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Strong Logarithmic Sobolev Inequalities for
Log-Subharmonic Functions

Piotr Graczyk, Todd Kemp, and Jean-Jacques Loeb

Abstract. We prove an intrinsic equivalence between strong hypercontractivity and a strong loga-
rithmic Sobolev inequality for the cone of logarithmically subharmonic (LSH) functions. We in-
troduce a new large class of measures, Euclidean regular and exponential type, in addition to all
compactly-supported measures, for which this equivalence holds. We prove a Sobolev density the-
orem through LSH functions and use it to prove the equivalence of strong hypercontractivity and
the strong logarithmic Sobolev inequality for such log-subharmonic functions.

1 Introduction

In this paper we study strong versions of logarithmic Sobolev inequalities (sLSI) and
strong hypercontractivity (sHC) in the real spaces Rn and for logarithmically sub-
harmonic (LSH) functions, continuing our research published in [13] and solving the
conjecture on the equivalence between sHC and sLSI formulated in [13, Remark 5.11].
_emain diõculty to overcome, as already noted by Gross and Grothaus in [17], was
eõcient approximating of (logarithmically) subharmonic functions.

If µ is a probability measure, the entropy functional Entµ relative to µ, deûned on
all suõciently integrable positive test functions g, is

Entµ(g) = ∫ g ln(
g

∥g∥1
) dµ

where ∥g∥1 = ∥g∥L1(µ). (When ∥g∥1 = 1, so that g is a probability density, this gives the
relative entropy of the density g to themeasure µ.) _e logarithmic Sobolev inequality
is an energy-entropy functional inequality: ameasure µ onRn (or more generally on
a Riemannian manifold) satisûes a log Sobolev inequality if, for some constant c > 0
and for all suõciently smooth positive test functions f ,

(LSI) Entµ( f 2) ≤ c∫ ∣∇ f ∣2 dµ.

Making the substitution g = f 2 gives the equivalent form Entµ(g) ≤ c
4 ∫ ∣∇g∣2/g dµ,

the integral on the right deûning the Fisher information of g relative to µ. In this form,
the inequality was ûrst discovered for the standard normal law µ onR by Stam in [30].
It was rediscovered and named by Gross [15], who proved it for standard Gaussian
measures onRn with sharp constant c = 2. Over the past four decades, it has become
an enormously powerful tool making fundamental contributions to geometry and
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global analysis [2–6, 8–10, 22, 24, 27], statistical physics [19, 32–34], mixing times of
Markov chains [7, 11, 18], concentration ofmeasure and optimal transport [23,25,31],
random matrix theory [1,26,35], andmany others.

Gross discovered the log Sobolev inequality through his work in constructive
quantum ûeld theory, particularly relating to Nelson’s hypercontractivity estimates
[29]. In fact, Gross showed in [15] that the log Sobolev inequality (LSI) is equivalent
to hypercontractivity. Later, in [20, 21], Janson discovered a stronger form of hyper-
contractivity that holds for holomorphic test functions.

_eorem 1.1 (Janson [20]) If µ is the standardGaussianmeasure onCn , and 0 < p ≤
q <∞, then for all holomorphic functions f ∈ Lp(Cn , µ), we have ∥ f (e−t ⋅ )∥q ≤ ∥ f ∥p
for t ≥ 1

2 ln q
p . For t < 1

2 ln q
p , the dilated function f (e

−t ⋅ ) is not in Lq(Cn , µ) in
general.

Remark 1.2 Nelson’s hypercontractivity estimates ([29]) involve the semigroup
e−tAµ , where Aµ is the Dirichlet form operator for themeasure µ:

∫ ∣∇ f ∣2 dµ = ∫ f Aµ f dµ.

If dµ = ρ dx has a smooth density ρ, integration by parts shows that Aµ = −∆ −

(∇ρ/ρ) ⋅ ∇, and so when applied to holomorphic (hence harmonic) functions, e−tAµ

is the �ow of the vector ûeld∇ρ/ρ. For the standardGaussianmeasure, this is just the
coordinate vector ûeld x, the inûnitesimal generator of dilations E f (x) = x ⋅ ∇ f (x),
also known as the Euler operator. _e perspective of this paper, like its predeces-
sor [13], is that the strong hypercontractivity theorem is essentially about the dilation
semigroup f ↦ f (e−t ⋅ ), independent of the underlying measure.

Janson’s strong hypercontractivity diòers from Nelson’s hypercontractivity in two
important ways: ûrst, the time-to-contraction is smaller, 1

2 ln q
p as opposed to the

larger Nelson time 1
2 ln q−1

p−1 , and second, the theorem applies even in the regime
0 < p, q < 1 where the Lp “norms” are badly-behaved. Nevertheless, in [16], Gross
showed that Janson’s theorem is also a consequence of the same log Sobolev inequality
(LSI); moreover, he generalized this implication considerably to complex manifolds
(equippedwith suõciently nicemeasures). _e reverse implication, however,was not
established. _e proof requires (LSI) to hold for non-holomorphic functions (in par-
ticular of the form ∣ f ∣p/2). We refer the reader to [13] for an extensive list of recent
literature on strong hypercontractivity in the holomorphic category and related ideas
(notably reverse hypercontractivity) in the subharmonic category.

_e aim of this paper is to prove an intrinsic equivalence of strong hypercontrac-
tivity and a log Sobolev inequality. _e starting point is a generalization of_eorem
1.1 beyond the holomorphic category. A function on Rn is log-subharmonic (LSH) if
ln ∣ f ∣ is subharmonic; holomorphic functions are prime examples. In [13], we proved
that _eorem 1.1 holds in the larger class LSH, for the Gaussian measure, and several
others. We also established a weak connection to a strong log Sobolev inequality.

https://doi.org/10.4153/CJM-2015-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-015-8


1386 P. Graczyk, T. Kemp, and J.-J. Loeb

Deûnition 1.3 A measure µ on Rn satisûes a strong logarithmic Sobolev inequality
if there is a constant c > 0 so that, for non-negative g ∈ LSH suõciently smooth and
integrable,

(sLSI) Entµ(g) ≤
c
2 ∫

Eg dµ.

Inequality (sLSI) could be written equivalently in the form Entµ( f 2) ≤ c ∫ f E f dµ;
we will use it in L1-form throughout. In [13], we showed the strong log Sobolev in-
equality holds for the standardGaussian measure onRn , with constant c = 1 (half the
constant from (LSI)), and conjectured that (sLSI) is equivalent in greater generality
to the following form of Janson’s strong hypercontractivity.

Deûnition 1.4 Ameasure µ onRn satisûes the property of strong hypercontractivity
if there is a constant c > 0 so that, for 0 < p ≤ q <∞ and for every f ∈ Lp(µ) ∩ LSH,
we have

(sHC) ∥ f (r ⋅ )∥Lq(µ) ≤ ∥ f ∥Lp(µ) if 0 < r ≤ (p/q)c/2 .

Remark 1.5 _e statement inDeûnition 1.4 is given inmultiplicativenotation rather
than additive, with r = e−t scaling the variable. It would appear more convenient to
use the constant c instead of c2 in (sLSI) and (sHC). We choose to normalize with c

2
for historical reasons. Gross’s equivalence of the log Sobolev inequality and Nelson’s
hypercontractivity equates c in (LSI) to c

2 scaling the time to contraction.

Notation 1.6 For a function f onRn and r ∈ [0, 1], fr denotes the function fr(x) =
f (rx).

1.1 Main Results

In [13], we showed that (sHC) implies (sLSI) in the special case that themeasure µ is
compactly supported. Our ûrst result is the converse.

_eorem 1.7 Let µ be a compactly supportedmeasure onRn . Suppose that µ satisûes
(sLSI) for all suõciently smooth functions g ∈ LSH(Rn). _en µ satisûes (sHC) for all
functions f ∈ LSH(Rn).

Remark 1.8 We emphasize here that the domains in the equivalence consist of log-
subharmonic functions a priori deûned on all of Rn , not just on the support of µ.
Indeed, the dilation semigroup is not well deûned if this is not satisûed. In fact, it is
not hard to see that this result extends to log-subharmonic functions deûned on any
star-shaped open region containing the support of µ.

_eorem 1.7 and its converse have non-trivial applications. For example, [13, Prop-
osition 4.2] implies that (sLSI) holds true for any compactly supported symmetric
measure on R, with constant c ≤ 2. Nevertheless, it excludes the standard players in
log Sobolev inequalities, most notably Gaussian measures. In [13, _eorem 5.8], we
proved directly that (sLSI) holds true for the standardGaussian measure onRn , with
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best constant c = 1. _iswas proved directly from (LSI), and relied heavily on the pre-
cise form of the Gaussian measure; a direct connection to strong hypercontractivity
(also proved for the Gaussian measure in [13, _eorem 3.2]) was not provided. _at
connection, for a wide class ofmeasures, is the present goal.

_e technicalities involved in establishing the equivalence of (sLSI) and (sHC) are
challenging because of the rigidity of the class LSH. Standard cut-oò approximations
needed to use integrability arguments in the proof are unavailable for subharmonic
functions. To amend this,we use a fundamentally diòerent approximation technique:
the dilated convolution introduced in [12,17] and developed in Section 2.1. In [12], the
authors provided a local condition on the density of µ under which this operation is
bounded on Lp(µ) (amounting to a bound on the Jacobian derivative of the trans-
lation and dilation). Here we present alternative conditions, which require little in
terms of the local behavior of the measure (they are essentially growth conditions
near inûnity) and achieve the same eòect.

Deûnition 1.9 Let p > 0 and let µ be a positivemeasure on Rn with density ρ. Say
that µ (or ρ) is Euclidean exponential type p if ρ(x) > 0 for all x and if the following
two conditions hold:

sup
x

sup
∣y∣≤s

∣x∣p ρ(ax + y)
ρ(x)

<∞ for any a > 1, s ≥ 0(1.1)

sup
x

sup
1<a<1+є

ρ(ax)
ρ(x)

<∞ for some є > 0.(1.2)

If µ is Euclidean exponential type 0, we say it is Euclidean regular.

