζχ ≤
|B+|
|Z(χ)+|

.

Equality occurs if and only if for every b ∈ B− Z(χ), χ(b) = 0.
The following theorem gives a condition under which the equality occurs in (3.2).

Theorem 3.1 Let (A,B) be a table algebra and χ ∈ Irr(A). Suppose that B//Z(χ) is
an abelian group. Then χ(1)ζχ = |B+|/|Z(χ)+|.

Proof From the above remark it is enough to show that for every b ∈ B − Z(χ),
χ(b) = 0. To do so, let b ∈ B − Z(χ). First we assume that χ is faithful. Then from
Lemma 2.4, Z = Z(χ) is cyclic as a finite group. Since

1 = |b//Z| = |Z+|−1|(ZbZ)+| = |Z+|−1|(bZ)+| = |Z+|−1 |b||Z+|
| StZ(b)|

=
|b|

| StZ(b)|
,

where StZ(b) = {t ∈ Z | bt = b}, we conclude that | StZ(b)| > 1. Thus there is an
element t ∈ Z such that bt = b. Then χ(b) = χ(bt) = tr D(bt) = tr(D(b)D(t)) =
λbχ(b). Since λb 6= 1, from the latter equality we have χ(b) = 0, as desired.

Now we suppose that K = ker(χ) 6= {1}. Then from Theorem 2.1, we can
consider faithful irreducible character χ′ of quotient table algebra (A//K,B//K) such
that

χ′(b//K) =
|b//K|
|b|

χ(b).

Furthermore,

Z(χ′) =
{

b//K ∈ B//K
∣∣ |χ′(b//K)| = |b//K|χ′(1)

}
=
{

b//K ∈ B//K
∣∣∣ |b//K|
|b|
|χ(b)| = |b//K|χ′(1//K)

}
=
{

b//K ∈ B//K
∣∣ |χ(b)| = |b|χ(1)

}
=
{

b//K ∈ B//K
∣∣ b ∈ Z

}
= Z//K.

Since from [4, Proposition 2.13] we have (B//K)//(Z//K) = B//Z, we conclude that
(B//K)//Z(χ′) is an abelian group. Then from the first part of proof we conclude that
for every b//K ∈ B//K − Z(χ′), χ′(b//K) = 0. This implies for every b ∈ B − Z,
χ(b) = 0.

The following corollary is a generalization of [5, Theorem 2.31].

Corollary 3.2 Let (A,B) be a commutative table algebra. Suppose that χ ∈ Irr(A)
such that Z(χ) is a strongly normal closed subset of B. Then

ζχ =
|B+|
|Z(χ)+|

.
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Corollary 3.3 ([5, Theorem 2.31]) Let G be a finite group. Suppose that χ ∈ Irr(G)
such that G/Z(χ) is abelian. Then χ(1)2 = |G : Z(χ)|.

Proof Let C1, . . . ,Ch be the conjugacy classes of G. Put Cla(G) = {K1, . . . ,Kh},
where Ki =

∑
g∈Ci

g. Then it is known that (Z(CG),Cla(G)) is a commutative ta-
ble algebra, where Z(CG) is the center of group algebra CG . One can see that the
degree map of (Z(CG),Cla(G)) is defined by Ki → |Ci |, for every 1 ≤ i ≤ h, and
{ωχ | χ ∈ Irr(A)} is the set of irreducible characters of Z(C(G)), where

(3.3) ωχ(Ki) =
χ(g)|Ci |
χ(1)

,

for some g ∈ Ci . Moreover, for every χ ∈ Irr(A), we have ζωχ = χ(1)2. From (3.3) it
follows that the closed subset Z(ωχ) corresponds to Z(χ)EG. Then one can see that

Cla
(

G/Z(χ)
)
' Cla(G)//Z(ωχ)

(see [3]). So our assumption implies that Cla(G)//Z(ωχ) is a finite group. Hence
by Corollary 3.2 it follows that χ(1)2 = ζωχ = |G : Z(ωχ)+| = |G : Z(χ)|, as
desired.

Example 3.4 Let A be a C-linear space with the basis B = {b0 = 1, b1, b2, b3} such
that

b2
1 = b0, b1b2 = b2,

b2
2 = 2b3, b1b3 = b3,

b2
3 = 2b2, b2b3 = 2b0 + 2b1.

Then one can see that the pair (A,B) is a commutative table algebra, and an easy
computation shows that the character table of (A,B) is

b0 b1 b2 b3 ζχi

χ1 1 1 2 2 1
χ2 1 1 2ω 2ω2 1
χ3 1 1 2ω2 2ω 1
χ4 1 −1 0 0 3 ,

where ω is a primitive third root of unity. One can see that Z(χ4) = {b0, b1} is
a strongly normal closed subset of B and B//Z(χ4) is an abelian group. Then the
assertion of Corollary 3.2 holds.

Remark 3.5 The strongly normal condition in Corollary 3.2 is a necessary con-
dition. In the example below we give a commutative table algebra for which the
assertion of Corollary 3.2 does not hold.
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Example 3.6 Let A be a C-linear space with the basis B = {b0 = 1, b1, b2, b3} such
that

b2
1 = b0, b1b2 = b3,

b2
2 = 2b0 + b2, b1b3 = b2,

b2
3 = 2b0 + b2, b2b3 = 2b1 + b3.

Then one can see that the pair (A,B) is a commutative table algebra and an easy
computation shows that the character table of (A,B) is

b0 b1 b2 b3 ζχi

χ1 1 1 2 2 1
χ2 1 −1 2 −2 1
χ3 1 −1 −1 1 2
χ4 1 1 −1 −1 2 .

One can see that Z(χ3) = {b0, b1} is not a strongly normal closed subset of B, and
thus the assertion of Corollary 3.2 does not hold.
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