_e terminology derives from the fact that conditions (1.1) and (1.2) insist that
the Euclidean group acts on ρ in a controlledmanner; exponential type refers to the
growth condition involving ∣x∣p (indeed, for p > 0 the measure must have tails that
decay faster than any polynomial to be Euclidean exponential type p). For any prob-
ability measure µ with strictly positive density ρ, denote for a ≥ 1 and p, s ≥ 0,

(1.3) C p
µ(a, s) = C p

ρ(a, s) ≡ sup
x

sup
∣y∣≤s

∣x∣p ρ(ax + y)
ρ(x)

.

_en the condition that µ is Euclidean exponential type p is precisely that C p
µ(a, s) <

∞ for each a > 1 and s ≥ 0, and C0
µ(a, 0) is uniformly bounded for a close to 1. It is

clear from the deûnition that C p
µ(a, s) is an increasing function of s. Moreover, if µ

is Euclidean exponential type q, then it is Euclidean exponential type p for any p < q.
For convenience, we will o�en write Cµ for C0

µ .

Example 1.10 On R, the densities (1 + x2)−α for α > 1
2 are Euclidean regular. On

Rn the densities e−c∣x ∣
a
with a, c > 0 are Euclidean exponential type p for all p > 0.

More examples and properties that prove the Euclidean regular measures form
a rich class are given in Appendix A. In order to justify the implication (sLSI) Ô⇒
(sHC) in the fully general (non-compactly-supported) case,wewill insist on a further
regularity property of the density ρ.
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Deûnition 1.11 We say that µ (or ρ) is exponentially sub-additive if for all x ∈ Rn

there exists A ∈ Rn such that for all t ∈ Rn

ρ(x)ρ(t) ≤ e⟨A,t⟩ρ(0)ρ(x + t).

Let α > 0. We say that ρ is α-subhomogeneous if for all c > 0,

(1.4) ρ(cy) ≤ ρ(y)c
α
.

Example 1.12 It is easy to check that the densities e−c∣x ∣
a
are exponentially sub-

additive for 0 < a ≤ 1 (then A = 0) and for a = 2 (then A = −2x). All the densities
e−c∣x ∣

a
, a, c > 0 are evidently a-subhomogeneous, with equality in (1.4).

_e purpose of introducing these classes ofmeasures (notably Euclidean regular-
ity) at present is its utility in proving a density theorem for an appropriate class of
Sobolev-type spaces thatwe now proceed to deûne. _ese spaces, denoted Lp

E(µ), are
exactly the domains of functions for which the strong log Sobolev inequality makes
sense.

Deûnition 1.13 Let µ be ameasure on Rn , and let p > 0. Deûne the Sobolev space
Lp
E(µ) to consist of those continuously diòerentiable (C1) functions f ∈ Lp(µ) for

which E f ∈ Lp(µ). It is a normed space in the norm f ↦ ∥ f ∥p + ∥E f ∥p .

Remark 1.14 _e space Lp
E(µ) is generally not complete; its completion (for

smooth µ) is the space of weakly diòerentiable functions f ∈ Lp(µ) satisfying E f ∈
Lp(µ). To be precise, E f (x) = ∑

n
j=1 x ju j(x), where u j is the function (posited to

exist) satisfying

−∫ ∂ jϕ f dx = ∫ ϕ u j dx

for any ϕ ∈ C∞c (Rn),where dx denotes Lebesguemeasure. Wewill not have occasion
to need the completeness of this space in its norm; it will bemore convenient to have
Sobolev functions that are already at least C1, and so we restrict the deûnition thus.

Standard techniques, involving approximation by C∞c functions, show that Lp
E is

dense in Lp for reasonablemeasures. However, our goals here involve approximation
of log-subharmonic functions, and the usual cut-oò approximations fail to preserve
subharmonicity. An alternative approach is to use a convolution approximate iden-
tity procedure, as is readily available for Lebesgue measure. _e problem is that, for
a given bump function ϕ, the operation f ↦ f ∗ ϕ is typically unbounded on Lp(µ)
when µ is not Lebesguemeasure. Indeed, for Lp ofGaussianmeasure, even the trans-
lation f ↦ f ( ⋅ + y) is unbounded if y ≠ 0. _e problem is that the convolution
can shi� mass in from near inûnity. One might hope to dilate this extra mass back
out near inûnity, to preserve p-integrability; thus, we consider the dilated convolu-
tion f ↦ ( f ∗ ϕ)r . Section 2.1 shows that this operation behaves well in Lp spaces of
Euclidean regular measures; it also preserves the cone LSH.

_emain technical theoremof this paper is the following smoothing procedure for
LSH functions, i.e., Sobolev density theorem,which is of its own independent interest.
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_eorem 1.15 Let p ∈ (0,∞), and let µ be a Euclidean exponential type p probability
measure on Rn . _en the cone C∞ ∩ LSH ∩ Lp

E(µ) is dense in the cone LSH ∩ Lp(µ).
More precisely, let f ∈ LSH ∩ Lp(µ). _en there exists a sequence of functions fn ∈

C∞ ∩ LSH ∩ Lp
E(µ) that converges to f in Lp(µ).

Using _eorem 1.15, we will prove the equivalence of (sLSI) and (sHC), the ûrst
implication in a nominally weaker form that we now explain.

Deûnition 1.16 Let µ be a probability measure on Rn , and let 0 < p < q < ∞.
Denote by LSHp<q

E (µ) the closure of Lq
E(µ) ∩ LSH in Lp

E(µ) ∩ LSH, with respect to
the Sobolev norm f ↦ ∥ f ∥p + ∥E f ∥p of the space Lp

E(µ). Deûne the space

LSHp<
E (µ) = ⋃

q>p
LSHp<q

E (µ)

with the closure being taken in Lp
E(µ).

For any probability measure, there is a common dense subspace (L∞) for all the
full Lq-spaces, q > 0, and so the closure of Lq in Lp is all of Lp for p < q; the stan-
dard proof uses cut-oòs that do not respect subharmonicity, and indeed, there are
no non-constant bounded subharmonic functions. In [16], Gross showed that, under
certain conditions on a measure µ on a complex manifold (in terms of its Dirichlet
form operator d∗d), in the presence of a full log Sobolev inequality (LSI), there is a
common dense subspace for all holomorphic Lq spaces of µ. In the present context
of logarithmically-subharmonic functions, no such technology is known, andwewill
content ourselves with the spaces LSHp<

(µ). We will consider the nature of these
spaces in a future publication. A natural conjecture is that, for suõciently nicemea-
sures µ, LSHp<

E (µ) = LSH ∩ Lp
E(µ).

_is brings us to our main theorem: the equivalence of (sLSI) and (sHC) for log-
arithmically subharmonic functions. Since slightly diòerent hypotheses on the in-
volvedmeasures are required for the two directions of the equivalence, we state them
separately. Moreover, because of some delicate issues with the (LSI) Ô⇒ (sHC) im-
plication, we give two versions: one that requires the same conditions as the reverse
implication but gives a slightly weaker form of strong hypercontractivity (b), and one
that proves full strong hypercontractivity for exponentially subadditive and subho-
mogeneous measures (a).

_eorem 1.17 Let µ be an O(n)-invariant probability measure on Rn .
(i) (a) Let µ be Euclidean exponential type p for all p > 1, exponentially subadditive,

and α-subhomogeneous for some α > 0. If µ satisûes the strong log Sobolev
inequality (sLSI) for all functions in LSH ∩ L1

E(µ), with constant c = 2
α , then

µ satisûes strong hypercontractivity (sHC): for 0 < p ≤ q < ∞ and f ∈

LSH ∩ Lp(µ), ∥ fr∥q ≤ ∥ f ∥p for 0 < r ≤ (p/q)c/2.
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(b) If µ is of Euclidean exponential type p for all p > 1 and (sLSI) holds for all
functions in ⋃q>1 LSH ∩ Lq

E(µ), then µ satisûes partial strong hypercontrac-
tivity on each space LSH ∩ Lq0(µ), q0 > 1, i.e., the inequality

∥ fr∥q(r) ≤ ∥ f ∥1 , q(r) = r−2/c

from Proposition 1.19 holds for all functions f ∈ LSH ∩ Lq0(µ) and r ∈

[1/q2/c
0 , 1].

(ii) If µ is Euclidean exponential type p for some p > 1, and if µ satisûes (sHC) in the
above sense, then µ satisûes the strong log Sobolev inequality (sLSI):

Entµ(g) ≤
c
2 ∫

Eg dµ

for all g ∈ LSH1<
E .

Remark 1.18 (i) _e global assumption of rotational invariance in_eorem 1.17
is actually quite natural in this situation. _e functional g ↦ ∫ Eg dµ on the right-
hand-side of our strong log Sobolev inequality isnot generally positive, since the oper-
ator E is not generally self-adjoint in L2(µ); however,when µ is rotationally invariant,
this functional is positive on the cone LSH, as pointed out in [13, Proposition 5.1].

(ii) In _eorem 1.17(i) we state the implication (sLSI) Ô⇒ (sHC) assuming the
strong log Sobolev inequality (sLSI) holds for all functions in LSH ∩ L1

E(µ), which
is the natural domain for which this inequality makes sense. In fact, our proof below
actually shows the implication supposing (sLSI) holds on the nominally smaller space
LSH1<

E , and then the domains for (sLSI) are the same in both parts of_eorem 1.17.

We emphasize that _eorem 1.17 is intrinsic. While the two directions of the the-
orem require slightly diòerent assumptions on the applicable measures, the implica-
tions between (sLSI) and (sHC) both stay within the cone LSH of log-subharmonic
functions. _is is themain beneût of extending Janson’s strong hypercontractivity the-
orem from holomorphic functions to this larger class, and restricting the log-Sobolev
inequality to it: here, the two are precisely equivalent.

1.2 Alternative Formulation of sHC

_e following equivalent characterization of strong hypercontractivity will be useful
in what follows.

Proposition 1.19 Fix c > 0 and let q(r) denote the function q(r) = r−2/c . A mea-
sure µ satisûes strong hypercontractivity (sHC) if and only if for each function f ∈

L1(µ) ∩ LSH,

∥ fr∥q(r) ≤ ∥ f ∥1 and ∥ fr∥1 ≤ ∥ f ∥1 , for r ∈ (0, 1].

For the proof it is useful to note that the class LSH is closed under f ↦ f p for any
p > 0.
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Proof First, suppose (sHC) holds with constant c. _e case p = q = 1 yields ∥ fr∥1 ≤

∥ f ∥1 for 0 < r ≤ (p/q)c/2 = 1. More generally, by (sHC), ∥ fr∥q ≤ ∥ f ∥1 whenever 0 <
r ≤ (1/q)c/2; i.e., whenever q ≤ r−2/c = q(r). In particular, it follows that ∥ fr∥q(r) ≤
∥ f ∥1 as claimed.
Conversely, suppose the above conditions hold true. Fix q ≥ p > 0 and let f ∈

Lp(µ) ∩ LSH. _en f p ∈ L1(µ) ∩ LSH, and so by assumption we have ∥( f p)r∥q(r) ≤

∥ f p∥1 for 0 < r ≤ 1. Since ( f p)r = ( fr)p , it follows immediately that ∥ fr∥p
p⋅q(r) ≤ ∥ f ∥p

p .
Setting q = p ⋅ q(r) and solving for r, we have r = r(p, q) ≡ (p/q)c/2, and so we have
proved the equality case of (sHC). Finally, suppose that r′ ≤ r(p, q) = (p/q)c/2; then
there is s ∈ (0, 1] so that r′ = s ⋅ r(p, q). Dilations form amultiplicative semigroup, so
fr′ = ( fr(p,q))s . We have just proved that fr(p,q) ∈ Lq , and hence ( fr(p,q))q is in L1(µ).
_erefore, by assumption, ∥[( fr(p,q))q]s∥1 ≤ ∥( fr(p,q))q∥1; unwinding this yields

∥ fr′∥q
q = ∥( fr(p,q))s∥

q
q = ∥[( fr(p,q))s]

q
∥1 = ∥[( fr(p,q))q

]s∥1 ≤ ∥( fr(p,q))q
∥1

= ∥ fr(p,q)∥
q
q ≤ ∥ f ∥q

p

by the equality case, thus proving (sHC).

Remark 1.20 In fact, (sHC) implies the putatively stronger statement that r ↦
∥ fr∥q(r) is non-decreasing on [0, 1]; however, theweaker formpresented above is gen-
erally easier to work with.

1.3 Convolution Property

We will use the convolution operation to prove the Sobolev density theorem at the
heart of this paper, as well as _eorem 1.7. We begin by showing that this operation
preserves the cone LSH.

Lemma 1.21 Let f ∈ LSH. Let ϕ ≥ 0 be a C∞c test function. _en f ∗ ϕ ∈ LSH∩C∞.

Proof Since f ∈ LSH, f ≥ 0 and ln f is subharmonic. In particular, ln f is upper
semi-continuous and locally bounded above, and so the same holds for f . _us f is
locally bounded andmeasurable; thus, f ∗ ϕ deûnes an L1

loc ∩C∞ function. Wemust
show that it is LSH.
Any subharmonic function is the decreasing limit of a sequence of C∞ subhar-

monic functions; cf. [28, Appendix 1, Proposition 1.15]. Applying this to ln f , there is
a sequence fn ∈ LSH∩C∞ such that fn ↓ f . Let gn = fn + 1

n , so gn is strictly positive,
and gn ↓ f . Since ϕ is ≥ 0, it follows from theMonotone Convergence_eorem that
gn ∗ ϕ ↓ f ∗ ϕ pointwise.

Now, (gn ∗ ϕ)(x) = ∫Rn gn(x − ω)ϕ(ω) dω. Since translation and positive di-
lation preserve the cone LSH, the function x ↦ gn(x − ω)ϕ(ω) is continuous and
LSH for each ω. Moreover, the function ω ↦ gn(x − ω)ϕ(ω) is continuous and
bounded. Finally, for small r, sup

∣t−x ∣≤r gn(t − ω)ϕ(ω) ≤ ∥ϕ∥∞ sup
∣t∣≤∣x ∣+r+s gn(t),

where s = sup{∣η∣∶ η ∈ supp ϕ}, and this is bounded uniformly in ω. It follows from
[13, Lemma 2.4] that gn ∗ϕ is LSH. (_e statement of that lemma apparently requires
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the supremum to be uniform in x as well, but this is an overstatement; as the proof of
the lemma clearly shows, only uniformity in ω is required).

_us, f ∗ϕ is the decreasing limit of strictly positive LSH functions gn∗ϕ. Applying
the Monotone Convergence _eorem to integrals of ln(gn ∗ ϕ) about spheres now
shows that ln( f ∗ ϕ) is subharmonic, so f ∗ ϕ ∈ LSH as claimed.

1.4 Compactly Supported Measures

_is section is devoted to the proof of_eorem 1.7. It follows the now standardGross
proof of such equivalence: diòerentiating hypercontractivity at the critical time yields
the log Sobolev inequality, and vice versa. _e technical issues related to diòerentiat-
ing under the integral can be dealt with fairly easily in the case of a compactly sup-
ported measure; the remainder of this paper develops techniques for handling mea-
sures with non-compact support. _e forward direction of the theorem, that (sHC)
implies (sLSI) for compactly supportedmeasures, is [13,_eorem 5.2], sowewill only
include the proof of the reverse direction here.

Proof of_eorem 1.7 By assumption, (sLSI) holds for suõciently smooth and inte-
grable functions; here we interpret that precisely to mean Entµ(g) ≤ c

2 ∫ Eg dµ for
all g ∈ C1(Rn) for which both sides are ûnite. Fix f ∈ L1(µ) ∩ LSH ∩ C1. Utilizing
Proposition 1.19, wemust consider the function α(r) = ∥ fr∥q(r), where q(r) = r−2/c .
Let β(r) = α(r)q(r) = ∫ f (rx)q(r) µ(dx) and set βx(r) = f (rx)q(r) so that β(r) =
∫ βx(r) µ(dx). _en

∂
∂r

ln βx(r) = q′(r) ln f (rx) + q(r)
f (rx)

x ⋅ ∇ f (rx).

Since q′(r) = − 2
rc q(r), and since x ⋅ ∇ f (rx) = 1

r (E f )r(x) = 1
r E( fr)(x), we have

(1.5)
∂
∂r
βx(r) = −

2
rc
fr(x)q(r) ln fr(x)q(r)

+
1
r
q(r) fr(x)q(r)−1

(E fr)(x).

Fix 0 < є < 1. As f is C1, the function (of x) on the right-hand-side of (1.5) is uni-
formly bounded for r ∈ (є, 1] and x ∈ suppµ (due to compactness). _e Dominated
Convergence_eorem thus allows diòerentiation under the integral, and so

(1.6) β′(r) = ∫
∂
∂r
βx(r) µ(dx).

_us, since α(r) = β(r)1/q(r) and β(r) > 0, it follows that α is C1 on (є, 1] and the
chain rule yields

(1.7) α′(r) = α(r)
q(r)β(r)

2
rc

[β(r) ln β(r) + rc
2
β′(r)] .
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From (1.5) and (1.6), the quantity in brackets is

∫ f q(r)r dµ ⋅ ln∫ f q(r)r dµ + rc
2 ∫

(−
2
rc
f q(r)r ln f q(r)r +

1
r
q(r) f q(r)−1

r E fr) dµ

= ∫ f q(r)r dµ ⋅ ln∫ f q(r)r dµ − ∫ f q(r)r ln f q(r)r dµ + q(r) c
2 ∫

f q(r)−1
r E fr dµ

= −Entµ( f q(r)r ) +
c
2 ∫

E( f q(r)r ) dµ,

(1.8)

where the equality in the last term follows from the chain rule.
Since f ∈ C1, it is bounded on the compact set suppµ, and so are all of its dilations

fr . Hence, both terms in (1.8) are ûnite, and so by the assumption of the theorem, this
term is ≥ 0. From (1.7), we therefore have α′(r) ≥ 0 for all r > є. Since this is true for
each є > 0, it holds true for r ∈ (0, 1]. _is veriûes the ûrst inequality in Proposition
1.19. For the second, we use precisely the same argument to justify diòerentiating
under the integral to ûnd

∂
∂r

∥ fr∥1 = ∫
∂
∂r
fr(x) µ(dx) = 1

r ∫
E fr(x) µ(dx) ≥ 2

cr
Entµ( fr) ≥ 0

by the assumption of (sLSI). _is concludes the proof for f ∈ C1.
Now, if f ∈ L1(µ) ∩ LSH, we consider a smooth approximate identity sequence

ϕk . _e inequalities in Proposition 1.19 hold for f ∗ ϕk by the ûrst part of the proof
and Lemma 1.21. Note by simple change of variables that ( f ∗ ϕk)r = fr ∗ (rnϕk)r ,
and that (rnϕk)r is also an approximate identity sequence. _e function fr is LSH, so
it is upper semi-continuous and consequently locally bounded. _us, fr ∈ Lq(r) and
( f ∗ ϕk)r converges to fr in Lq(r). _is concludes the proof.

2 Density Results Through LSH Functions

_is section is devoted to the approximation procedures we develop for smoothing
LSH functions in Lp space of Euclidean regular measures, and in particular to the
proof of _eorem 1.15. For a companion discussion of various closure properties of
the class of Euclidean regular measures (testifying to the reasonably large size of this
class), see the Appendix.

2.1 Continuity of the Dilated Convolution

One easy consequence of Deûnition 1.9 is that the operation f ↦ fr is bounded on
Lp .

Lemma 2.1 Let µ be a Euclidean regular probability measure on Rn , let p > 0, and
let r ∈ (0, 1). _en

∥ fr∥Lp(µ) ≤ r−n/p Cµ(
1
r , 0)

1/p
∥ f ∥Lp(µ) .
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Proof We simply change variables u = rx and use Deûnition 1.9:

∫ ∣ fr(x)∣pµ(dx) = ∫ ∣ f (rx)∣pρ(x) dx = r−n
∫ ∣ f (u)∣pρ(x/r) dx

≤ r−nCµ(
1
r , 0) ∫ ∣ f (u)∣pρ(x) dx .

Remark 2.2 By condition (1.2) of Deûnition 1.9, the constant in Lemma 2.1 is uni-
formly bounded for r ∈ (є, 1] for any є > 0; that is, there is a uniform (independent of
r) constant Cє so that, for r ∈ (є, 1], ∥ fr∥Lp(µ) ≤ Cє∥ f ∥Lp(µ).

_e next proposition shows that, under the assumptions of Deûnition 1.9, the di-
lated convolution operation is indeed bounded on Lp . As usual, the conjugate expo-
nent p′ to p ∈ [1,∞) is deûned by 1

p +
1
p′ = 1.

Proposition 2.3 Let µ be a Euclidean regular probability measure on Rn . Let p ∈

[1,∞), and let ϕ ∈ C∞c be a test function. _en the dilated convolution operation f ↦
( f ∗ ϕ)r is bounded on Lp(µ) for each r ∈ (0, 1). Precisely, if K = supp ϕ and s =

sup{∣w∣ ; w ∈ K}, then

∥( f ∗ ϕ)r∥Lp(µ) ≤ r−n/pCµ(
1
r ,

s
r )

1/p
Vol(K)

1/p
∥ϕ∥Lp′(K) ∥ f ∥Lp(µ) ,

where Cµ is the constant deûned in (1.3).

Proof Denote by K the support of ϕ. By deûnition,

∥( f ∗ ϕ)r∥
p
Lp(µ) = ∫Rn

∣∫
K
f (rx − y)ϕ(y) dy∣

p
ρ(x) dx .

We immediately estimate the internal integral using Hölder’s inequality:

∣∫
K
f (rx − y)ϕ(y) dy∣

p
≤ ∫

K
∣ f (rx − y)∣p dy ⋅ ∥ϕ∥p

Lp′(K) .

_is is ûnite, since the ûrst integral is the p-th power of the Lp-normof f restricted to
the compact set rx−K. (Note thatEuclidean regularity of µ implies that µ is equivalent
to Lebesguemeasure on compact sets.) Hence,

(2.1) ∥( f ∗ ϕ)r∥
p
Lp(µ) ≤ ∥ϕ∥p

Lp′(K) ∫Rn ∫K
∣ f (rx − y)∣pdy ρ(x) dx .

We apply Fubini’s theorem to the double integral, which is therefore equal to

(2.2) ∫
K
∫
Rn

∣ f (rx − y)∣pρ(x) dx dy = ∫
K
r−n

∫
Rn

∣ f (u)∣pρ( u + y
r

) du dy,

where we have made the change of variables u = rx − y in the internal integral. By
assumption, ρ is Euclidean regular, and so we have

(2.3) ρ( 1
ru +

1
r y) ≤ Cµ(

1
r ,

s
r ) ρ(u), y ∈ K .

where s = sup{∣w∣ ; w ∈ K}. Substituting (2.3) into (2.2), we see that (2.1) yields

∥( f ∗ ϕ)r∥
p
Lp(µ) ≤ r−n Cµ(

1
r ,

s
r )Vol(K) ∥ϕ∥p

Lp′(K) ∫ ∣ f (u)∣pρ(u) du.

_is completes the proof.
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Remark 2.4 _e explicit constant in Proposition 2.3 appears to depend strongly
on the support set of ϕ, but, in fact, it does not. Indeed, it is easy to check that the
standard rescaling of a test function, ϕs(x) = s−nϕ(x/s), which preserves total mass,
also preserves the ϕ-dependent quantity above; to be precise,Vol(suppϕs)∥ϕs∥

p
Lp′(Rn)

doesnot varywith s. In addition, the constantCµ(1/r, s/r) iswell-behaved as s shrinks
(indeed, it only decreases). It is for this reason that the proposition allows us to use the
dilated convolution operationwith an approximate identity sequence inwhat follows.

_e use of Proposition 2.3 is that it allows us to approximate an Lp function by
smoother Lp functions, along a path through LSH functions. To prove this, we ûrst
require the following continuity lemma.

Lemma 2.5 Let µ be a Euclidean regular probability measure, and let r ∈ (0, 1).
_en for any f ∈ Lp(µ), themap Tf ∶Rn → Lp(µ) given by [Tf (y)](x) = fr(x − y) is
continuous.

Proof First note that, by the change of variables u = rx − ry,

∥Tf (y)∥p
Lp(µ) = ∫ ∣ f (rx − ry)∣pρ(x) dx = r−n

∫ ∣ f (u)∣pρ( 1
ru + y) du,

and the latter is bounded above by r−nCµ(
1
r , ∣y∣) ∥ f ∥

p
Lp(µ), showing that the range of

Tf is truly in Lp(µ) for y ∈ Rn . Now, ûx є > 0 and let ψ ∈ Cc(Rn) be such that
∥ f − ψ∥Lp(µ) < є. Let (yk)

∞

k=1 be a sequence in Rn with limit y0. _en

∥Tf (yk) − Tf (y0)∥Lp(µ) ≤ ∥Tf (yk) − Tψ(yk)∥Lp(µ) + ∥Tψ(yk) − Tψ(y0)∥Lp(µ)

+ ∥Tψ(y0) − Tf (y0)∥Lp(µ) .

_e ûrst and last terms are simply Tψ− f (yk) (with k = 0 for the last term), and so we
have just proved that

∥Tψ− f (yk)∥Lp(µ) ≤ r−n/pCµ ( 1
r , ∣yk ∣)

1/p
∥ψ − f ∥Lp(µ) < r−n/pCµ ( 1

r , ∣yk ∣)
1/p є.

Moreover, there is a constant s so that ∣yk ∣ ≤ s for all k, and since Cµ(a, s) is an
increasing function of s, it follows that

∥Tf (yk) − Tf (y0)∥Lp(µ) ≤ ∥Tψ(yk) − Tψ(y0)∥Lp(µ) + 2r−n/pCµ(
1
r , s)

1/pє.

For each x, (Tψ(yk)(x) − Tψ(y0)(x) = ψ(rx − ryk) − ψ(rx − ry0) converges to 0,
since ryk → ry0 and ψ is continuous. In addition, ψr is compactly supported and
continuous, so it is uniformly bounded. Since µ is a probability measure, it now fol-
lows that ∥Tψ(yk) − Tψ(y0)∥Lp(µ) → 0 as yk → y0, and the lemma follows by letting
є ↓ 0.

Corollary 2.6 Let µ be a Euclidean regular probability measure, and let r ∈ (0, 1).
_en for any f ∈ Lp(µ), and ϕk an approximate identity sequence (ϕk ∈ C∞c (Rn) with
∫ ϕk(x) dx = 1 and suppϕk ↓ {0}),

∥ fr ∗ ϕk − fr∥Lp(µ) → 0 as k →∞.

https://doi.org/10.4153/CJM-2015-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-015-8


1396 P. Graczyk, T. Kemp, and J.-J. Loeb

Proof Fix є > 0 and let ψ ∈ Cc(Rn) be such that ∥ f − ψ∥Lp(µ) < є. We estimate this
in the following (standard) manner:

(2.4) ∥ fr ∗ϕk− fr∥Lp(µ) ≤ ∥( fr−ψr)∗ϕk∥Lp(µ)+∥ψr ∗ϕk−ψr∥Lp(µ)+∥ψr− fr∥Lp(µ) .

By Lemma 2.1 applied to f − ψ, we have ∥ fr − ψr∥Lp(µ) ≤ r−n/pCµ(1/r, 0)1/pє, and
from condition (1.2) of Deûnition 1.9, this is a uniformly bounded constant times є
for r away from 0. Also, note that

fr ∗ ϕk(x) = ∫ fr(x − y)ϕk(y) dy = ∫ f (rx − ry)ϕk(y) dy

= r−n
∫ f (rx − u)ϕk(u/r) du;

that is to say, fr ∗ ϕk = r−n( f ∗ ϕ̃k)r , where we set ϕ̃k = (ϕk)1/r . Hence,

∥( f − ψ)r ∗ ϕk∥Lp(µ)

= r−n
∥(( f − ψ) ∗ ϕ̃k)r∥Lp(µ)

≤ r−nr−n/pCµ(
1
r ,

sk
r )

1/p
Vol(suppϕ̃k)

1/p
∥ϕ̃k∥Lp′(Rn) ⋅ ∥ f − ψ∥Lp(µ)

by Proposition 2.3, where sk = sup{∣w∣ ; w ∈ suppϕk}. Since Cµ(
1
r ,

s
r ) is increasing

in s, this constant is uniformly bounded as k →∞. In addition (cf. Remark 2.4), the
product Vol(suppϕ̃k)

1/p∥ϕ̃k∥Lp′(Rn) can also be made constant with k (for example
by choosing ϕk(x) = knϕ(kx) for some ûxed unit mass C∞c test-function ϕ). _e
result is that both the ûrst and last terms in (2.4) are uniformly small as k →∞. _us,
we need only show that ψr ∗ ϕk → ψr in Lp(µ). _e quantity in question is the p-th
root of

(2.5) ∫ ∣∫ ψr(x − y)ϕk(y) dy − ψr(x)∣
p
µ(dx) =

∫ ∣∫
Kk

[ψr(x − y) − ψr(x)]ϕk(y) dy∣
p
µ(dx),

where we have used the fact that ϕk is a probability density; here Kk denotes the
support of ϕk . Since ψr is bounded,wemaymake the blunt estimate that the quantity
in (2.5) is

≤ ∫ sup
y∈Kk

∣ψr(x − y) − ψr(x)∣p∣∫
Kk

ϕk(y) dy∣
p
µ(dx)

= ∫ sup
y∈Kk

∣ψr(x − y) − ψr(x)∣p µ(dx).

Since ψr is continuous and Kk is compact, there is a point yk ∈ Kk such that the
supremum is achieved at yk : supy∈Kk

∣ψr(x − y) − ψr(x)∣p = ∣ψr(x − yk) − ψr(x)∣p .
As k → ∞, the support Kk of ϕk shrinks to {0}, and so yk → 0. _e function
∣ψr(x − yk) − ψr(x)∣p is continuous in x, and so converges to 0pointwise as yk → 0. It
therefore follows from the dominated convergence theorem that ∥ψr∗ϕk−ψr∥Lp(µ) →
0, completing the proof.

We will now use Proposition 2.3 and Corollary 2.6 to prove our main approxima-
tion theorem: that Lp

E(µ) is dense in Lp(µ) through log-subharmonic functions.
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2.2 The Proof of Theorem 1.15

_e basic idea of the proof is as follows: approximate a function f ∈ LSH ∩ Lp(µ) by
( f ∗ ϕ)r , and let ϕ run through an approximate identity sequence and r tend to 1. We
show that the dilated convolution ( f ∗ ϕ)r is in C∞ ∩ LSH ∩ Lp

E(µ), and that these
may be used to approximate f in the Lp-sense.

Part 1: ( f ∗ ϕ)r is in C∞ ∩ LSH ∩ Lp
E(µ). Let ϕ ∈ C∞c (Rn) be a non-negative test

function. Lemma 1.21 shows that f ∗ ϕ is C∞ and LSH. It is elementary to verify that
the cone C∞∩LSH is invariant under dilations g ↦ gr ; hence the dilated convolution
( f ∗ ϕ)r is C∞ and LSH. For ûxed r < 1, Proposition 2.3 shows that ( f ∗ ϕ)r is in
Lp(µ), since f ∈ Lp(µ). We must now apply the diòerential operator E. Note that
( f ∗ ϕ)r is C∞, and so

E[( f ∗ ϕ)r](x) = x ⋅ ∇[( f ∗ ϕ)r](x) = ∫ rx ⋅ ∇ϕ (rx − y) f (y) dy.

Decomposing rx = (rx − y) + y, we break this up as two terms

(2.6) E[( f ∗ϕ)r](x) = ∫ (rx− y) ⋅∇ϕ (rx− y) f (y) dy+∫ y ⋅∇ϕ(rx− y) f (y) dy.

_e ûrst term is just ( f ∗ Eϕ)r(x), and since Eϕ is also C∞c (Rn), Proposition 2.3
bounds the Lp-norm of this term by the Lp-norm of f . Hence, it suõces to show that
the second term in (2.6) deûnes an Lp(µ)-function of x. We now proceed analogously
to the proof ofProposition 2.3. Changing variables u = rx−y for ûxed x in the internal
integral and then using Hölder’s inequality

∫
Rn

∣∫
Rn

y ⋅ ∇ϕ (rx − y) f (y) dy∣
p
ρ(x) dx

= ∫
Rn

∣∫
K
(rx − u) ⋅ ∇ ϕ(u) f (rx − u) du∣

p
ρ(x) dx

≤ ∫
Rn

(∫
K
∣rx − u∣p ∣ f (rx − u)∣p du)(∫

K
∣∇ϕ (u)∣p

′
dy)

p/p′

ρ(x) dx ,

where K = suppϕ. Note that ∥∇ϕ∥p′ <∞ is a constant independent of f . So wemust
consider the double integral, to which we apply Fubini’s theorem,

∫
Rn

(∫
K
∣rx−u∣p ∣ f (rx−u)∣pdu) ρ(x) dx = ∫

K
(∫

Rn
∣rx−u∣p ∣ f (rx−u)∣pρ(x) dx)du.

Now we change variables v = rx − u for ûxed u in the internal integral, to achieve

(2.7) ∫
K
(∫

Rn
∣v∣p ∣ f (v)∣pρ( v + u

r
) r−n dv) du.

Finally, we utilize the assumption that ρ is exponential type p, and so there is a con-
stant C(p, r,K) so that ∣v∣pρ( v+u

r ) ≤ C(p, r,K)ρ(u) for u ∈ K. Hence the integral
in (2.7) is bounded above by C(p, r,K)r−nVol(K) times the ûnite norm ∫ ∣ f ∣p dµ,
which demonstrates that E[( f ∗ ϕ)r] is in Lp(µ).

Part 2: ( f ∗ϕ)r approximates f in Lp(µ). Let ϕk be an approximate identity sequence.
Note by simple change of variables that ( f ∗ ϕk)r = fr ∗ (rnϕk)r , and that (rnϕk)r
is also an approximate identity sequence. Since fr ∈ Lp(µ), by Lemma 2.1, it follows
from Corollary 2.6 that ( f ∗ ϕk)r → fr , k → ∞, in Lp(µ). We must now show

https://doi.org/10.4153/CJM-2015-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-015-8


1398 P. Graczyk, T. Kemp, and J.-J. Loeb

that fr → f in Lp(µ) as r ↑ 1. For this purpose, once again ûx є > 0 and choose a
ψ ∈ Cc(Rn) so that ∥ f − ψ∥Lp(µ) < є. _en

(2.8) ∥ f − fr∥Lp(µ) ≤ ∥ f − ψ∥Lp(µ) + ∥ψ − ψr∥Lp(µ) + ∥ψr − fr∥Lp(µ) .

_e ûrst term is < є, and changing variables the last term is

∥ψr − fr∥p
Lp(µ) = ∫ ∣ψ(rx) − f (rx)∣pρ(x) dx = r−n

∫ ∣ψ(u) − f (u)∣pρ(u/r) du

≤ r−nCµ(
1
r , 0) ∫ ∣ψ − f ∣p dµ.

Here we have used the fact that µ is Euclidean regular. Note that, by condition (1.2)
of Deûnition 1.9, the constant appearing here is uniformly bounded by, say, C, for r ∈
( 1

2 , 1]. _ence, the last term in (2.8) is bounded above by C1/pє and is also uniformly
small. Finally, the middle term tends to 0 as r ↑ 1, since ψr → ψ pointwise and the
integrand is uniformly bounded. Letting є tend to 0 completes the proof.

3 The Intrinsic Equivalence of (sLSI) and (sHC)

In this section,we prove_eorem 1.17, namely, if ameasure µ is suõciently Euclidean
regular (satisfying the conditions of Deûnition 1.9), and if µ is invariant under rota-
tions, then µ satisûes a strong log-Sobolev inequality precisely when it satisûes strong
hypercontractivity. It will be useful to ûx the following notation.

Notation 3.1 Let c > 0 be a ûxed constant, let µ be ameasure on Rn , and let f be a
function on Rn .

(i) For r ∈ (0, 1], let q = q(r) denote the function q(r) = r−2/c . Note that q ∈

C∞(0, 1], is decreasing, and q(1) = 1.
(ii) Deûne a function α f ,µ ∶ (0, 1]→ [0,∞) by

α f ,µ(r) ≡ ∥ fr∥Lq(r)(µ) = (∫ ∣ f (rx)∣q(r) µ(dx))
1/q(r)

.

When the function f andmeasure µ are clear from context, we denote α f ,µ = α.

First we deal with the implication (sHC)Ô⇒ (sLSI).

3.1 (sHC)Ô⇒ (sLSI)

We begin with the following general statement.

Lemma 3.2 Suppose µ is a Euclidean regular probabilitymeasure. Let q0 > 1, and let
f > 0 be in Lq0(µ)∩C1(Rn). Let є ∈ (0, 1), and suppose there are qє ≥ 1 and functions
h1 , h2 ∈ Lqє(µ) such that for all r ∈ (є, 1],

(3.1) ∣ f (rx)q(r) log f (rx)∣ ≤ h1(x), ∣ f (rx)q(r)−1E f (rx)∣ ≤ h2(x) a.s.[x].
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_en for r ∈ (є, 1], the functions f q(r)r are in Lqє(µ), and the function α = α f ,µ is
diòerentiable on (є, 1] with

(3.2)

α′(r) = 2
crq(r)

∥ fr∥1−q(r)
q(r) [∥ fr∥q(r)

q(r) log ∥ fr∥
q(r)
q(r)−∫ f (rx)q(r) log f (rx)q(r) µ(dx)

+
cq(r)

2 ∫ f (rx)q(r)−1E f (rx) µ(dx)] .

Remark 3.3 Note that (1/q(r))c/2 = r. Hence, if f ∈ LSH and µ satisûes the strong
hypercontractivity property of (sHC) (with p = 1) we have α(r) ≤ ∥ f ∥1 = α(1) for
r ∈ (0, 1]. _e conditions of Lemma 3.2 guarantee that α is diòerentiable; hence, we
essentially have that α′(1) ≥ 0. Equation (3.2) shows that α′(r) is closely related to the
expression in (sLSI) for the function f q(r)r , and indeed this is our method for proving
the equivalence of the logarithmic Sobolev inequality and strong hypercontractivity
in what follows.

Proof Set β(r, x) = f (rx)q(r) so that α(r)q(r) = ∫ β(r, x) µ(dx). Note, β(r, x) =
fr(x)q(r).
First we show that if f (rx)q(r) log f (rx) ∈ Lqє(µ), then, in fact, f q(r)r is also in

Lqє(µ), and so β(r, ⋅ ) ∈ L1(µ) for all r ∈ (є, 1). _e idea is simple: the logarithm
cannot signiûcantly improve the function f (rx)q(r) . Rigorously, we ûx r ∈ (є, 1], we
choose 0 < δ < 1, and we deûne

D = {x ∈ Rn
∶ ∣ fr(x) − 1∣ < δ}.

_e logarithm log f (rx) is bounded away from 0 on Dc , while the function
1D(x) f (rx)q(r) is bounded, so it is in Lqє(µ) on D. We have

f q(r)r = 1D f q(r)r + 1Dc f q(r)r ,

and there exists c > 0 such that c1Dc f q(r)r ≤ ∣ f q(r)r log fr ∣ ≤ h1. _us, f q(r)r ∈ Lqє(µ).
Since f ∈ C1 and strictly positive,we can check quickly that β( ⋅ , x) is aswell. Using

the fact that q′(r) = − 2
c r
−2/c−1 = − 2

cr q(r), and that ∂
∂r f (rx) =

1
r E f (rx), logarithmic

diòerentiation yields

(3.3)
∂
∂r
β(r, x) = q(r)[− 2

cr
f (rx)q(r) log f (rx) + 1

r
f (rx)q(r)−1E f (rx)] .

From the hypotheses of the lemma, we therefore have

∣
∂
∂r
β(r, x)∣ ≤ q(r)

r
[
2
c
h1(x) + h2(x)]

for almost every x ∈ Rn , for r ∈ (є′ , 1]. As q(r)/r is uniformly bounded on (є′ , 1],
we see that ∣ ∂

∂r β(r, x)∣ is uniformly bounded above by an L1(µ) function. It now
follows from the Lebesgue diòerentiation theorem that α(r)q(r) = ∫ β(r, x) µ(dx) is
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diòerentiable on a neighborhood of 1, and

(3.4)

d
dr

[α(r)q(r)] = ∫
∂
∂r
β(r, x) µ(dx)

= −
2
cr

q(r)∫ f (rx)q(r) log f (rx) µ(dx)

+
1
r
q(r)∫ f (rx)q(r)−1E f (rx) µ(dx).

Consequently α(r) is diòerentiable in a neighborhood of 1. Again using logarithmic
diòerentiation,

α′(r) = α(r) d
dr

log α(r) = α(r) d
dr

[
1

q(r)
log α(r)q(r)

] ,

and again using the fact that q′(r) = − 2
cr q(r),

d
dr

[
1

q(r)
log α(r)q(r)

] =
2

crq(r)
log α(r)q(r)

+
1

q(r)
α(r)−q(r) d

dr
[α(r)q(r)]

=
α(r)−q(r)

q(r)
(

2
cr
α(r)q(r) log α(r)q(r)

+
d
dr

[α(r)q(r)]) .

Combining this with (3.4), we therefore have

α′(r) = α(r)
1−q(r)

q(r)
[

2
cr
α(r)q(r) log α(r)q(r)

−
2
cr

q(r)∫ f (rx)q(r) log f (rx) µ(dx)

(3.5)

+
1
r
q(r)∫ f (rx)q(r)−1E f (rx) µ(dx)] .

Simplifying (3.5) and using the deûnition α(r) = ∥ fr∥q(r) yields (3.2), proving the
lemma.

We therefore seek conditions on a function f (and on themeasure µ) that guaran-
tee the hypotheses of Lemma 3.2 (speciûcally the existence of the Lebesgue dominat-
ing functions h1 and h2). Naturally, we will work with LSH functions f . We will also
make the fairly strong assumption that µ is rotationally invariant.

Notation 3.4 Let f ∶Rn → R be locally-bounded. Denote by f̃ the spherical average
of f . _at is, with ϑ denoting Haar measure on the group O(n) of rotations of Rn ,

f̃ (x) = ∫
O(n)

f (ux) ϑ(du).

If µ is rotationally invariant, then ∫ f dµ = ∫ f̃ dµ for any f ∈ L1(µ). As such, we
can immediately weaken the integrability conditions of Lemma 3.2 as follows.

Lemma 3.5 Suppose µ is a Euclidean regular probability measure that is invariant
under rotations of Rn . Let q0 > 1 and let f > 0 be in Lq0

E (µ). Denote by f1 , f2∶ (0, 1] ×
Rn → R the functions

(3.6) f1(r, x) = f (rx)q(r) log f (rx), f2(r, x) = f (rx)q(r)−1E f (rx).
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Fix є ∈ (0, 1), and suppose that there exist functions h1 , h2 ∈ L1(µ) such that, for
r ∈ (є, 1], ∣ f̃ j(r, x)∣ ≤ h j(x) for almost every x, j = 1, 2. (Here f̃ j(r, ⋅ ) refers to the
rotational average of f j(r, ⋅ ), as per Notation 3.4.) _en the conclusion of Lemma 3.2
stands: the function α = α f ,µ is diòerentiable on (є, 1], and its derivative is given by
(3.2).

Proof Following the proof of Lemma 3.2, only a few modiûcations are required.
Deûning β(r, x) as above, α(r)q(r) = ∫ β(r, x) µ(dx); since µ is rotationally invari-
ant, this is equal to ∫ β̃(r, x) µ(dx), where β̃ refers to the rotational average of β in
the variable x. Evidently, β̃(r, ⋅ ) is µ-integrable for suõciently large r < 1 (since β is).
To use the Lebesgue diòerentiation technique,wemust verify that ∂

∂r β̃(r, x) exists for
almost every x and is uniformly bounded by an L1(µ) dominator. Note that β(r, x)
is locally-bounded in x for each r, and so for ûxed x it is easy to verify that indeed

∂
∂r
β̃(r, x) = ∫

O(n)

∂
∂r
β(r, ux) ϑ(du).

Using (3.3), we then have
∂
∂r
β̃(r, x) =

q(r)∫
O(n)

(−
2
cr
f (rux)q(r) log f (rux) + 1

r
f (rux)q(r)−1E f (rux)) ϑ(du).

_at is, using (3.6), ∂
∂r β̃(r, x) = q(r)[− 2

cr f̃1(r, x) +
1
r f̃2(r, x)] . Hence, from the as-

sumptions of this lemma,

∣
∂
∂r
β̃(r, x)∣ ≤ q(r)

r
[
2
c
h1(x) + h2(x)]

and so, since q(r)/r is uniformly bounded for r ∈ ( 1
2 , 1], it follows that α(r)q(r) =

∫ β̃(r, x) µ(dx) is diòerentiable near 1, with the derivative given by

∫
∂
∂r
β̃(r, x) µ(dx) = q(r)[− 2

rc ∫
f̃1(r, x) µ(dx) + 1

r ∫
f̃2(r, x) µ(dx)] .

Now using the rotational invariance of µ again, these integrals are the same as the
corresponding non-rotated integrands ∫ f j(r, x) µ(dx), yielding the same result as
(3.4). _e remainder of the proof follows the proof of Lemma 3.2 identically.

Remark 3.6 _e point of Lemma 3.5 – that it is suõcient to ûnd uniformLebesgue
dominators for the rotational averages of the terms in (3.1) – is actually quite pow-
erful for us. While a generic subharmonic function in dimension ≥ 2 may not have
good global properties, a rotationally invariant subharmonic function does, as the
next proposition demonstrates. We will exploit this kind of behavior to produce the
necessary bounds to verify the conditions of Lemma 3.5 and prove the diòerentiability
of the norm.

Proposition 3.7 Let f ∶Rn → R be subharmonic and locally-bounded. _en f̃ is
also subharmonic; moreover, for ûxed x ∈ Rn , r ↦ f̃ (rx) is an increasing function of
r ∈ [0, 1].

https://doi.org/10.4153/CJM-2015-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-015-8


1402 P. Graczyk, T. Kemp, and J.-J. Loeb

Proof Fix u ∈ O(n). Since f is locally-bounded, subharmonicity means that

⨏
B(x ,r)

f (t) dt ≥ f (x) for every x ∈ Rn , r ∈ (0,∞).

Changing variables, we have

⨏
B(x ,r)

f (ut) dt = ⨏
u⋅B(x ,r)

f (t) dt = ⨏
B(ux ,r)

f (t) dt ≥ f (ux).

Hence, f ○ u is subharmonic for each u ∈ O(n). _e local-boundedness of f means
that the function u ↦ f (ux) is uniformly bounded in L1(O(n), ϑ) for x in a compact
set, and hence it follows that f̃ is subharmonic.

Hence f̃ is a rotationally invariant subharmonic function. Fix x ∈ Rn and r ∈

[0, 1]. _en rx is in the ball B(0, ∣x∣), and since f̃ is subharmonic, the maximum
principle (cf. [14, Prop. 7.7.7]) asserts that f̃ (rx) is no larger than themaximum of f
on ∂B(0, ∣x∣). But f̃ is constantly equal to f̃ (x) on ∂B(0, ∣x∣) by rotational invariance,
and so f̃ (rx) ≤ f̃ (x), proving the proposition.

Proposition 3.7 makes it quite easy to provide a uniform Lebesgue dominating
function for the function f1 in Lemma 3.5.

Proposition 3.8 Suppose µ is a rotationally invariant probability measure on Rn .
Let q0 > 1, and let f ≥ 0 be subharmonic and in Lq0(µ). Deûne f1 as in (3.6):
f1(r, x) = f (rx)q(r) log f (rx). Set g1(x) = f (x)q0 , and set h1 = g̃1 + 1; i.e., h1(x) =
1 + ∫O(n) f (ux)

q0 ϑ(du). _en h1 ∈ L1(µ) and there is an є ∈ (0, 1) and a constant
C > 0 so that for all r ∈ (є, 1], ∣ f̃1(r, x)∣ ≤ Ch1(x) for almost every x.

Remark 3.9 By the rotational invariance of µ, ∫ h1 dµ = ∫ g̃1 dµ+ 1 = ∫ g1 dµ+ 1 =
∫ f q0 dµ+1 <∞, and so h1 is a uniform L1(µ) dominator verifying the ûrst condition
of Lemma 3.5.

Proof Choose some small δ ∈ (0, 1). First note from simple calculus that, for u ≥ 1,
u−δ logu ≤ 1

eδ . Now, choose є ∈ (0, 1) so that q(є) < q0 − δ; then q(r) < q0 − δ for
r ∈ (є, 1]. Consequently, if f (y) ≥ 1, we have

0 ≤ f (y)q(r) log f (y) ≤ f (y)q0−δ log f (y) ≤ 1
eδ
f (y)q0 .

On the other hand, for 0 ≤ u ≤ 1, ∣uq(r) logu∣ ≤ 1
eq(r) ≤

1
e (again by simple calculus).

_us, since f ≥ 0, in total we have

(3.7) ∣ f (y)q(r) log f (y)∣ ≤ 1
e
max{

1
δ
f (y)q0 , 1} ≤

1
eδ

[ f (y)q0 + 1].

Set C = 1
eδ . With y = rx, the le�-hand side of (3.7) is precisely f1(r, x). Averaging

(3.7) over O(n) and recalling that g1(y) = f (y)q0 , we have

∣ f̃1(r, x)∣ ≤ C[g̃1(rx) + 1].

Recall that if ϕ is convex and f is subharmonic, then ϕ ○ f is also subharmonic. _us,
since q0 > 1 and f is subharmonic, g1 is also subharmonic, and hence from Proposi-
tion 3.7, g̃1(rx) ≤ g̃1(x). _is proves the proposition.
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Wemust now bound the second term f̃2(r, ⋅ ) uniformly for r in a neighborhood
of 1. _e following Lemma is useful in this regard.

Lemma 3.10 Let k̃ be a C1 non-negative subharmonic rotationally invariant function.
_en for x ∈ Rn and r ∈ (0, 1],

(3.8) E k̃(rx) ≤ r2−nE k̃(x).

Proof First, note that it suõces to assume k̃ is in fact C∞. Indeed, for more general
k̃, let ϕ be a rotationally invariant non-negative compactly-supported bump func-
tion, and replace k̃ with k̃ ∗ ϕ. By Lemma 1.21, this function is subharmonic and C∞;
it is also rotationally invariant. If we proceed to prove (3.8) for this molliûed func-
tion, we may then take an approximate identity sequence of ϕ. Now, since k̃ ∈ C1,
∂ j(k̃ ∗ ϕ) = (∂ j k̃) ∗ ϕ for j = 1, . . . , n, and the functions ∂ j k̃ are continuous and lo-
cally bounded. Hence, wemay choose the approximate identity sequence so that the
derivatives converge pointwise (or even uniformly on compact sets), which shows
that both sides of (3.8) converge appropriately. Henceforth, we assume k̃ is C∞.

Since k̃ is rotationally invariant, there is a function h∶ [0,∞) → R so that k̃(x) =
h(∣x∣). _e Laplacian of k̃ can then be expressed in terms of derivatives of h; the result
is

∆k̃(x) = h′′(∣x∣) + (n − 1)
1
∣x∣

h′(∣x∣).

Hence, since k̃ is subharmonic and smooth, it follows that for t > 0,

(3.9) t h′′(t) + (n − 1)h′(t) ≥ 0.

One can also check that, in this case, E k̃(x) = ∣x∣h′(∣x∣). Now deûne F(r) =

rn−2E k̃(rx) = rn−2r∣x∣h′(r∣x∣). _en F is smooth on (0,∞) and F(1) = ∣x∣h′(∣x∣) =
E k̃(x). We diòerentiate, yielding

F′(r) = ∣x∣ d
dr

rn−1h′(r∣x∣) = ∣x∣(n − 1)rn−2h′(r∣x∣) + ∣x∣rn−1h′′(r∣x∣)∣x∣

= ∣x∣rn−2[ r∣x∣h′′(r∣x∣) + (n − 1)h′(r∣x∣)] .

Equation (3.9) with t = r∣x∣ now yields that F′(r) ≥ 0 for r > 0. Hence, F(r) ≤ F(1)
for r ≤ 1. _is is precisely the statement of the lemma.

Proposition 3.11 Let q0 > 1 and let µ be a rotationally invariant probabilitymeasure
on Rn . Let f > 0 be subharmonic, C1, and in Lq0

E (µ). Deûne f2 as in (3.6): f2(r, x) =
f (rx)q(r)−1E f (rx). Set g3(x) = ( f (x)q0−1 + 1)∣E f (x)∣, and set h2 = g̃3. _en there
is an є ∈ (0, 1) and a constant C > 0 so that for all r ∈ (є, 1], ∣ f̃2(r, x)∣ ≤ Ch2(x) for
almost every x; moreover, h2 ∈ L1(µ).

Proof Fix є ∈ (0, 1) small enough that q(r) < q0 for all r ∈ (є, 1]. Deûne g2(r, y) =
f (y)q(r)−1E f (y), and note that f2(r, x) is given by the dilation f2(r, x) = g2(r, rx).
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Since E is a ûrst-order diòerential operator, we can quickly check that

g2(r, y) =
1

q(r)
E( f q(r))(y).

We now average both sides over O(n). Set k = f q(r), which is C1, and let u ∈ O(n).
_en we have the following calculus identity:

E(k ○ u)(y) = y ⋅ ∇(k ○ u)(y) = y ⋅ u⊺∇k(uy) = (uy) ⋅ ∇k(uy) = (Ek)(uy).

For ûxed y, the function u ↦ (Ek)(uy) is uniformly bounded and so we integrate
both sides to yield

Ẽk(y) = ∫
O(n)

(Ek)(uy) ϑ(du) = ∫ E(k ○ u)(y) ϑ(du)

= E ∫ k ○ u(y) ϑ(du) = E(k̃)(y).

In other words, g̃2(r, y) = 1
q(r)E( f̃ q(r))(y). As in the proof of Proposition 3.8, the

function k̃ = f̃ q(r) is subharmonic and rotationally invariant. Hence, we employ
Lemma 3.10 and have

g̃2(r, rx) =
1

q(r)
E k̃(rx) ≤ 1

q(r)
r2−nE k̃(x) = r2−n g̃2(r, x).

Since r2−n is uniformly bounded for r ∈ (є, 1], it now suõces to ûnd a uniform dom-
inator for g̃2(r, x).

We thereforemake the following estimates. Since q(r) < q0, we have

∣g2(r, x)∣ = f (x)q(r)−1
∣E f (x)∣ ≤ max{ f (x)q(r)−1 , 1}∣E f (x)∣

≤ max{ f (x)q0−1 , 1}∣E f (x)∣ ≤ ( f (x)q0−1
+ 1) ∣E f (x)∣.

_at is to say, ∣g2(r, x)∣ ≤ g3(x) for r ∈ (є, 1]. Hence,

∣g̃2(r, x)∣ = ∣∫
O(n)

g2(r, ux) ϑ(du)∣ ≤ ∫
O(n)

∣g2(r, ux)∣ ϑ(du)

≤ ∫
O(n)

g3(ux) ϑ(du) = g̃3(x) = h2(x),

thus proving the estimate.
As usual, by rotational invariance of µ, ∫ g̃3 dµ = ∫ g3 dµ, and so to show

h2 ∈ L1(µ) we need only verify that g3 ∈ L1(µ). To that end, we break up g3(x) =

f (x)q0−1∣E f (x)∣+ ∣E f (x)∣. By assumption, f ∈ Lq0
E (µ) and so ∣E f ∣ ∈ Lq0(µ); as µ is a

ûnitemeasure, this means that ∣E f ∣ ∈ L1(µ) and hence the second term is integrable.
For the ûrst term, we useHölder’s inequality:

∫ f q0−1
∣E f ∣ dµ ≤ ∥ f q0−1

∥q′0∥E f ∥q0 = ∥ f ∥q0−1
q0 ∥E f ∥q0 .

Both terms are ûnite, since f ∈ Lq0
E (µ), andhence g3 ∈ L1(µ), proving theproposition.

Combining Lemma 3.5 and Propositions 3.8 and 3.11,we therefore have the follow-
ing theorem.
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_eorem 3.12 Let q0 > 1 and let µ be a probabilitymeasure of Euclidean type q0 that
is invariant under rotations of Rn . Suppose that µ satisûes strong hypercontractivity
of (sHC) with constant c > 0. Let f ∈ Lq0

E (µ) ∩ LSH. _en the strong log-Sobolev
inequality, (sLSI), holds for f :

∫ f log f dµ − ∫ f dµ log∫ f dµ ≤
c
2 ∫

E f dµ.

Proof Under the conditions stated above, the results of the preceding section show
that the function α = α f ,µ is diòerentiable on (є′ , 1] for some є′ ∈ (0, 1). Since µ
satisûes strong hypercontractivity, Proposition 1.19 shows that the function α is non-
decreasing on (0, 1]. It therefore follows that α′(r) ≥ 0 for r ∈ (є′ , 1] (here α′(1)
denotes the le� derivative). Hence, from (3.2) we have, for r ∈ (є′ , 1],

∥ fr∥q(r)
q(r) log ∥ fr∥

q(r)
q(r) − ∫ f (rx)q(r) log f (rx)q(r) µ(dx)

+
cq(r)

2 ∫ f (rx)q(r)−1E f (rx) µ(dx) ≥ 0.

At r = 1, this reduces precisely to (sLSI), proving the result.

_eorem 3.12 implies _eorem 1.17(ii). Indeed, let g ∈ LSH1<
E and let ( fk) be a

sequence of functions converging to g in L1
E(µ) and such that (sLSI) holds for each

fk . _en, by the deûnition of the norm of the Sobolev space L1
E(µ), we have

∫ fk dµ → ∫ f dµ and ∫ E fk dµ → ∫ E f dµ.

_ere exists a subsequence fk′ tending to f almost surely. We apply the Dominated
Convergence_eorem to the sequence ∫ fk′ log fk′1{ fk′≤1} dµ and Fatou’s Lemma to
the sequence ∫ fk′ log fk′1{ fk′>1} dµ. _e inequality (sLSI) for f follows.

We now turn to _eorem 1.17(i). We will need the following reûnement of Propo-
sitions 3.8 and 3.11. _e proofs are the same, payingmore attention to Lq-integrability,
q > 1, and to the precise value of є.

Corollary 3.13 Propositions 3.8 and 3.11 hold for any є = 1/q2/c
0 + δ < 1, with δ > 0.

For any ûxed є of this form, the majorizing functions h1 , h2 belong to Lq(µ) for some
q > 1.

3.2 (sLSI)Ô⇒ (sHC)

We utilizemany of the results in the previous section in the samemanner they were
stated; we therefore outline this direction more brie�y.
First we prove_eorem 1.17(i)(b). Fix some q0 > 1, and let g ∈ LSH ∩ Lq0

E (µ). We
proceed as in the proof of _eorem 1.7. In order to justify diòerentiating under the
integral, we use Lemma 3.5 and Propositions 3.8 and 3.11 with Corollary 3.13. Using
Fatou’s Lemma,we obtain the strong hypercontractivity inequalities fromProposition
1.19 for g ∈ LSH ∩ Lq0

E (µ) and r ∈ [1/(q2/c
0 ), 1].

In the next step of the proof we show that the partial strong hypercontractivity
inequalities from Proposition 1.19 hold for h ∈ LSH ∩ Lq(µ) for any q > 1 and r ∈
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[1/(q2/c), 1]. By_eorem1.15, there exists a sequence (gk) ⊂ LSH∩Lq
E(µ) converging

to h in Lq(µ), so also in L1(µ). By passing to a subsequence, wemay suppose that gk
converge to h almost surely; thus (gk)r converge to hr almost surely for any r ∈ (0, 1].
Fatou’s Lemma then implies that ∥hr∥q(r) ≤ ∥h∥1. It is in this step of the proof that the
hypothesis of p-Euclidean exponential type of µ for every p > 1 is essential. _ence,
we obtain _eorem 1.17(i)(b).

In order to prove _eorem 1.17(i)(a), we ûrst prove the following property of ex-
ponentially sub-additive and α-subhomogeneous measures µ:

(3.10) f ∈ L1
(µ) ∩ LSH⇒ f q(r)r ∈ L1

(µ), q(r) = r−
2
α .

_e property of exponential sub-additivity of µ allows us to show that if f ∈ L1(µ) ∩
LSH, then the function ρ(x) f (x) is bounded by amultiple of ∥ f ∥1. (We proût from
the fact that the product e−⟨A,t⟩ f (x+t) is LSH, so also subharmonic. We use the fact
that g(0) ≤ ∫ gdµ for any subharmonic function). Next, it is easy to show that the
α-subhomogeneity of µ together with the boundedness of ρ f implies that f q(r)r ∈

L1(µ).
Now, as in the proof of (i)(a), we suppose that g ∈ LSH ∩ Lq0

E (µ) for some q0 > 1.
We obtain partial (sHC) inequalities for r ∈ [q−2/c

0 , 1], but property (3.10) allows us to
iterate the proof procedure and to get partial (sHC) inequalities for r ∈ [(q2

0)
−2/c , 1].

By induction, the (sHC) inequalities hold on any segment [(q2n
0 )−2/c , 1], so on (0, 1].

Finally, we eliminate the LE hypothesis precisely as in the proof of (i)(a): consider
f ∈ L1(µ)∩LSH. Let α < 1. _en f α ∈ L 1

α (µ)∩LSH. By the previous step, the inequal-
ities fromProposition 1.19 hold for f α . Now let α ↗ 1. By theMonotone Convergence
_eorem applied on the domain { f ≥ 1} and the Dominated Convergence _eorem
applied on the domain { f < 1} we get the same inequalities for f . _is completes the
proof of_eorem 1.17(i).

Appendix A Properties of Euclidean Regular Measures

In this brief appendix,we show several closure properties of the class of Euclidean reg-
ular measures (of any given exponential type p ∈ [0,∞)): it is closed under bounded
perturbations, convex combinations, product, and convolution. _roughout, we use
µ i (i = 1, 2) to stand for such measures, and ρ i to stand for their densities.

Proposition A.1 Let µ1 and µ2 be positive measures on Rn , and suppose µ1 is Eu-
clidean exponential type p ∈ [0,∞). If there are constants C ,D > 0 such that Cµ1 ≤

µ2 ≤ Dµ1, then µ2 is also Euclidean exponential type p.

Proof _e assumption is that Cρ1 ≤ ρ2 ≤ Dρ1. Let є > 0 be such that

sup
1<a<1+є

C0
ρ1
(a, 0) <∞.

_en for any such a,

ρ2(ax)
ρ2(x)

≤
Dρ1(ax)
Cρ1(x)

≤
D
C
C0

ρ1
(a, 0)
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for all x; thus C0
ρ2(a, 0) ≤

D
C C

0
ρ1
(a, 0), and so sup1<a<1+є C0

ρ2(a, 0) <∞. Similarly, for
x , y ∈ Rn and a > 1,

∣x∣p ρ2(ax + y)
ρ2(x)

≤ ∣x∣p Dρ1(ax + y)
Cρ1(x)

≤
D
C
C p

ρ1(a, ∣y∣)

and so C p
ρ2(a, s) ≤ D

C C
p
ρ1(a, s) <∞.

Proposition A.2 Let µ1 and µ2 be Euclidean regular measures of exponential type
p ∈ [0,∞). For any t ∈ [0, 1], µ = (1 − t)µ1 + tµ2 is Euclidean exponential type p.

Proof Let є > 0 be such that sup1<a<1+є C0
ρ i (a, 0) < ∞ for i = 1, 2. Let ρ be the

density of µ. _en for any x ∈ Rn ,

ρ(ax) = (1 − t)ρ1(ax) + tρ2(ax) ≤ (1 − t)C0
ρ1
(a, 0)ρ1(x) + tC0

ρ2(a, 0)ρ2(x)
≤ max{C0

ρ1
(a, 0),C0

ρ2(a, 0)}ρ(x)

and so C0
ρ(a, 0) ≤ max{C0

ρ1
(a, 0),C0

ρ2(a, 0)} is uniformly bounded for 1 < a < 1 + є,
as required. Similarly, for x , y ∈ Rn and a > 1,

∣x∣pρ(ax + y) ≤ (1 − t)∣x∣pρ1(ax + y) + t∣x∣pρ2(ax + y)

≤ (1 − t)C p
ρ1(a, ∣y∣)ρ1(x) + tC p

ρ2(a, ∣y∣)ρ2(x)

≤ max{C p
ρ1(a, ∣y∣),C

p
ρ2(a, ∣y∣)}ρ(x)

which shows that C p
ρ(a, s) ≤ max{C p

ρ1(a, s),C
p
ρ2(a, s)} <∞ for a ≥ 1 and s ≥ 0.

Proposition A.3 Let p ∈ [0,∞), let µ1 be a Euclidean exponential type p measure on
Rn1 , and let Let µ2 be a Euclidean exponential type p measure onRn2 . _en the product
measure µ1 ⊗ µ2 is Euclidean exponential type p on Rn1+n2 .

Proof For i = 1, 2 let ρ i be the density of µ i ; then µ1⊗µ2 has density ρ1⊗ρ2(x1 , x2) =

ρ1(x1)ρ2(x2). Fix є > 0 so that sup1<a<1+є C
p
ρ i (0, a) < ∞ for i = 1, 2. _en, letting

x = (x1 , x2),

ρ1 ⊗ ρ2(ax) = ρ1(ax1)ρ2(ax2) ≤ C0
ρ1
(a, 0) ρ1(x1) ⋅ C0

ρ2(a, 0) ρ2(x2)

and so C0
ρ1⊗ρ2(a, 0) ≤ C0

ρ1
(a, 0) ⋅ C0

ρ2(a, 0), meaning sup1<a<1+є C0
ρ1⊗ρ2(a, 0) < ∞.

Similarly, for ûxed x, y ∈ Rn1+n2 and a > 1,

∣x∣pρ1 ⊗ ρ2(ax + y) = (∣x1∣ + ∣x2∣)
pρ1(ax1 + y1)ρ2(ax2 + y2).

By elementary calculus, (∣x1∣ + ∣x2∣)
p ≤ 2p−1(∣x1∣

p + ∣x2∣
p), and so we have

∣x∣pρ1 ⊗ ρ2(ax + y) ≤ 2p−1
∣x1∣

pρ1(ax1 + y1) ⋅ ρ2(ax2 + y2)

+ 2p−1ρ1(ax1 + y1) ⋅ ∣x2∣
pρ2(ax2 + y2).

For the ûrst term,we have ∣x1∣
pρ1(ax1+ y1) ≤ C p

ρ1(a, ∣y1∣)ρ1(x1),while ρ2(ax2+ y2) ≤

C0
ρ2(a, ∣y2∣); for the second term, we have ρ1(ax1 + y1) ≤ C0

ρ1
(a, ∣y1∣)ρ1(x1), while
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∣x2∣
pρ2(ax2 + y2) ≤ C p

ρ2(a, ∣y2∣). If ∣y∣ ≤ s, then ∣y i ∣ ≤ s for i = 1, 2. All together, this
shows that

C p
ρ1⊗ρ2(a, s) ≤ 2p−1[C p

ρ1(a, s)C
0
ρ2(a, s) + C

0
ρ1
(a, s)C p

ρ2(a, s)] ,
which is ûnite, since both ρ1 , ρ2 are Euclidean exponential type p (and hence also
Euclidean regular). _is proves the proposition.

Proposition A.4 Let µ1 and µ2 be positivemeasures on Rn , each of Euclidean expo-
nential type p ∈ [0,∞). _en µ1 ∗ µ2 is Euclidean exponential type p.

Proof Let ρ j be the density of µ j . By assumption, for i = 1, 2 C p i
ρ i (a, s) <∞ for a > 1

and s ≥ 0, and there is є > 0 such that sup1<a<1+є C0
ρ i (a, 0) < ∞ (cf. (1.3)). _en for

a ≥ 1 and x ∈ Rn ,

ρ1 ∗ ρ2(ax) = ∫ ρ1(ax − u)ρ2(u) du = an
∫ ρ1(ax − av)ρ2(av) dv .

By deûnition, ρ1(a(x − v)) ≤ C0
ρ1
(a, 0)ρ1(x − v) and ρ2(av) ≤ C0

ρ2(a, 0)ρ2(v) for all
x , v. _us,

ρ1 ∗ ρ2(ax) ≤ anC0
ρ1
(a, 0) ⋅ C0

ρ2(a, 0)∫ ρ1(x − v)ρ2(v) dv

= anC0
ρ1
(a, 0) ⋅ C0

ρ2(a, 0)ρ1 ∗ ρ2(x).

It follows that C0
ρ1∗ρ2(a, 0) ≤ a

nC0
ρ1
(a, 0) ⋅ C0

ρ2(a, 0), and hence

(A.1) sup
1<a<1+є

C0
ρ1∗ρ2(a, 0) ≤ (1 + є)n sup

1<a<1+є
C0

ρ1
(a, 0) ⋅ sup

1<a<1+є
C0

ρ2(a, 0) <∞,

as required. Similarly, for x , y ∈ Rn and a > 1,

∣x∣pρ1 ∗ ρ2(ax + y) = ∣x∣p ∫ ρ1(ax + y − u)ρ2(u) du

= an
∫ ∣x∣pρ1(a(x − v) + y)ρ2(av) dv .

Note (by elementary calculus) that ∣x∣p ≤ 2p−1(∣x − v∣p + ∣v∣p), and so

∣x∣pρ1 ∗ ρ2(ax + y) ≤ 2p−1an
[∫ ∣x − v∣pρ1(a(x − v) + y)ρ2(av) dv

+ ∫ ρ1(a(x − v) + y)∣v∣pρ(av) dv] .

In the ûrst term,we have ∣x−v∣pρ1(a(x−v)+ y) ≤ C p
ρ1(a, ∣y∣)ρ1(x−v) and ρ2(av) ≤

C0
ρ2(a, 0), and so

∫ ∣x − v∣pρ1(a(x − v) + y)ρ2(av) dv ≤ C p
ρ1(a, ∣y∣) ⋅ C

0
ρ2(a, 0) ρ1 ∗ ρ2(x).

In the second term, we have ρ1(a(x − v)+ y) ≤ C0
ρ1
(a, ∣y∣)ρ1(x − v) and ∣v∣pρ(av) ≤

C p
ρ2(a, 0), and so

∫ ρ1(a(x − v) + y)∣v∣pρ(av) dv ≤ C0
ρ1
(a, ∣y∣) ⋅ C p

ρ2(a, 0) ρ1 ∗ ρ2(x).

All together, for any s ≥ ∣y∣, this gives

(A.2) C p
ρ1∗ρ2(a, s) ≤ 2p−1an[C p

ρ1(a, s) ⋅ C
0
ρ2(a, 0) + C

0
ρ1
(a, s) ⋅ C p

ρ2(a, 0)]
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which is ûnite, since both ρ1 and ρ2 are Euclidean exponential type p (and thus also
Euclidean regular). Equations (A.1) and (A.2) prove the proposition.
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